Files
pytorch/test/test_matmul_cuda.py

2350 lines
101 KiB
Python

# Owner(s): ["module: linear algebra"]
import contextlib
import json
import math
import re
import tempfile
import unittest
from itertools import product
from functools import partial
from typing import Optional
import torch
from torch.quantization._quantized_conversions import (
pack_int4_to_int8,
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass,
)
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_BF16,
SM53OrLater,
SM80OrLater,
SM89OrLater,
SM90OrLater,
xfailIfSM100OrLater,
xfailIfSM120OrLater,
_get_torch_cuda_version,
PLATFORM_SUPPORTS_FP8,
PLATFORM_SUPPORTS_FP8_GROUPED_GEMM,
PLATFORM_SUPPORTS_MX_GEMM,
PLATFORM_SUPPORTS_MXFP8_GROUPED_GEMM,
IS_SM90,
with_tf32_off,
)
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
tol as xtol,
toleranceOverride,
e4m3_type,
e5m2_type,
E4M3_MAX_POS,
E5M2_MAX_POS,
)
from torch.testing._internal.common_utils import (
IS_JETSON,
IS_WINDOWS,
parametrize,
run_tests,
skipIfRocm,
skipIfRocmVersionLessThan,
TEST_CUDA,
TEST_WITH_ROCM,
TestCase,
)
from torch.testing._internal.common_quantized import (
_f32_to_floatx_unpacked,
_floatx_unpacked_to_f32,
ceil_div, to_blocked,
to_mxfp8,
generate_jagged_offs,
)
_IS_SM8X = False
if TEST_CUDA:
_IS_SM8X = torch.cuda.get_device_capability(0)[0] == 8
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
@contextlib.contextmanager
def blas_library_context(backend):
prev_backend = torch.backends.cuda.preferred_blas_library()
torch.backends.cuda.preferred_blas_library(backend)
try:
yield
finally:
torch.backends.cuda.preferred_blas_library(prev_backend)
class TestMatmulCuda(TestCase):
def setUp(self):
super().setUp()
torch.backends.cuda.matmul.allow_tf32 = False
def tearDown(self):
torch.backends.cuda.matmul.allow_tf32 = True
super().tearDown()
def cublas_addmm(self, size: int, dtype: torch.dtype, reduced_precision: bool = False, fp16_accumulate: bool = False):
#
# Check for catastrophic cuBLAS inaccuracy by measuring the deviation between
# results from the CUDA invocation of torch.addmm and the CPU invocation
# (which does not use CUDA backend).
#
# Get dims
n, m, p = (size + 1, size, size + 2)
# Disable reduced precision reductions in BFloat16 to bypass some kernels
# which fail the threshold check
orig_bf16 = torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction
orig_fp16 = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
orig_fp16_accumulate = torch.backends.cuda.matmul.allow_fp16_accumulation
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = reduced_precision
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = reduced_precision
torch.backends.cuda.matmul.allow_fp16_accumulation = fp16_accumulate
# Make random tensors on CPU (seed set on common_utils.py import)
# (Not using numpy because it does not support bfloat16)
make_arg = partial(make_tensor, dtype=dtype, device="cpu")
m_beta = make_arg(1)
m_input = make_arg((n, p))
m_1 = make_arg((n, m))
m_2 = make_arg((m, p))
# scale to abate overflows in fp16 accum
if fp16_accumulate:
m_1 = m_1 / 100
m_2 = m_2 / 100
# *(B)FLOAT16 Special Handling*
# Backend does not tensorize float16 on CPU,
# and bloat16 may present accuracy issues,
# so convert to float32 for these cases
# (but keep same for other types, e.g. float32 and int*)
if dtype == torch.float16 or dtype == torch.bfloat16:
m_beta = m_beta.to(dtype=torch.float32)
m_input = m_input.to(dtype=torch.float32)
m_1 = m_1.to(dtype=torch.float32)
m_2 = m_2.to(dtype=torch.float32)
# Get CPU result
res_cpu = torch.addmm(m_input, m_1, m_2, beta=m_beta.item())
# *(B)FLOAT16 Special Handling*``
# Convert back to (b)float16
if dtype == torch.float16 or dtype == torch.bfloat16:
m_beta = m_beta.to(dtype=dtype)
m_input = m_input.to(dtype=dtype)
m_1 = m_1.to(dtype=dtype)
m_2 = m_2.to(dtype=dtype)
res_cpu = res_cpu.to(dtype=dtype)
# Move arg tensors to CUDA
m_beta = m_beta.to("cuda")
m_input = m_input.to("cuda")
m_1 = m_1.to("cuda")
m_2 = m_2.to("cuda")
# Get CUDA result
res_cuda = torch.addmm(m_input, m_1, m_2, beta=m_beta.item())
# Move to CPU for comparison
res_cuda = res_cuda.to("cpu")
# Compare
self.assertEqual(res_cpu, res_cuda)
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = orig_bf16
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_fp16
torch.backends.cuda.matmul.allow_fp16_accumulation = orig_fp16_accumulate
@onlyCUDA
@skipIfRocmVersionLessThan((5, 2))
# imported 'tol' as 'xtol' to avoid aliasing in code above
@toleranceOverride({torch.float16: xtol(atol=1e-1, rtol=1e-1),
torch.bfloat16: xtol(atol=1e-1, rtol=1e-1),
torch.float32: xtol(atol=1e-1, rtol=1e-1)})
@dtypes(torch.float16, torch.bfloat16, torch.float32)
@parametrize("size", [100, 1000, 10000])
@parametrize("backend", ["cublas", "cublaslt"])
def test_cublas_addmm(self, size: int, dtype: torch.dtype, backend):
with blas_library_context(backend):
self.cublas_addmm(size, dtype, False)
@onlyCUDA
@skipIfRocmVersionLessThan((5, 2))
# imported 'tol' as 'xtol' to avoid aliasing in code above
@toleranceOverride({torch.float16: xtol(atol=7e-1, rtol=2e-1),
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
@dtypes(torch.float16, torch.bfloat16)
@parametrize("size", [100, 1000, 10000])
@parametrize("backend", ["cublas", "cublaslt"])
def test_cublas_addmm_reduced_precision(self, size: int, dtype: torch.dtype, backend):
with blas_library_context(backend):
self.cublas_addmm(size, dtype, True)
@onlyCUDA
@skipIfRocmVersionLessThan((5, 2))
@dtypes(torch.float16)
# m == 4 chooses OUTPUT_TYPE reduction on H200
# m == 8 chooses OUTPUT_TYPE reduction on A100
@parametrize("small_size", [4, 8])
@parametrize("size", [32768])
@parametrize("backend", ["cublaslt", "cublas"])
def test_cublas_addmm_no_reduced_precision(self, small_size: int, size: int, dtype: torch.dtype, backend):
with blas_library_context(backend):
torch.backends.cuda.preferred_blas_library(backend)
orig_precision = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
m1 = torch.full((small_size, size), 65504.0, dtype=dtype, device='cuda')
m2 = torch.ones((size, small_size), dtype=dtype, device='cuda')
m2[size // 2:, :] = -1.0
b = torch.zeros((small_size,), dtype=dtype, device='cuda')
out = torch.addmm(b, m1, m2, beta=1.0)
self.assertEqual(out.sum().item(), 0.0)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig_precision
@onlyCUDA
@skipIfRocmVersionLessThan((5, 2))
# imported 'tol' as 'xtol' to avoid aliasing in code above
@toleranceOverride({torch.float16: xtol(atol=7e-1, rtol=2e-1),
torch.bfloat16: xtol(atol=1e1, rtol=2e-1)})
@dtypes(torch.float16, torch.bfloat16)
@parametrize("size", [100, 1000, 10000])
@parametrize("backend", ["cublas", "cublaslt"])
def test_cublas_addmm_reduced_precision_fp16_accumulate(self, size: int, dtype: torch.dtype, backend):
with blas_library_context(backend):
self.cublas_addmm(size, dtype, False, True)
@onlyCUDA
def test_cublas_and_lt_reduced_precision_fp16_accumulate(self):
orig_fp16_accumulate = torch.backends.cuda.matmul.allow_fp16_accumulation
torch.backends.cuda.matmul.allow_fp16_accumulation = True
x = torch.rand(32, 512, 512, device='cuda', dtype=torch.half)
w = torch.rand(512, 512, device='cuda', dtype=torch.half)
b = torch.rand(512, device='cuda', dtype=torch.half)
out = torch.nn.functional.linear(x, w, b)
out_cpu = torch.nn.functional.linear(x.cpu(), w.cpu(), b.cpu())
self.assertEqual(out, out_cpu, atol=5e-3, rtol=8e-3)
a = torch.rand(16, 128, 128, device='cuda', dtype=torch.half)
b = torch.rand(16, 128, 128, device='cuda', dtype=torch.half)
c = torch.rand(16, 128, 128, device='cuda', dtype=torch.half)
out = torch.baddbmm(a, b, c)
out_cpu = torch.baddbmm(a.cpu(), b.cpu(), c.cpu())
self.assertEqual(out, out_cpu, atol=1e-3, rtol=5e-3)
torch.backends.cuda.matmul.allow_fp16_accumulation = orig_fp16_accumulate
@onlyCUDA
@toleranceOverride({torch.float16: xtol(atol=1e-3, rtol=2e-3)})
@dtypes(torch.float16)
def test_cublas_addmm_alignment(self, dtype):
device = 'cuda'
# perturb X, A, or B alignment
for idx in range(0, 3):
for offset in range(1, 3):
offsets = [0, 0, 0]
offsets[idx] = offset
x_offset, a_offset, b_offset = offsets
