mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105429 Approved by: https://github.com/malfet
280 lines
9.9 KiB
Python
280 lines
9.9 KiB
Python
import torch
|
|
from torch.autograd import functional
|
|
|
|
import time
|
|
from argparse import ArgumentParser
|
|
from collections import defaultdict
|
|
from typing import NamedTuple, Callable, List, Any
|
|
|
|
try:
|
|
import functorch as ft
|
|
has_functorch = True
|
|
print(f"Found functorch: {ft.__version__}")
|
|
except ImportError:
|
|
has_functorch = False
|
|
|
|
import ppl_models
|
|
import vision_models
|
|
import audio_text_models
|
|
|
|
from utils import to_markdown_table, TimingResultType, InputsType, GetterType, VType
|
|
|
|
def get_task_func(task: str) -> Callable:
|
|
def hessian_fwdrev(model, inp, strict=None):
|
|
return functional.hessian(model, inp, strict=False, vectorize=True, outer_jacobian_strategy="forward-mode")
|
|
|
|
def hessian_revrev(model, inp, strict=None):
|
|
return functional.hessian(model, inp, strict=False, vectorize=True)
|
|
|
|
def jacfwd(model, inp, strict=None):
|
|
return functional.jacobian(model, inp, strict=False, vectorize=True, strategy="forward-mode")
|
|
|
|
def jacrev(model, inp, strict=None):
|
|
return functional.jacobian(model, inp, strict=False, vectorize=True)
|
|
|
|
if task == "hessian_fwdrev":
|
|
return hessian_fwdrev
|
|
elif task == "hessian_revrev":
|
|
return hessian_revrev
|
|
elif task == "jacfwd":
|
|
return jacfwd
|
|
elif task == "jacrev":
|
|
return jacrev
|
|
else:
|
|
return getattr(functional, task)
|
|
|
|
def get_task_functorch(task: str) -> Callable:
|
|
|
|
@torch.no_grad()
|
|
def vjp(model, inp, v=None, strict=None):
|
|
assert v is not None
|
|
out, vjpfunc = ft.vjp(model, *inp)
|
|
return out, vjpfunc(v)
|
|
|
|
@torch.no_grad()
|
|
def jvp(model, inp, v=None, strict=None):
|
|
assert v is not None
|
|
return ft.jvp(model, inp, v)
|
|
|
|
@torch.no_grad()
|
|
def vhp(model, inp, v=None, strict=None):
|
|
assert v is not None
|
|
argnums = tuple(range(len(inp)))
|
|
_, vjpfunc, aux = ft.vjp(ft.grad_and_value(model, argnums), *inp, has_aux=True)
|
|
return aux, vjpfunc(v)
|
|
|
|
@torch.no_grad()
|
|
def hvp(model, inp, v=None, strict=None):
|
|
assert v is not None
|
|
argnums = tuple(range(len(inp)))
|
|
_, hvp_out, aux = ft.jvp(ft.grad_and_value(model, argnums), inp, v, has_aux=True)
|
|
return aux, hvp_out
|
|
|
|
@torch.no_grad()
|
|
def jacfwd(model, inp, v=None, strict=None):
|
|
argnums = tuple(range(len(inp)))
|
|
return ft.jacfwd(model, argnums)(*inp)
|
|
|
|
@torch.no_grad()
|
|
def jacrev(model, inp, v=None, strict=None):
|
|
argnums = tuple(range(len(inp)))
|
|
return ft.jacrev(model, argnums)(*inp)
|
|
|
|
@torch.no_grad()
|
|
def hessian(model, inp, v=None, strict=None):
|
|
argnums = tuple(range(len(inp)))
|
|
return ft.hessian(model, argnums=argnums)(*inp)
|
|
|
|
@torch.no_grad()
|
|
def hessian_fwdrev(model, inp, v=None, strict=None):
|
|
argnums = tuple(range(len(inp)))
|
|
return ft.jacfwd(ft.jacrev(model, argnums=argnums), argnums=argnums)(*inp)
|
|
|
|
@torch.no_grad()
|
|
def hessian_revrev(model, inp, v=None, strict=None):
|
|
argnums = tuple(range(len(inp)))
|
|
return ft.jacrev(ft.jacrev(model, argnums=argnums), argnums=argnums)(*inp)
|
|
|
|
if task in locals():
|
|
return locals()[task]
|
|
elif task == "jacobian":
|
|
raise RuntimeError("functorch has no equivalent of autograd.functional.jacobian with vectorize=False yet")
|
|
else:
|
|
raise RuntimeError(f"Unsupported task: {task}")
|
|
|
|
# Listing of the different tasks
|
|
FAST_TASKS_NO_DOUBLE_BACK = [
|
|
"vjp",
|
|
]
|
|
|
|
FAST_TASKS = FAST_TASKS_NO_DOUBLE_BACK + [
|
|
"vhp",
|
|
"jvp",
|
|
]
|
|
|
|
ALL_TASKS_NON_VECTORIZED = FAST_TASKS + [
|
|
"hvp",
|
|
"jacobian",
|
|
"hessian"
|
|
]
|
|
|
|
DOUBLE_BACKWARD_TASKS = ["jvp", "hvp", "vhp", "hessian"]
|
|
|
|
VECTORIZED_TASKS = ["hessian_fwdrev", "hessian_revrev", "jacfwd", "jacrev"]