A = torch.rand((5120 * 2560 + a_offset), requires_grad=True, dtype=dtype, device=device)
A = A[a_offset:].reshape(5120, 2560)
X = torch.rand((26 * 2560 + x_offset), requires_grad=True, dtype=dtype, device=device)
X = X[x_offset:].reshape(26, 1, 2560)
B = torch.rand((5120 + b_offset), requires_grad=True, dtype=dtype, device=device)
B = B[b_offset:].reshape(5120)
out = torch.nn.functional.linear(X, A, B)
self.assertEqual(out, torch.matmul(X, A.transpose(1, 0)) + B)
@onlyCUDA
@unittest.skipIf(IS_JETSON, "Too large for Jetson")
@toleranceOverride({torch.float32: xtol(atol=1e-5, rtol=1.1e-5)})
@dtypes(*([torch.float32, torch.float16] +
[torch.bfloat16] if TEST_WITH_ROCM or SM53OrLater else []))
@parametrize(
"batch_size, N, M, P",
[(2, 100, 100, 100),
(2, 1000, 1000, 1000),
(1, 10000, 1000, 10000),
(1, 10000, 10000, 10000)],
name_fn=lambda batch_size, N, M, P: f"{batch_size}_{N}_{M}_{P}",
)
@skipIfRocm
def test_cublas_baddbmm_large_input(self, device, batch_size, N, M, P, dtype):
cpu_dtype = dtype
if dtype == torch.float16 or dtype == torch.bfloat16:
cpu_dtype = torch.float32
M1 = torch.rand((N, M), device=device, dtype=dtype)
M2 = torch.rand((M, P), device=device, dtype=dtype)
A = torch.rand((N, P), device=device, dtype=dtype)
def _convert_to_cpu(t):
return t.to(device='cpu', dtype=cpu_dtype)
M1_cpu, M2_cpu, A_cpu = map(_convert_to_cpu, [M1, M2, A])
# linear
out1_cpu = torch.nn.functional.linear(M1_cpu, M2_cpu.t(), A_cpu).to(dtype=dtype)
out1_gpu = torch.nn.functional.linear(M1, M2.t(), A).cpu()
self.assertEqual(out1_cpu, out1_gpu)
# test multiply the identity matrix
if N == M and M == P:
M2_eye = torch.eye(N, device=device, dtype=dtype)
out1_eye_gpu = torch.nn.functional.linear(M1, M2_eye.t(), torch.zeros_like(A))
self.assertEqual(M1_cpu.to(dtype=dtype), out1_eye_gpu.cpu())
# baddbmm
def _expand_to_batch(t: torch.Tensor):
return t.expand((batch_size, ) + t.size())
alpha, beta = 1.0, 1.0
M1, M2, A, M1_cpu, M2_cpu, A_cpu = map(_expand_to_batch, [M1, M2, A, M1_cpu, M2_cpu, A_cpu])
out2_cpu = torch.baddbmm(A_cpu, M1_cpu, M2_cpu, beta=beta, alpha=alpha).to(dtype=dtype)
out2_gpu = torch.baddbmm(A, M1, M2, beta=beta, alpha=alpha).cpu()
self.assertEqual(out2_cpu, out2_gpu)
# test multiply the identity matrix
if N == M and M == P:
M2_eye = torch.eye(N, device=device, dtype=dtype).expand(batch_size, N, N)
out2_eye_gpu = torch.baddbmm(torch.zeros_like(A), M1, M2_eye, beta=beta, alpha=alpha)
self.assertEqual(M1_cpu.to(dtype=dtype), out2_eye_gpu.cpu())
# cross comparison
self.assertEqual(out1_gpu, out2_gpu[0])
def grouped_mm_helper(self, alist, blist, gOlist, agradlist, bgradlist, outlist):
for a, b, gO, agrad, bgrad, out in zip(alist, blist, gOlist, agradlist, bgradlist, outlist):
a = a.clone().detach().requires_grad_()
b = b.clone().detach().requires_grad_()
out_ref = torch.mm(a, b.t())
out_ref.backward(gO)
self.assertEqual(out, out_ref)
if agrad is not None:
self.assertEqual(agrad, a.grad)
self.assertEqual(bgrad, b.grad)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@xfailIfSM120OrLater
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
@parametrize("strided", [False, True])
@parametrize("a_row_major", [False, True])
@parametrize("b_row_major", [False, True])
@dtypes(torch.bfloat16, torch.float32, torch.float16)
def test_grouped_gemm_2d_2d(self, strided, a_row_major, b_row_major, dtype):
device = "cuda"
m, n, k, n_groups = 16, 32, 64, 4
if a_row_major:
a = torch.randn(m, k * n_groups + k * int(strided), device=device, dtype=dtype)[:, :k * n_groups]
else:
a = torch.randn(k * n_groups + k * int(strided), m, device=device, dtype=dtype).t()[:, :k * n_groups]
if b_row_major:
b = torch.randn(n, k * n_groups + k * int(strided), device=device, dtype=dtype)[:, :k * n_groups]
else:
b = torch.randn(k * n_groups + k * int(strided), n, device=device, dtype=dtype).t()[:, :k * n_groups]
a.requires_grad_(True)
b.requires_grad_(True)
offs = torch.arange(k, n_groups * k + 1, k, device=device, dtype=torch.int32)
f = torch._grouped_mm
out = f(a, b.t(), offs=offs, out_dtype=dtype)
gO = torch.rand_like(out)
out.backward(gO)
offs_cpu = offs.cpu()
alist, blist, agradlist, bgradlist = [], [], [], []
start = 0
for i in range(n_groups):
alist.append(a[:, start:offs_cpu[i]])
blist.append(b[:, start:offs_cpu[i]])
agradlist.append(a.grad[:, start:offs_cpu[i]])
bgradlist.append(b.grad[:, start:offs_cpu[i]])
start = offs_cpu[i]
self.grouped_mm_helper(alist, blist, gO, agradlist, bgradlist, out)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@xfailIfSM120OrLater
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
@parametrize("strided", [False, True])
@parametrize("a_row_major", [False, True])
@parametrize("b_row_major", [False, True])
@dtypes(torch.bfloat16, torch.float32, torch.float16)
def test_grouped_gemm_2d_3d(self, strided, a_row_major, b_row_major, dtype):
device = "cuda"
s_int = int(strided)
m, n, k, n_groups = 16, 32, 64, 4
if a_row_major:
a = torch.randn(m * n_groups, k * (1 + s_int), device=device, dtype=dtype)[:, :k]
else:
a = torch.randn(k, (m + 2 * s_int) * n_groups, device=device, dtype=dtype).t()[:m * n_groups, :]
if b_row_major:
b = torch.randn(n_groups * (1 + s_int), n, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
else:
b = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), n, device=device,
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
a.requires_grad_(True)
b.requires_grad_(True)
a_contig = a if a_row_major else a.t()
self.assertTrue(a_contig.is_contiguous() is not strided)
b_contig = b if b_row_major else b.transpose(-2, -1)
self.assertTrue(b_contig.is_contiguous() is not strided)
for check_zero_size in (False, True):
if check_zero_size and n_groups <= 1:
continue
a.grad = None
b.grad = None
offs = torch.arange(m, n_groups * m + 1, m, device=device, dtype=torch.int32)
if check_zero_size:
offs[0] = offs[1]
f = torch._grouped_mm
out = f(a, b.transpose(-2, -1), offs=offs, out_dtype=dtype)
gO = torch.rand_like(out)
if not check_zero_size:
out.backward(gO)
offs_cpu = offs.cpu()
alist, agradlist, gOlist, outlist = [], [], [], []
bgradlist = [None] * n_groups if check_zero_size else b.grad
start = 0
for i in range(n_groups):
alist.append(a[start:offs_cpu[i]])
agradlist.append(None if check_zero_size else a.grad[start:offs_cpu[i]])
outlist.append(out[start:offs_cpu[i]])
gOlist.append(gO[start:offs_cpu[i]])
start = offs_cpu[i]
self.grouped_mm_helper(alist, b, gOlist, agradlist, bgradlist, outlist)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@xfailIfSM120OrLater
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
@parametrize("strided", [False, True])
@parametrize("a_row_major", [False, True])
@parametrize("b_row_major", [False, True])
@dtypes(torch.bfloat16, torch.float32, torch.float16)
def test_grouped_gemm_3d_3d(self, strided, a_row_major, b_row_major, dtype):
device = "cuda"
s_int = int(strided)
m, n, k, n_groups = 16, 32, 64, 4
if a_row_major:
a = torch.randn(n_groups * (1 + s_int), m, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
else:
a = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), m, device=device,
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
if b_row_major:
b = torch.randn(n_groups * (1 + s_int), n, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
else:
b = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), n, device=device,
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
a.requires_grad_(True)
b.requires_grad_(True)
a_contig = a if a_row_major else a.transpose(-2, -1)
self.assertTrue(a_contig.is_contiguous() is not strided)
b_contig = b if b_row_major else b.transpose(-2, -1)
self.assertTrue(b_contig.is_contiguous() is not strided)
f = torch._grouped_mm
out = f(a, b.transpose(-2, -1), out_dtype=dtype)
gO = torch.rand_like(out)
out.backward(gO)
self.grouped_mm_helper(a, b, gO, a.grad, b.grad, out)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@xfailIfSM120OrLater
@unittest.skipIf(not SM80OrLater, "Grouped gemm supported only on SM80 or greater")
@parametrize("strided", [False, True])
@parametrize("a_row_major", [False, True])
@parametrize("b_row_major", [False, True])
@dtypes(torch.bfloat16, torch.float32, torch.float16)
def test_grouped_gemm_3d_2d(self, strided, a_row_major, b_row_major, dtype):
device = "cuda"
s_int = int(strided)
m, n, k, n_groups = 16, 32, 64, 4
if a_row_major:
a = torch.randn(n_groups * (1 + s_int), m, k * (1 + s_int), device=device, dtype=dtype)[::(1 + s_int), :, :k]
else:
a = torch.randn(n_groups * (1 + s_int), k * (1 + s_int), m, device=device,
dtype=dtype).transpose(-2, -1)[::(1 + s_int), :, :k]
if b_row_major:
b = torch.randn(n * n_groups, k * (1 + s_int), device=device, dtype=dtype)[:, :k]
else:
b = torch.randn(k, n * (n_groups + s_int), device=device, dtype=dtype).transpose(-2, -1)[:n * n_groups, :]
a.requires_grad_(True)
b.requires_grad_(True)
a_contig = a if a_row_major else a.transpose(-2, -1)
self.assertTrue(a_contig.is_contiguous() is not strided)
b_contig = b if b_row_major else b.transpose(-2, -1)
self.assertTrue(b_contig.is_contiguous() is not strided)
for check_zero_size in (False, True):
if check_zero_size and n_groups <= 1:
continue
offs = torch.arange(n, n_groups * n + 1, n, device=device, dtype=torch.int32)
if check_zero_size:
offs[0] = offs[1]
f = torch._grouped_mm
out = f(a, b.transpose(-2, -1), offs=offs, out_dtype=dtype)
gO = torch.rand_like(out)
if not check_zero_size:
out.backward(gO)
offs_cpu = offs.cpu()
blist, outlist, bgradlist, gOlist = [], [], [], []
agradlist = [None] * n_groups if check_zero_size else a.grad
start = 0
for i in range(n_groups):
blist.append(b[start:offs_cpu[i]])
bgradlist.append(b.grad[start:offs_cpu[i]])
outlist.append(out[:, start:offs_cpu[i]])
gOlist.append(gO[:, start:offs_cpu[i]])
start = offs_cpu[i]
self.grouped_mm_helper(a, blist, gOlist, agradlist, bgradlist, outlist)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@xfailIfSM100OrLater
# TODO(future PR): enable compile for torch._grouped_mm fallback path
@unittest.skipIf(not SM90OrLater, "Grouped gemm with compile supported on SM90")
@parametrize("op", ["2d/2d", "2d/3d", "3d/2d", "3d/3d"])
@parametrize("a_row_major", [False, True])
@parametrize("b_row_major", [False, True])
@parametrize("max_autotune", [False, True])
def test_grouped_gemm_compiled(self, op, a_row_major, b_row_major, max_autotune):
torch._dynamo.reset()
device = "cuda"
dtype_AB = torch.bfloat16
dtype_offset = torch.int32
align = 16 // dtype_AB.itemsize
f_ref = torch._grouped_mm
options = {}
if max_autotune:
options.update(
{
"max_autotune": True,
"max_autotune_gemm_backends": "TRITON",
}
)
f = torch.compile(
f_ref,
options=options,
)
if op == "2d/2d":
m, n = 3, 7
m_align = (m + align - 1) // align * align
n_align = (n + align - 1) // align * align
if not a_row_major and not b_row_major:
offs = torch.tensor([0, 1, 6, 6, 7], device=device, dtype=dtype_offset)
else:
offs = torch.tensor([0, 8, 16, 16, 27], device=device, dtype=dtype_offset)
ngroups = offs.shape[0]
k = offs[-1]
k_align = (k + align - 1) // align * align
if a_row_major:
A = torch.randn(m, k_align, device=device, dtype=dtype_AB)[:, :k]
else:
A = torch.randn(k, m_align, device=device, dtype=dtype_AB).t()[:m, :]
if b_row_major:
B = torch.randn(n, k_align, device=device, dtype=dtype_AB)[:, :k]
else:
B = torch.randn(k, n_align, device=device, dtype=dtype_AB).t()[:n, :]
elif op == "2d/3d":
n, k = 7, 259 # k is larger here, to validate iterating over k tiles on an op
n_align = (n + align - 1) // align * align
k_align = (k + align - 1) // align * align
if a_row_major:
offs = torch.tensor([0, 1, 3, 3, 5], device=device, dtype=dtype_offset)
else:
offs = torch.tensor([0, 8, 16, 16, 19], device=device, dtype=dtype_offset)
ngroups = offs.shape[0]
m = offs[-1]
m_align = (m + align - 1) // align * align
if a_row_major:
A = torch.randn(m, k_align, device=device, dtype=dtype_AB)[:, :k]
else:
A = torch.randn(k, m_align, device=device, dtype=dtype_AB).t()[:m, :]
if b_row_major:
B = torch.randn(ngroups, n, k_align, device=device, dtype=dtype_AB)[:, :, :k]
else:
B = torch.randn(ngroups, k, n_align, device=device, dtype=dtype_AB).transpose(
-2, -1
)[:, :n, :]
elif op == "3d/2d":
m, k = 3, 13
m_align = (m + align - 1) // align * align
k_align = (k + align - 1) // align * align
offs = torch.tensor([0, 8, 16, 16, 19], device=device, dtype=dtype_offset)
ngroups = offs.shape[0]
n = offs[-1]
n_align = (n + align - 1) // align * align
if a_row_major:
A = torch.randn(ngroups, m, k_align, device=device, dtype=dtype_AB)[:, :, :k]
else:
A = torch.randn(ngroups, k, m_align, device=device, dtype=dtype_AB).transpose(
-2, -1
)[:, :m, :]
if b_row_major:
B = torch.randn(n, k_align, device=device, dtype=dtype_AB)[:, :k]
else:
B = torch.randn(k, n_align, device=device, dtype=dtype_AB).t()[:n, :]
elif op == "3d/3d":
offs = None
ngroups = 5
m, n, k = 3, 7, 13
m_align = (m + align - 1) // align * align
n_align = (n + align - 1) // align * align
k_align = (k + align - 1) // align * align
if a_row_major:
A = torch.randn(ngroups, m, k_align, device=device, dtype=dtype_AB)[:, :, :k]
else:
A = torch.randn(ngroups, k, m_align, device=device, dtype=dtype_AB).transpose(
-2, -1
)[:, :m, :]
if b_row_major:
B = torch.randn(ngroups, n, k_align, device=device, dtype=dtype_AB)[:, :, :k]
else:
B = torch.randn(ngroups, k, n_align, device=device, dtype=dtype_AB).transpose(
-2, -1
)[:, :n, :]
else:
raise AssertionError(f"Invalid op: {op}")
C_ref = f_ref(A, B.transpose(-2, -1), offs=offs)
C = f(A, B.transpose(-2, -1), offs=offs)
torch.testing.assert_close(C, C_ref)
@onlyCUDA
@parametrize("input_dtype", [torch.float32, torch.float16, torch.bfloat16])
@parametrize("M", [1, 32, 64])
@parametrize("N", [1, 32, 64])
@parametrize("K", [1, 32, 64])
@parametrize("batch_size", [None, 1, 16])
# TODO: enable rocblas path on ROCm
@parametrize("backend", ["cublaslt"] if torch.version.hip else ["cublas", "cublaslt"])
def test_mm_bmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
device = "cuda"
dtype = input_dtype
with blas_library_context(backend):
def create_inputs(B=None):
if B is None:
a = torch.randn(M, K, device=device, dtype=dtype)
b = torch.randn(K, N, device=device, dtype=dtype)
else:
a = torch.randn(B, M, K, device=device, dtype=dtype)
b = torch.randn(B, K, N, device=device, dtype=dtype)
return a, b
a, b = create_inputs(batch_size)
a_fp32, b_fp32 = a.to(torch.float32), b.to(torch.float32)
output_dtypes = [torch.float32]
if input_dtype != torch.float32:
output_dtypes.append(input_dtype)
for output_dtype in output_dtypes:
# Catch edge case of incompat with bfloat16 and major version < 8
if input_dtype == torch.bfloat16 and not PLATFORM_SUPPORTS_BF16:
if output_dtype == torch.bfloat16:
continue
if batch_size:
with self.assertRaises(RuntimeError):
torch.bmm(a, b, out_dtype=output_dtype)
else:
with self.assertRaises(RuntimeError):
torch.mm(a, b, out_dtype=output_dtype)
else:
if batch_size:
out = torch.bmm(a, b, out_dtype=output_dtype)
baseline = torch.bmm(a_fp32, b_fp32) if output_dtype == torch.float32 else torch.bmm(a, b)
else:
out = torch.mm(a, b, out_dtype=output_dtype)
baseline = torch.mm(a_fp32, b_fp32) if output_dtype == torch.float32 else torch.mm(a, b)
self.assertEqual(out.dtype, output_dtype)
torch.testing.assert_close(out, baseline, atol=1e-3, rtol=1e-3)
@onlyCUDA
@parametrize("input_dtype", [torch.float32, torch.float16, torch.bfloat16])
@parametrize("M", [1, 32, 64])
@parametrize("N", [1, 32, 64])
@parametrize("K", [1, 32, 64])
@parametrize("batch_size", [None, 1, 32])
# TODO: enable rocblas path on ROCm
@parametrize("backend", ["cublaslt"] if torch.version.hip else ["cublas", "cublaslt"])
def test_addmm_baddmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
device = "cuda"
dtype = input_dtype
with blas_library_context(backend):
def create_inputs(B=None):
if B is None:
a = torch.randn(M, K, device=device, dtype=dtype)
b = torch.randn(K, N, device=device, dtype=dtype)
c = torch.randn(M, N, device=device, dtype=dtype)
else:
a = torch.randn(B, M, K, device=device, dtype=dtype)
b = torch.randn(B, K, N, device=device, dtype=dtype)
c = torch.randn(B, M, N, device=device, dtype=dtype)
return a, b, c
a, b, c = create_inputs(batch_size)