|
|
|
|
ALL_TASKS = ALL_TASKS_NON_VECTORIZED + VECTORIZED_TASKS
|
|
|
|
# Model definition which contains:
|
|
# - name: a string with the model name.
|
|
# - getter: a function to get the model. It takes as input the device on which the model
|
|
# will run. It should return the forward function and the parameters (Tensors) used as
|
|
# input for the forward function. Note that the forward must *not* have any side effect.
|
|
# - tasks: the list of recommended tasks that can run in a reasonable amount of time with this model.
|
|
# - unsupported: the list of tasks that this model cannot run.
|
|
class ModelDef(NamedTuple):
|
|
name: str
|
|
getter: GetterType
|
|
tasks: List[str]
|
|
unsupported: List[str]
|
|
|
|
MODELS = [
|
|
ModelDef("resnet18", vision_models.get_resnet18, FAST_TASKS, []),
|
|
ModelDef("fcn_resnet", vision_models.get_fcn_resnet, FAST_TASKS, []),
|
|
ModelDef("detr", vision_models.get_detr, FAST_TASKS, []),
|
|
ModelDef("ppl_simple_reg", ppl_models.get_simple_regression, ALL_TASKS, []),
|
|
ModelDef("ppl_robust_reg", ppl_models.get_robust_regression, ALL_TASKS, []),
|
|
ModelDef("wav2letter", audio_text_models.get_wav2letter, FAST_TASKS, []),
|
|
ModelDef("deepspeech", audio_text_models.get_deepspeech, FAST_TASKS_NO_DOUBLE_BACK, DOUBLE_BACKWARD_TASKS),
|
|
ModelDef("transformer", audio_text_models.get_transformer, FAST_TASKS, []),
|
|
ModelDef("multiheadattn", audio_text_models.get_multiheadattn, FAST_TASKS, []),
|
|
]
|
|
|
|
def get_v_for(model: Callable, inp: InputsType, task: str) -> VType:
|
|
v: VType
|
|
|
|
if task in ["vjp"]:
|
|
out = model(*inp)
|
|
v = torch.rand_like(out)
|
|
elif task in ["jvp", "hvp", "vhp"]:
|
|
if isinstance(inp, tuple):
|
|
v = tuple(torch.rand_like(i) for i in inp)
|
|
else:
|
|
v = torch.rand_like(inp)
|
|
else:
|
|
v = None
|
|
|
|
return v
|
|
|
|
def run_once(model: Callable, inp: InputsType, task: str, v: VType, **kwargs) -> None:
|
|
func = get_task_func(task)
|
|
|
|
if v is not None:
|
|
res = func(model, inp, v=v, strict=True)
|
|
else:
|
|
res = func(model, inp, strict=True)
|
|
|
|
def run_once_functorch(model: Callable, inp: InputsType, task: str, v: VType, maybe_check_consistency=False) -> None:
|
|
func = get_task_functorch(task)
|
|
|
|
if v is not None:
|
|
res = func(model, inp, v=v, strict=True)
|
|
else:
|
|
res = func(model, inp, strict=True)
|
|
|
|
if maybe_check_consistency:
|
|
af_func = get_task_func(task)
|
|
if v is not None:
|
|
expected = af_func(model, inp, v=v, strict=True)
|
|
else:
|
|
expected = af_func(model, inp, strict=True)
|
|
atol = 1e-2 if task == "vhp" else 5e-3
|
|
torch.testing.assert_close(res, expected, rtol=1e-5, atol=atol, msg=f"Consistency fail for task '{task}'")
|
|
|
|
def run_model(model_getter: GetterType, args: Any, task: str, run_once_fn: Callable = run_once) -> List[float]:
|
|
if args.gpu == -1:
|
|
device = torch.device("cpu")
|
|
|
|
def noop():
|
|
pass
|
|
do_sync = noop
|
|
else:
|
|
device = torch.device(f"cuda:{args.gpu}")
|
|
do_sync = torch.cuda.synchronize
|
|
|
|