a_fp32, b_fp32, c_fp32 = a.to(torch.float32), b.to(torch.float32), c.to(torch.float32)
output_dtypes = [torch.float32]
if input_dtype != torch.float32:
output_dtypes.append(input_dtype)
for output_dtype in output_dtypes:
# Catch edge case of incompat with bfloat16 and major version < 8
if input_dtype == torch.bfloat16 and not PLATFORM_SUPPORTS_BF16:
if output_dtype == torch.bfloat16:
continue
if batch_size:
with self.assertRaises(RuntimeError):
torch.baddbmm(c, a, b, out_dtype=output_dtype)
else:
with self.assertRaises(RuntimeError):
torch.addmm(c, a, b, out_dtype=output_dtype)
else:
if batch_size:
out = torch.baddbmm(c, a, b, out_dtype=output_dtype)
if output_dtype == torch.float32:
baseline = torch.baddbmm(c_fp32, a_fp32, b_fp32)
else:
baseline = torch.baddbmm(c, a, b)
else:
out = torch.addmm(c, a, b, out_dtype=output_dtype)
if output_dtype == torch.float32:
baseline = torch.addmm(c_fp32, a_fp32, b_fp32)
else:
baseline = torch.addmm(c, a, b)
self.assertEqual(out.dtype, output_dtype)
torch.testing.assert_close(out, baseline, atol=1e-3, rtol=1e-3)
@onlyCUDA
@parametrize("batch_size", [1, 32])
@parametrize("backend", ["cublas", "cublaslt"])
def test_fp16_accum_and_fp32_out_failure(self, batch_size, backend):
M, N, K = 32, 32, 32
device = "cuda"
dtype = torch.float16
with blas_library_context(backend):
torch.backends.cuda.preferred_blas_library(backend)
orig_fp16_accum = torch.backends.cuda.matmul.allow_fp16_accumulation
torch.backends.cuda.matmul.allow_fp16_accumulation = True
def create_inputs():
a = torch.randn(M, K, device=device, dtype=dtype)
b = torch.randn(K, N, device=device, dtype=dtype)
c = torch.randn(M, N, device=device, dtype=dtype)
return a, b, c
def expand(tensor):
return tensor.unsqueeze(0).expand(batch_size, *tensor.shape)
a, b, c = create_inputs()
with self.assertRaises(Exception):
torch.baddbmm(expand(c), expand(a), expand(b), out_dtype=torch.float32)
with self.assertRaises(Exception):
torch.addmm(c, a, b, out_dtype=torch.float32)
with self.assertRaises(Exception):
torch.bmm(expand(a,), expand(b), out_dtype=torch.float32)
with self.assertRaises(Exception):
torch.mm(a, b, out_dtype=torch.float32)
torch.backends.cuda.matmul.allow_fp16_accumulation = orig_fp16_accum
f8_msg = "FP8 is only supported on H100+, SM 8.9 and MI300+ devices"
f8_grouped_msg = "FP8 grouped is only supported on SM90 and MI300+ devices"
mx_skip_msg = "MX gemm is only supported on CUDA capability 10.0+"
mxfp8_grouped_mm_skip_msg = "MXFP8 grouped GEMM is only supported when PyTorch is built with USE_FBGEMM_GENAI=1 on SM100+"
# avoid division by zero when calculating scale
EPS = 1e-12
def amax_to_scale(
amax: torch.Tensor, float8_dtype: torch.dtype, orig_dtype: torch.dtype
):
""" Converts the amax value of a tensor to the fp8 scale.
Args:
amax: The amax value of the tensor.
float8_dtype: the float8 dtype.
orig_dtype: The original dtype of the tensor.
"""
scale = torch.empty_like(amax, dtype=torch.float32)
if float8_dtype == e4m3_type:
res = E4M3_MAX_POS / torch.clamp(amax, min=EPS)
elif float8_dtype == e5m2_type:
res = E5M2_MAX_POS / torch.clamp(amax, min=EPS)
else:
raise ValueError(f"Unsupported float8_dtype: {float8_dtype}")
# Ensure the scale is representable in float16,
# this helps when amax is small. We are assuming that we don't need
# to care about this for float32/bfloat16
if orig_dtype is torch.float16:
res = torch.clamp(res, max=torch.finfo(torch.float16).max)
scale.copy_(res)
return scale
def tensor_to_scale(x: torch.Tensor, float8_dtype: torch.dtype, dim=None):
if dim is None:
amax = torch.max(torch.abs(x))
else:
amax = torch.max(torch.abs(x), dim=dim, keepdim=True).values
return amax_to_scale(amax, float8_dtype, x.dtype)
def tensor_to_scale_block(
x: torch.Tensor,
float8_dtype: torch.dtype,
block_outer: int,
block_inner: int,
) -> tuple[torch.Tensor, torch.Tensor]:
x = x.unflatten(1, (-1, block_inner)).unflatten(0, (-1, block_outer))
amax = x.abs().amax(dim=[1, 3], keepdim=True).float()
scale = torch.finfo(float8_dtype).max / amax
x = x.mul(scale).to(float8_dtype)
x = x.flatten(2, 3).flatten(0, 1)
scale = scale.flatten(2, 3).flatten(0, 1)
return x, scale
def mm_float8_emulated(x, x_scale, y, y_scale, out_dtype) -> torch.Tensor:
# naive implementation: dq -> op -> q
x_fp32 = x.to(torch.float) / x_scale
y_fp32 = y.to(torch.float) / y_scale
out_fp32 = torch.mm(x_fp32, y_fp32)
return out_fp32.to(out_dtype)
def mm_float8_emulated_block(x, x_scale, y, y_scale, out_dtype) -> torch.Tensor:
x = x.unflatten(1, (x_scale.shape[1], -1)).unflatten(0, (x_scale.shape[0], -1))
y = y.unflatten(1, (y_scale.shape[1], -1)).unflatten(0, (y_scale.shape[0], -1))
x_fp32 = x.to(torch.float) / x_scale[:, None, :, None]
y_fp32 = y.to(torch.float) / y_scale[:, None, :, None]
x_fp32 = x_fp32.flatten(2, 3).flatten(0, 1)
y_fp32 = y_fp32.flatten(2, 3).flatten(0, 1)
out_fp32 = torch.mm(x_fp32, y_fp32)
return out_fp32.to(out_dtype)
def addmm_float8_unwrapped(
a_data: torch.Tensor,
a_scale: torch.Tensor,
b_data: torch.Tensor,
b_scale: torch.tensor,
output_dtype: torch.dtype,
output_scale: Optional[torch.Tensor],
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
a_inverse_scale = a_scale.reciprocal()
b_inverse_scale = b_scale.reciprocal()
if output_dtype == torch.float32 and bias is not None:
# Bias is not supported by _scaled_mm when output is fp32
output = torch._scaled_mm(
a_data,
b_data,
scale_a=a_inverse_scale,
scale_b=b_inverse_scale,
scale_result=output_scale,
out_dtype=output_dtype,
)
output += bias
return output
output = torch._scaled_mm(
a_data,
b_data,
bias=bias,
scale_a=a_inverse_scale,
scale_b=b_inverse_scale,
scale_result=output_scale,
out_dtype=output_dtype,
)
return output
def mm_float8(
a: torch.Tensor,
b: torch.Tensor,
a_scale: torch.Tensor,
b_scale: torch.Tensor,
output_dtype: torch.dtype, # output dtype
output_scale: Optional[torch.Tensor] = None, # output scale, precomputed
) -> torch.Tensor:
return addmm_float8_unwrapped(
a, a_scale, b, b_scale, output_dtype, output_scale
)
def to_fp8_saturated(
x: torch.Tensor,
fp8_dtype: torch.dtype
):
if fp8_dtype == e4m3_type:
x = x.clamp(min=-1 * E4M3_MAX_POS, max=E4M3_MAX_POS)
elif fp8_dtype == e5m2_type:
x = x.clamp(min=-1 * E5M2_MAX_POS, max=E5M2_MAX_POS)
else:
raise ValueError(f"to_fp8_saturated(): Unsupported fp8_dtype: {fp8_dtype}")
return x.to(fp8_dtype)
def compute_error(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""Computes the error between two tensors in dB.
For more details see:
https://en.wikipedia.org/wiki/Signal-to-noise_ratio
Args:
x: The original tensor.
y: The tensor to compare to the original tensor.
"""
Ps = torch.norm(x)
Pn = torch.norm(x - y)
return 20 * torch.log10(Ps / Pn)
# largest power of 2 representable in `torch.float8_e4m3fn`
F8E4M3_LARGEST_POW2 = 8
# largest power of 2 representable in `torch.float4_e2m1fn_x2`
FP4E2M1FN_LARGEST_POW2 = 1.0
# max value of `torch.float8_e4m3fn` (448)
F8E4M3_MAX_VAL = torch.finfo(torch.float8_e4m3fn).max
# exponent bias of `torch.float8_e8m0fnu`
F8E8M0_EXP_BIAS = 127
# exponent and mantissa bits of `torch.float4_e2m1fn_x2`
FP4_EBITS, FP4_MBITS = 2, 1
FP4_MAX_VAL = 6.0
def data_to_mx_scale(x, block_size, recipe):
# simple implementation of https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
# section 6.3, not all edge cases (such as NaN) are handled/tested
if recipe == "mxfp8":
largest_pow2 = F8E4M3_LARGEST_POW2
elif recipe == "mxfp4":
largest_pow2 = FP4E2M1FN_LARGEST_POW2
else:
raise ValueError(f"data_to_mx_scale(): Unsupported mx recipe: {recipe}")
orig_shape = x.shape
x = x.reshape(-1, block_size)
max_abs = torch.amax(torch.abs(x), 1)
largest_p2_lt_max_abs = torch.floor(torch.log2(max_abs))
scale_e8m0_unbiased = largest_p2_lt_max_abs - largest_pow2
scale_e8m0_unbiased = torch.clamp(scale_e8m0_unbiased, -1 * F8E8M0_EXP_BIAS, F8E8M0_EXP_BIAS)
scale_e8m0_biased = scale_e8m0_unbiased + F8E8M0_EXP_BIAS
scale_e8m0_biased = scale_e8m0_biased.to(torch.uint8)
scale_e8m0_biased = scale_e8m0_biased.view(torch.float8_e8m0fnu)
return scale_e8m0_biased.reshape(orig_shape[0], -1)
def data_to_nvfp4_scale(x, block_size):
orig_shape = x.shape
x = x.reshape(-1, block_size)
max_abs = torch.amax(torch.abs(x), 1) + 1e-12
# x_orig_max / scale = x_in_fp4_domain_max
# x_orig_max / x_in_fp4_domain_max = scale
scale = max_abs / FP4_MAX_VAL
# for the purposes of this function, just clamp to representable range of
# `torch.float8_e4m3fn`. In real code, we would expect the modeling code to
# handle this before the input data hits this function.
scale = scale.clamp(max=F8E4M3_MAX_VAL)
# cast to target dtype
scale = scale.to(torch.float8_e4m3fn)
scale = scale.reshape(orig_shape[0], -1)
return scale
def down_size(size):
assert size[-1] % 2 == 0, f"{size} last dim not divisible by two"
return (*size[:-1], size[-1] // 2)
def pack_uint4(uint8_data) -> torch.Tensor:
# converting to uint8 for operations
shape = uint8_data.shape
assert shape[-1] % 2 == 0
uint8_data = uint8_data.contiguous().view(-1)
return (uint8_data[1::2] << 4 | uint8_data[::2]).view(down_size(shape))
def _bfloat16_to_float4_e2m1fn_x2(x):
assert x.dtype == torch.bfloat16
x = _f32_to_floatx_unpacked(x.float(), FP4_EBITS, FP4_MBITS)
x = pack_uint4(x)
x = x.view(torch.float4_e2m1fn_x2)
return x
class TestFP8Matmul(TestCase):
def _test_tautological_mm(self, device: str = "cuda",
x_dtype: torch.dtype = e4m3_type,
y_dtype: torch.dtype = e4m3_type,
out_dtype: Optional[torch.dtype] = None,
size: int = 16) -> None:
if device != "cpu" and torch.cuda.is_available() and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
x_fp8 = torch.rand(size, size, device=device).to(x_dtype)
y_fp8 = torch.eye(size, device=device, dtype=y_dtype).t()
out_fp32 = torch.mm(x_fp8.to(torch.float), y_fp8.to(torch.float))
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
out_fp8 = torch._scaled_mm(x_fp8, y_fp8, scale_a, scale_b, out_dtype=out_dtype)
if out_dtype is not None:
self.assertEqual(out_dtype, out_fp8.dtype)
self.assertEqual(out_fp32, out_fp8.to(torch.float))
def test_float8_basics(self, device) -> None:
if device != "cpu" and torch.cuda.is_available() and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
self._test_tautological_mm(device, e4m3_type, e4m3_type, size=16)
# According to https://docs.nvidia.com/cuda/cublas/#id99 8F_E5M2 MM is unsupported
# supported on ROCm but fails on CUDA
ctx = self.assertRaises(RuntimeError) if torch.version.hip is None and device != "cpu" else contextlib.nullcontext()
with ctx:
self._test_tautological_mm(device, e5m2_type, e5m2_type)
self._test_tautological_mm(device, e4m3_type, e5m2_type, size=32)
self._test_tautological_mm(device, e5m2_type, e4m3_type, size=48)
self._test_tautological_mm(device, size=64, out_dtype=torch.float16)
self._test_tautological_mm(device, size=96, out_dtype=torch.float32)
self._test_tautological_mm(device, size=80, out_dtype=torch.bfloat16)
with self.assertRaises(AssertionError if torch.version.hip or device == "cpu" else RuntimeError):
self._test_tautological_mm(device, out_dtype=e5m2_type)
def test_float8_scale(self, device) -> None:
if device != "cpu" and torch.cuda.is_available() and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
size = (16, 16)
x = torch.full(size, .5, device=device, dtype=e4m3_type)
# hipblaslt does not yet support mixed e4m3_type input
y_type = e4m3_type if torch.version.hip else e5m2_type
y = torch.full(size, .5, device=device, dtype=y_type).t()
scale_one = torch.tensor(1.0, device=device)
scale_a = torch.tensor(1.5, device=device)
scale_b = torch.tensor(0.66, device=device)
out_fp8 = torch._scaled_mm(x, y, scale_a=scale_one, scale_b=scale_one)
self.assertEqual(out_fp8.to(torch.float), torch.full(size, 4., device=device))
out_fp8_s = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b)
self.assertEqual(out_fp8, out_fp8_s)
@unittest.skipIf(not PLATFORM_SUPPORTS_MXFP8_GROUPED_GEMM, mxfp8_grouped_mm_skip_msg)
@parametrize("G", [1, 4, 16])
@parametrize("M", [2048, 2049])
@parametrize("N", [8192])
@parametrize("K", [16640])
def test_mxfp8_scaled_grouped_mm_2d_2d(self, G, M, N, K):
torch.manual_seed(42)
total_K = K # Alias for clarity, communicating this consists of several groups along this dim
input_group_end_offsets = generate_jagged_offs(
G, total_K, multiple_of=32, device="cuda"
)
X = torch.randn((M, total_K), dtype=torch.bfloat16, device="cuda") * 0.1
W = torch.randn((N, total_K), dtype=torch.bfloat16, device="cuda") * 0.01
# Convert scales to blocked format.
x_list = []
w_list = []
x_blocked_scale_list = []
w_blocked_scale_list = []
def round_up(x: int, y: int) -> int:
return ((x + y - 1) // y) * y
for group_idx in range(G):
# to_mxfp8 per group
prev_group_end_offset = (
0 if group_idx == 0 else input_group_end_offsets[group_idx - 1]
)
curr_group_end_offset = input_group_end_offsets[group_idx]
group_size = curr_group_end_offset - prev_group_end_offset
if group_size > 0:
x_slice = X[
:, prev_group_end_offset:curr_group_end_offset
].contiguous() # (M, K_group)
w_slice = W[
:, prev_group_end_offset:curr_group_end_offset
].contiguous() # (N, K_group)
x_scale_slice, xq_slice = to_mxfp8(
x_slice
) # scale shape -> (M, K_group // 32)
w_scale_slice, wq_slice = to_mxfp8(
w_slice
) # scale shape -> (N, K_group // 32)
x_list.append(xq_slice)
w_list.append(wq_slice)
# Convert scales to blocked format.
x_scale_slice_blocked = to_blocked(
x_scale_slice
) # (round_up(M, 128), round_up(K_group//32, 4))
w_scale_slice_blocked = to_blocked(
w_scale_slice
) # (round_up(N, 128), round_up(K_group//32, 4))
x_blocked_scale_list.append(x_scale_slice_blocked)
w_blocked_scale_list.append(w_scale_slice_blocked)
# Assemble the full XQ and WQ
xq = torch.cat(x_list, dim=1).contiguous()
wq = torch.cat(w_list, dim=1).contiguous()
# Combine all XQ groups blocked scales into one tensor.
x_blocked_scales = torch.cat(x_blocked_scale_list, dim=0)
M_rounded = round_up(M, 128)
x_blocked_scales = x_blocked_scales.reshape(M_rounded, -1)
# Combine all WQ groups blocked scales into one tensor.
w_blocked_scales = torch.cat(w_blocked_scale_list, dim=0)
N_rounded = round_up(N, 128)
w_blocked_scales = w_blocked_scales.reshape(N_rounded, -1)
# Compute mxfp8 grouped mm output
y_mxfp8 = torch._scaled_grouped_mm(
xq, # (M, total_K)
wq.transpose(-2, -1), # (total_K, N)
x_blocked_scales, # to_blocked_per_group(M, total_K//32)
w_blocked_scales, # to_blocked_per_group(N, total_K//32)
offs=input_group_end_offsets, # (G,)
out_dtype=torch.bfloat16,
)
# bf16 reference output
y_bf16 = torch._grouped_mm(
X, W.t(), offs=input_group_end_offsets, out_dtype=torch.bfloat16
)
# Assert no NaNs
assert not y_mxfp8.isnan().any(), "mxfp8 output contains NaN"
# Assert outputs are close
torch.testing.assert_close(y_mxfp8, y_bf16, atol=8.0e-2, rtol=8.0e-2)
@unittest.skipIf(not PLATFORM_SUPPORTS_MXFP8_GROUPED_GEMM, mxfp8_grouped_mm_skip_msg)
@parametrize("G", [1, 4, 16])
@parametrize("M", [16640])
@parametrize("N", [8192])
@parametrize("K", [4096])
def test_mxfp8_scaled_grouped_mm_2d_3d(self, G, M, N, K):
torch.manual_seed(42)
# Simulate 2d-3d grouped gemm `out = input @ weight.t()`
# 2D inputs with groups along M, 3D weights.
block_size = 32
total_M = M # Alias for clarity that M dim contains groups.