model, inp = model_getter(device)
|
|
|
|
v = get_v_for(model, inp, task)
|
|
|
|
# Warmup
|
|
# maybe_check_consistency=True checks for consistency between
|
|
# functorch vs autograd.functional and is done in run_once_functorch only
|
|
run_once_fn(model, inp, task, v, maybe_check_consistency=True)
|
|
|
|
elapsed = []
|
|
for it in range(args.num_iters):
|
|
do_sync()
|
|
start = time.time()
|
|
run_once_fn(model, inp, task, v)
|
|
do_sync()
|
|
elapsed.append(time.time() - start)
|
|
|
|
return elapsed
|
|
|
|
def main():
|
|
parser = ArgumentParser("Main script to benchmark functional API of the autograd.")
|
|
parser.add_argument("--output", type=str, default="", help="Text file where to write the output")
|
|
parser.add_argument("--num-iters", type=int, default=10)
|
|
parser.add_argument("--gpu", type=int, default=-2, help="GPU to use, -1 for CPU and -2 for auto-detect")
|
|
parser.add_argument("--run-slow-tasks", action="store_true", help="Run even the slow tasks")
|
|
parser.add_argument("--model-filter", type=str, default="", help="Only run the models in this filter")
|
|
parser.add_argument("--task-filter", type=str, default="", help="Only run the tasks in this filter")
|
|
parser.add_argument("--num-threads", type=int, default=10,
|
|
help="Number of concurrent threads to use when running on cpu")
|
|
parser.add_argument("--seed", type=int, default=0, help="The random seed to use.")
|
|
args = parser.parse_args()
|
|
|
|
results: TimingResultType = defaultdict(defaultdict)
|
|
torch.set_num_threads(args.num_threads)
|
|
torch.set_num_interop_threads(args.num_threads)
|
|
|
|
# This automatically seed cuda if it is available
|
|
torch.manual_seed(args.seed)
|
|
|
|
if args.gpu == -2:
|
|
args.gpu = 0 if torch.cuda.is_available() else -1
|
|
|
|
for name, model_getter, recommended_tasks, unsupported_tasks in MODELS:
|
|
if args.model_filter and name not in args.model_filter:
|
|
continue
|
|
tasks = ALL_TASKS if args.run_slow_tasks else recommended_tasks
|
|
for task in tasks:
|
|
if task in unsupported_tasks:
|
|
continue
|
|
if args.task_filter and task not in args.task_filter:
|
|
continue
|
|
runtimes = run_model(model_getter, args, task)
|
|
|
|
runtimes = torch.tensor(runtimes)
|
|
mean, var = runtimes.mean(), runtimes.var()
|
|
results[name][task] = (mean.item(), var.item())
|
|
print(f"Results for model {name} on task {task}: {mean}s (var: {var})")
|
|
|
|
if has_functorch:
|
|
try:
|
|
runtimes = run_model(model_getter, args, task, run_once_fn=run_once_functorch)
|
|
except RuntimeError as e:
|
|
print(f"Failed model using Functorch: {name}, task: {task}, Error message: \n\t", e)
|
|
continue
|
|
|
|
runtimes = torch.tensor(runtimes)
|
|
mean, var = runtimes.mean(), runtimes.var()
|
|
results[name][f"functorch {task}"] = (mean.item(), var.item())
|
|
print(f"Results for model {name} on task {task} using Functorch: {mean}s (var: {var})")
|
|
|
|
if args.output:
|
|
with open(args.output, "w") as f:
|
|
f.write(to_markdown_table(results))
|
|
|
|
if __name__ == "__main__":
|
|
main()
|