X = torch.randn((total_M, K), dtype=torch.bfloat16, device="cuda") * 0.1
W = torch.randn((G, N, K), dtype=torch.bfloat16, device="cuda") * 0.01
input_group_end_offsets = generate_jagged_offs(
G, total_M, multiple_of=32, device="cuda"
)
# For each constituent 2d subtensor in the 3d weights, quantize and convert scale to blocked format separately,
# as they each used for independent gemm in the grouped gemm.
wq_list = []
w_scale_list = []
for i in range(G):
w_scale, wq = to_mxfp8(W[i])
w_scale = to_blocked(w_scale)
wq_list.append(wq)
w_scale_list.append(w_scale)
wq = torch.stack(wq_list, dim=0).contiguous()
w_scale = torch.stack(w_scale_list, dim=0).contiguous()
# For each group along `total_M` in the 2D tensor, quantize and convert scale to blocked format separately,
# as they each used for independent gemm in the grouped gemm.
xq_list = []
x_scale_list = []
for i in range(G):
prev_group_end = 0 if i == 0 else input_group_end_offsets[i - 1]
curr_group_end = input_group_end_offsets[i]
group_size = curr_group_end - prev_group_end
if group_size > 0:
x_slice = X[prev_group_end:curr_group_end, :]
x_scale, xq = to_mxfp8(x_slice)
x_scale = to_blocked(x_scale)
xq_list.append(xq)
x_scale_list.append(x_scale)
xq = torch.cat(xq_list, dim=0).contiguous()
x_scale = torch.cat(x_scale_list, dim=0).contiguous()
x_scale = x_scale.reshape(-1, K // block_size)
xq = xq.view(-1, xq.shape[-1])
# Compute mxfp8 grouped gemm.
y_mxfp8 = torch._scaled_grouped_mm(
xq,
wq.transpose(-2, -1),
x_scale,
w_scale,
offs=input_group_end_offsets,
out_dtype=torch.bfloat16,
)
# Compute reference bf16 grouped gemm.
y_bf16 = torch._grouped_mm(
X,
W.transpose(-2, -1),
offs=input_group_end_offsets,
out_dtype=torch.bfloat16,
)
# Assert outputs are close.
torch.testing.assert_close(y_mxfp8, y_bf16, atol=8.0e-2, rtol=8.0e-2)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("base_dtype", [torch.float16, torch.bfloat16, torch.float32])
def test_scaled_mm_vs_emulated(self, base_dtype):
torch.manual_seed(42)
input_dtype = e4m3_type
output_dtype = base_dtype
compare_type = torch.float32
x = torch.randn(16, 16, device="cuda", dtype=base_dtype)
y = torch.randn(32, 16, device="cuda", dtype=base_dtype).t()
x_scale = tensor_to_scale(x, input_dtype).float()
y_scale = tensor_to_scale(y, input_dtype).float()
x_fp8 = to_fp8_saturated(x * x_scale, input_dtype)
y_fp8 = to_fp8_saturated(y * y_scale, input_dtype)
# Calculate actual F8 mm
out_scaled_mm = mm_float8(
x_fp8,
y_fp8,
a_scale=x_scale,
b_scale=y_scale,
output_dtype=output_dtype
)
# Calculate emulated F8 mm
out_emulated = mm_float8_emulated(
x_fp8,
x_scale,
y_fp8,
y_scale,
output_dtype
)
if output_dtype != base_dtype:
out_scaled_mm = out_scaled_mm.to(compare_type)
out_scaled_mm = out_scaled_mm / tensor_to_scale(out_scaled_mm, input_dtype)
out_emulated = out_emulated.to(compare_type)
out_emulated = out_emulated / tensor_to_scale(out_emulated, input_dtype)
if base_dtype in {torch.bfloat16, torch.float16}:
atol, rtol = 7e-2, 7e-2
else:
atol, rtol = 3e-3, 3e-3
torch.testing.assert_close(out_scaled_mm, out_emulated, atol=atol, rtol=rtol)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("base_dtype", [torch.float16, torch.bfloat16, torch.float32])
def test_scaled_mm_change_stride(self, base_dtype):
torch.manual_seed(42)
input_dtype = e4m3_type
output_dtype = base_dtype
compare_type = torch.float32
x = torch.empty_strided((16, 16), (16, 1), device="cuda", dtype=base_dtype)
y = torch.empty_strided((16, 32), (1, 64), device="cuda", dtype=base_dtype)
x.normal_()
y.normal_()
x_scale = tensor_to_scale(x, input_dtype).float()
y_scale = tensor_to_scale(y, input_dtype).float()
x_fp8 = to_fp8_saturated(x * x_scale, input_dtype)
y_fp8 = to_fp8_saturated(y * y_scale, input_dtype)
# Calculate actual F8 mm
out_scaled_mm = mm_float8(
x_fp8,
y_fp8,
a_scale=x_scale,
b_scale=y_scale,
output_dtype=output_dtype
)
# Calculate emulated F8 mm
out_emulated = mm_float8_emulated(
x_fp8,
x_scale,
y_fp8,
y_scale,
output_dtype
)
if output_dtype != base_dtype:
out_scaled_mm = out_scaled_mm.to(compare_type)
out_scaled_mm = out_scaled_mm / tensor_to_scale(out_scaled_mm, input_dtype)
out_emulated = out_emulated.to(compare_type)
out_emulated = out_emulated / tensor_to_scale(out_emulated, input_dtype)
if base_dtype in {torch.bfloat16, torch.float16}:
atol, rtol = 7e-2, 7e-2
else:
atol, rtol = 3e-3, 3e-3
torch.testing.assert_close(out_scaled_mm, out_emulated, atol=atol, rtol=rtol)
@onlyCUDA
def test_float8_bias(self, device) -> None:
if device != "cpu" and torch.cuda.is_available() and not PLATFORM_SUPPORTS_FP8:
raise unittest.SkipTest(f8_msg)
(k, l, m) = (16, 48, 32)
x = torch.ones((k, l), device=device).to(e4m3_type)
y = torch.full((m, l), .25, device=device, dtype=e4m3_type).t()
bias = torch.full((m,), 4.0, device=device, dtype=torch.half)
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
out_fp8 = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b)
outb_fp8 = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b, bias=bias)
# this fails on ROCm currently because hipblaslt doesn't have amax op
out_fp32 = out_fp8.to(torch.float32)
outb_fp32 = outb_fp8.to(torch.float32)
difference = torch.abs(out_fp32 - outb_fp32)
self.assertEqual(difference, torch.tensor(4.0, device=device).expand_as(out_fp32))
@onlyCUDA
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@parametrize("bias", [True, False])
def test_non_divisible_leading_dim(self, device, bias: bool) -> None:
x = torch.rand((17, 16), device=device).to(e4m3_type)
y = torch.rand((16, 16), device=device).to(e4m3_type).t()
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
input_bias = None
if bias:
input_bias = torch.rand((16,), device=device).to(torch.half)
_ = torch._scaled_mm(x, y, scale_a, scale_b, bias=input_bias)
@onlyCUDA
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_float8_bias_relu_edgecase(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.full((k, l), 0.0, device=device).to(e4m3_type)
y = torch.full((m, l), 1.0, device=device, dtype=e4m3_type).t()
bias = torch.full((m,), -3.0, device=device, dtype=torch.half)
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
outb_fp8 = torch._scaled_mm(x, y, scale_a, scale_b, bias=bias)
outb_fp32 = outb_fp8.to(torch.float32)
self.assertEqual(outb_fp32, torch.tensor(-3.0, device=device).expand_as(outb_fp32))
@onlyCUDA
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_float32_output_errors_with_bias(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.rand((k, l), device=device).to(e4m3_type)
y = torch.full((m, l), .25, device=device, dtype=e4m3_type).t()
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
bias = torch.full((m,), 4.0, device=device, dtype=torch.bfloat16)
self.assertRaisesRegex(
RuntimeError,
"Bias is not supported when out_dtype is set to Float32",
lambda: torch._scaled_mm(x, y, scale_a, scale_b, bias=bias, out_dtype=torch.float32),
)
@onlyCUDA
@unittest.skipIf(PLATFORM_SUPPORTS_FP8 or not torch.cuda.is_available(), f8_msg)
def test_error_message_fp8_pre_sm89(self, device) -> None:
(k, l, m) = (16, 48, 32)
x = torch.rand((k, l), device=device).to(e4m3_type)
y = torch.rand((m, l), device=device).to(e4m3_type).t()
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
self.assertRaisesRegex(
RuntimeError,
r"torch\.\_scaled\_mm is only supported on CUDA devices with compute capability \>\= 9\.0 or 8\.9, or ROCm MI300\+",
lambda: torch._scaled_mm(x, y, scale_a, scale_b, out_dtype=torch.float32),
)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
def test_float8_scale_fast_accum(self, device) -> None:
size = (16, 16)
x = torch.full(size, .5, device=device, dtype=e4m3_type)
# hipblaslt does not yet support mixed e4m3_type input
y_type = e4m3_type if torch.version.hip else e5m2_type
y = torch.full(size, .5, device=device, dtype=y_type).t()
scale_a = torch.tensor(1.5, device=device)
scale_b = torch.tensor(0.66, device=device)
out_fp8 = torch._scaled_mm(x, y, scale_a, scale_b, use_fast_accum=True)
self.assertEqual(out_fp8.to(torch.float), torch.full(size, 4., device=device))
out_fp8_s = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b, use_fast_accum=True)
self.assertEqual(out_fp8, out_fp8_s)
@onlyCUDA
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg)
@unittest.skipIf(not SM89OrLater, "rowwise implementation is currently sm89-sm100 specific")
@parametrize("use_fast_accum", [True, False])
def test_float8_rowwise_scaling_sanity(self, device, use_fast_accum: bool) -> None:
M, K, N = (1024, 512, 2048)
fill_value = 0.5
x = torch.full((M, K), fill_value, device=device)
y = torch.full((N, K), fill_value, device=device)
x_scales = torch.ones((x.shape[0], 1), device=device, dtype=torch.float32)
y_scales = torch.ones((1, y.shape[0]), device=device, dtype=torch.float32)
x_fp8 = x.to(e4m3_type)
y_fp8 = y.to(e4m3_type).t()
out_fp8 = torch._scaled_mm(
x_fp8,
y_fp8,
scale_a=x_scales,
scale_b=y_scales,
out_dtype=torch.bfloat16,
use_fast_accum=use_fast_accum,
)
self.assertEqual(
out_fp8.to(torch.float32), torch.full((M, N), K * (fill_value**2), device=device)
)
@onlyCUDA
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg)
def test_float8_error_messages(self, device) -> None:
M, K, N = (1024, 512, 2048)
fill_value = 0.5
x = torch.full((M, K), fill_value, device=device)
y = torch.full((N, K), fill_value, device=device)
x_fp8 = x.to(e4m3_type)
y_fp8 = y.to(e4m3_type).t()
with self.assertRaisesRegex(
RuntimeError, re.escape("Invalid scaling configuration")
):
torch._scaled_mm(
x_fp8,
y_fp8,
scale_a=torch.ones((1, 1), device="cuda"),
scale_b=torch.ones((1, 2), device="cuda"),
out_dtype=torch.bfloat16,
)
with self.assertRaisesRegex(
RuntimeError, re.escape("Invalid scaling configuration")
):
torch._scaled_mm(
x_fp8,
y_fp8,
scale_a=torch.ones((M, 1), device="cuda"),
scale_b=torch.ones((1, N + 1), device="cuda"),
out_dtype=torch.bfloat16,
)
with self.assertRaisesRegex(
RuntimeError, re.escape("Invalid scaling configuration")
):
torch._scaled_mm(
x_fp8,
y_fp8,
scale_a=torch.ones((M), device="cuda"),
scale_b=torch.ones((N, 1), device="cuda"),
out_dtype=torch.bfloat16,
)
with self.assertRaisesRegex(
RuntimeError, re.escape("Invalid scaling configuration")
):
torch._scaled_mm(
x_fp8,
y_fp8,
scale_a=torch.ones((M, 1), device="cuda"),
scale_b=torch.ones((1, N * 2), device="cuda")[:, ::2],
out_dtype=torch.bfloat16,
)
def e5m2():
out = torch._scaled_mm(
x_fp8,
y_fp8.to(e5m2_type),
scale_a=torch.ones((M, 1), device="cuda"),
scale_b=torch.ones((1, N), device="cuda"),
out_dtype=torch.bfloat16,
)
return out
if torch.cuda.get_device_capability() == (9, 0) and torch.version.cuda and torch.version.cuda >= "12.9":
out = e5m2()
self.assertEqual(out, torch.ones_like(out) * 128.)
else:
# Note re.compile is used, not re.escape. This is to accommodate fn vs fnuz type message.
with self.assertRaisesRegex(
RuntimeError,
r"Expected b\.dtype\(\) == at::kFloat8_e4m3fnu?z? to be true, but got false\.",
):
e5m2()
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg)
@unittest.skipIf(not SM89OrLater, "rowwise implementation is currently sm89-sm100 specific")
@parametrize("base_dtype", [torch.bfloat16, torch.float32])
@with_tf32_off
def test_scaled_mm_vs_emulated_row_wise(self, base_dtype):
# Fp32 out_dtype is only supported by cuBLAS, which however only started
# shipping row-wise kernels in CUDA 12.9, and only for sm90+.
if base_dtype is torch.float32:
if _get_torch_cuda_version() < (12, 9):
raise unittest.SkipTest("Need CUDA 12.9+ for row-wise fp8 w/ cuBLAS")
if torch.cuda.get_device_capability() < (9, 0):
raise unittest.SkipTest("Need sm90+ for row-wise fp8 w/ cuBLAS")
torch.manual_seed(42)
input_dtype = e4m3_type
output_dtype = base_dtype
x = torch.randn(16, 16, device="cuda", dtype=base_dtype)
y = torch.randn(32, 16, device="cuda", dtype=base_dtype).t()
x_scales = tensor_to_scale(x, input_dtype, dim=1).float()
y_scales = tensor_to_scale(y, input_dtype, dim=0).float()
x_fp8 = to_fp8_saturated(x * x_scales, e4m3_type)
y_fp8 = to_fp8_saturated(y * y_scales, e4m3_type)
# Calculate actual F8 mm
out_scaled_mm = mm_float8(
x_fp8, y_fp8, a_scale=x_scales, b_scale=y_scales, output_dtype=output_dtype
)
# Calculate emulated F8 mm
out_emulated = mm_float8_emulated(
x_fp8, x_scales, y_fp8, y_scales, output_dtype
)
if base_dtype in {torch.bfloat16, torch.float16}:
atol, rtol = 7e-2, 7e-2
else:
atol, rtol = 2e-3, 2e-3
torch.testing.assert_close(out_scaled_mm, out_emulated, atol=atol, rtol=rtol)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8 or IS_WINDOWS, f8_msg)
@unittest.skipIf(not IS_SM90, "cuBLAS blockwise scaling requires sm90+")
@unittest.skipIf(
_get_torch_cuda_version() < (12, 9),
"cuBLAS blockwise scaling added in CUDA 12.9",
)
@parametrize("output_dtype", [torch.bfloat16, torch.float32])
@parametrize("lhs_block,rhs_block", [(1, 1), (128, 1), (1, 128)])
def test_scaled_mm_vs_emulated_block_wise(self, output_dtype, lhs_block, rhs_block):
torch.manual_seed(42)
x = torch.randn(256, 512, device="cuda", dtype=output_dtype).pow(3)
y = torch.randn(768, 512, device="cuda", dtype=output_dtype).pow(3)
x_fp8, x_scales = tensor_to_scale_block(x, e4m3_type, lhs_block, 128)
y_fp8, y_scales = tensor_to_scale_block(y, e4m3_type, rhs_block, 128)
# 1x128 blocks need scales to be outer-dim-major
if lhs_block == 1:
x_scales = x_scales.t().contiguous().t()
if rhs_block == 1:
y_scales = y_scales.t().contiguous().t()
# Calculate actual F8 mm
out_scaled_mm = mm_float8(
x_fp8, y_fp8.t(), a_scale=x_scales, b_scale=y_scales.t(), output_dtype=output_dtype
)
# Calculate emulated F8 mm
out_emulated = mm_float8_emulated_block(
x_fp8, x_scales, y_fp8.t(), y_scales.t(), output_dtype
)
cosine_sim = torch.nn.functional.cosine_similarity(
out_scaled_mm.flatten().float(), out_emulated.flatten().float(), dim=0
)
self.assertGreaterEqual(float(cosine_sim), 0.999)
if output_dtype in {torch.bfloat16, torch.float16}:
atol, rtol = 6e-1, 7e-2
else:
atol, rtol = 7e-1, 2e-3
self.assertEqual(out_scaled_mm, out_emulated, atol=atol, rtol=rtol)
# One last check against the full-precision reference, to ensure we
# didn't mess up the scaling itself and made the test trivial.
cosine_sim = torch.nn.functional.cosine_similarity(
out_scaled_mm.flatten().float(), (x @ y.t()).flatten().float(), dim=0
)
self.assertGreaterEqual(float(cosine_sim), 0.999)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@unittest.skipIf(torch.version.hip is not None, "Float8_e4m3fn not supported on current ROCm CI setup (MI325X)")
@parametrize("which_dim_zero", [0, 1, 2])
@parametrize("use_torch_compile", [False, True])
def test_zero_dim_tensorwise(self, which_dim_zero, use_torch_compile) -> None:
device = "cuda"
x_dtype, y_dtype = torch.float8_e4m3fn, torch.float8_e4m3fn
out_dtype = torch.bfloat16
M, K, N = 32, 32, 32
if which_dim_zero == 0:
M = 0
elif which_dim_zero == 1:
K = 0
elif which_dim_zero == 2:
N = 0
x_fp8 = torch.zeros(M, K, device=device).to(x_dtype)
y_fp8 = torch.zeros(N, K, device=device, dtype=y_dtype).t()
out_fp32 = torch.mm(x_fp8.to(torch.float), y_fp8.to(torch.float))
scale_a = torch.tensor(float('-inf'), device=device)
scale_b = torch.tensor(float('-inf'), device=device)
f = torch._scaled_mm
if use_torch_compile:
f = torch.compile(torch._scaled_mm)
out_fp8 = f(x_fp8, y_fp8, scale_a, scale_b, out_dtype=out_dtype)
self.assertEqual(out_dtype, out_fp8.dtype)
self.assertEqual(out_fp32, out_fp8.to(torch.float))
@unittest.skipIf(IS_WINDOWS, "Windows doesn't support row-wise scaling")
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg)
@unittest.skipIf(not SM90OrLater, "sm89 kernel isn't opted into carveout yet")
def test_honor_sm_carveout(self) -> None:
torch.manual_seed(42)
x = torch.randn(8192, 2048, device="cuda", dtype=torch.float32)
y = torch.randn(8192, 2048, device="cuda", dtype=torch.float32).t()
x_scales = tensor_to_scale(x, e4m3_type, dim=1).reciprocal()
y_scales = tensor_to_scale(y, e4m3_type, dim=0).reciprocal()
x_fp8 = to_fp8_saturated(x / x_scales, e4m3_type)
y_fp8 = to_fp8_saturated(y / y_scales, e4m3_type)
with tempfile.NamedTemporaryFile() as f:
with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CUDA]) as prof:
self.assertIsNone(torch._C._get_sm_carveout_experimental())
torch._scaled_mm(x_fp8, y_fp8, scale_a=x_scales, scale_b=y_scales, out_dtype=torch.bfloat16)
torch._C._set_sm_carveout_experimental(0)
self.assertEqual(torch._C._get_sm_carveout_experimental(), 0)
torch._scaled_mm(x_fp8, y_fp8, scale_a=x_scales, scale_b=y_scales, out_dtype=torch.bfloat16)
torch._C._set_sm_carveout_experimental(66)
self.assertEqual(torch._C._get_sm_carveout_experimental(), 66)
torch._scaled_mm(x_fp8, y_fp8, scale_a=x_scales, scale_b=y_scales, out_dtype=torch.bfloat16)
torch._C._set_sm_carveout_experimental(None)
self.assertIsNone(torch._C._get_sm_carveout_experimental())
torch._scaled_mm(x_fp8, y_fp8, scale_a=x_scales, scale_b=y_scales, out_dtype=torch.bfloat16)
prof.export_chrome_trace(f.name)
if torch.version.hip:
events = [evt for evt in json.load(open(f.name))["traceEvents"] if evt.get("cat", "") == "kernel"]
# events were returned out of order; need to be sorted on "ts" timestamp
events = sorted(events, key=lambda x: x['ts'])
# ROCm carveout is invisible except for kernels running slower on fewer CUs
no_carveout, carveout_0, carveout_66, no_carveout_again = [float(evt.get("dur", "0.0")) for evt in events]
self.assertTrue(no_carveout < carveout_66)
self.assertTrue(carveout_0 < carveout_66)
self.assertTrue(no_carveout_again < carveout_66)
# ROCm carveout will create new streams when enabled, and go back to the original stream when disabled
no_carveout, carveout_0, carveout_66, no_carveout_again = [int(evt.get("tid", "0")) for evt in events]
self.assertTrue(no_carveout == no_carveout_again)
self.assertTrue(no_carveout != carveout_0)
self.assertTrue(no_carveout != carveout_66)
self.assertTrue(carveout_0 != carveout_66)
else:
no_carveout, carveout_0, carveout_66, no_carveout_again = [
math.prod(evt.get("args", {}).get("grid", []))
for evt in json.load(open(f.name))["traceEvents"]
if evt.get("cat", "") == "kernel"
]
self.assertEqual(no_carveout, no_carveout_again)
capability = torch.cuda.get_device_capability()
if capability == (10, 0):
# expected failure
# CUTLASS only supports SM carveout via green contexts on SM100
self.assertEqual(no_carveout, carveout_66)
self.assertEqual(carveout_66, carveout_0)
else:
# correct behavior
self.assertNotEqual(no_carveout, carveout_66)
self.assertNotEqual(carveout_66, carveout_0)
def test_pack_uint4(self):
"""
Verify that given a tensor with high precision values [val0, val1],
the x2 packed representation is val1:val0 (from MSB to LSB), and
not val0:val1.
Note that the packing function is private to this file, but it's still
good to test that we are packing in the expected way.
"""
hp_data = torch.tensor([0b00000010, 0b00001011], dtype=torch.uint8)
lp_data_actual = pack_uint4(hp_data)
lp_data_expected = torch.tensor([0b10110010], dtype=torch.uint8)
torch.testing.assert_close(lp_data_actual, lp_data_expected, atol=0, rtol=0)
@unittest.skipIf(not PLATFORM_SUPPORTS_MX_GEMM, mx_skip_msg)
@parametrize("test_case_name", [
"a_eye_b_eye",
"a_ones_b_ones",
"a_ones_modified_b_ones",
"a_ones_b_ones_modified",
"a_scale_modified_b_ones",
"a_ones_b_scale_modified",
"data_random_scales_one",
"data_random_scales_from_data",
])
@parametrize("fast_accum", [False, True])
@parametrize("mkn", [
# Nice shapes
(128, 128, 128),
(256, 256, 256),
(128, 256, 512),
(256, 512, 128),
(512, 128, 256),
# Non block multiples
(65, 96, 112),
(197, 224, 272),
# K not multiple of 32 (skipped for fp4)
(197, 240, 272),
# Very unbalanced
(1023, 64, 48),
(31, 1024, 64),
(45, 96, 1024),
# Mixed large and small
(2, 1024, 128),
(127, 96, 1024),
(1025, 128, 96)
], name_fn=lambda mkn: f"{mkn[0]}_{mkn[1]}_{mkn[2]}")
@parametrize("recipe", ["mxfp8", "mxfp4" if torch.version.hip else "nvfp4"])
def test_blockwise_mxfp8_nvfp4_mxfp4_numerics(self, test_case_name, fast_accum, mkn, recipe) -> None:
if (recipe == "nvfp4" or recipe == "mxfp4") and fast_accum:
raise unittest.SkipTest("fast_accum not supported in nvfp4/mxfp4 cublas gemm, skipping")
device = "cuda"
M, K, N = mkn
if (recipe == "nvfp4" or recipe == "mxfp4") and K % 32 != 0:
raise unittest.SkipTest("K must be divisible by 32 for nvfp4/mxfp4 cublas gemm, skipping")
fp4_scaling_dtype = torch.float8_e8m0fnu if torch.version.hip else torch.float8_e4m3fn
BLOCK_SIZE = 32 if torch.version.hip else (16 if recipe == "nvfp4" else 32)
require_exact_match = True
approx_match_sqnr_target = 22.0
if test_case_name == "a_eye_b_eye":
if not ((M == K) and (M == N)):
raise unittest.SkipTest("this test is only defined for M == K == N, skipping")
A_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
B_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
if recipe == "mxfp8":
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
else: # nvfp4 # mxfp4
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
elif test_case_name == "a_ones_b_ones":
A_ref = torch.ones(M, K, device=device, dtype=torch.bfloat16)
B_ref = torch.ones(N, K, device=device, dtype=torch.bfloat16)
if recipe == "mxfp8":
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
else: # nvfp4 # mxfp4
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
elif test_case_name == "a_ones_modified_b_ones":
A_ref = torch.ones(M, K, device=device, dtype=torch.bfloat16)
B_ref = torch.ones(N, K, device=device, dtype=torch.bfloat16)
A_ref[1][0:BLOCK_SIZE] = 2
if recipe == "mxfp8":
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
else: # nvfp4 # mxfp4
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
elif test_case_name == "a_ones_b_ones_modified":
A_ref = torch.ones(M, K, device=device, dtype=torch.bfloat16)
B_ref = torch.ones(N, K, device=device, dtype=torch.bfloat16)
B_ref[1][0:BLOCK_SIZE] = 2
if recipe == "mxfp8":
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
else: # nvfp4 # mxfp4
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
elif test_case_name == "a_scale_modified_b_ones":
A_ref = torch.ones(M, K, device=device, dtype=torch.bfloat16)
B_ref = torch.ones(N, K, device=device, dtype=torch.bfloat16)
if recipe == "mxfp8":
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
A_ref[1][0:BLOCK_SIZE] = 4
A[1][0:BLOCK_SIZE] = 2
A_scale[1][0] = 2
else: # nvfp4 # mxfp4
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
A_ref[1][0:BLOCK_SIZE] = 4
A.view(torch.uint8)[1][0:(BLOCK_SIZE // 2)] = 0b01000100
A_scale[1][0] = 2
elif test_case_name == "a_ones_b_scale_modified":
A_ref = torch.ones(M, K, device=device, dtype=torch.bfloat16)
B_ref = torch.ones(N, K, device=device, dtype=torch.bfloat16)
if recipe == "mxfp8":
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_ref[1][0:BLOCK_SIZE] = 4
B[1][0:BLOCK_SIZE] = 2
B_scale[1][0] = 2
else: # nvfp4 # mxfp4
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_ref[1][0:BLOCK_SIZE] = 4
B.view(torch.uint8)[1][0:(BLOCK_SIZE // 2)] = 0b01000100
B_scale[1][0] = 2
elif test_case_name == "data_random_scales_one":
require_exact_match = False
if recipe == "mxfp8":
# scales all-ones, element data random while being exactly representable in float8_e4m3fn
# generate integers in [0, 255] and interpret as float8_e4m3fn
A_ref = torch.randint(0, 255, (M, K), device=device, dtype=torch.uint8).view(torch.float8_e4m3fn).to(torch.bfloat16)
B_ref = torch.randint(0, 255, (N, K), device=device, dtype=torch.uint8).view(torch.float8_e4m3fn).to(torch.bfloat16)
# modification: don't allow NaN values
A_ref[torch.isnan(A_ref)] = 0
B_ref[torch.isnan(B_ref)] = 0
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
else: # nvfp4 # mxfp4
# scales all-ones, element data random while being exactly representable in float4_e2m1fn_x2
# generate integers in [0, 16] and cast to bfloat16
A_ref = _floatx_unpacked_to_f32(
torch.randint(0, 16, (M, K), device=device, dtype=torch.uint8),
FP4_EBITS,
FP4_MBITS
).bfloat16()
B_ref = _floatx_unpacked_to_f32(
torch.randint(0, 16, (N, K), device=device, dtype=torch.uint8),
FP4_EBITS,
FP4_MBITS
).bfloat16()
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=fp4_scaling_dtype)
elif test_case_name == "data_random_scales_from_data":
if not K % BLOCK_SIZE == 0:
raise unittest.SkipTest(f"this test is only defined for K a multiple of {BLOCK_SIZE}, skipping")
require_exact_match = False
# random data, scales from data
A_ref = torch.randn((M, K), device=device, dtype=torch.bfloat16) * 1000
B_ref = torch.randn((N, K), device=device, dtype=torch.bfloat16) * 1000
if recipe == "mxfp8":
# Calculate scales based on the inputs
A_scale = data_to_mx_scale(A_ref, BLOCK_SIZE, recipe)
B_scale = data_to_mx_scale(B_ref, BLOCK_SIZE, recipe)
max_val = F8E4M3_MAX_VAL
min_val = -1 * max_val
A = (A_ref.reshape(-1, BLOCK_SIZE) / A_scale.reshape(M * ceil_div(K, BLOCK_SIZE), 1).float()).reshape(M, K)
A = A.clamp(min=min_val, max=max_val).to(torch.float8_e4m3fn)
B = (B_ref.reshape(-1, BLOCK_SIZE) / B_scale.reshape(N * ceil_div(K, BLOCK_SIZE), 1).float()).reshape(N, K)
B = B.clamp(min=min_val, max=max_val).to(torch.float8_e4m3fn)
else: # nvfp4 # mxfp4
scale_func = data_to_mx_scale if recipe == "mxfp4" else data_to_nvfp4_scale
A_scale = scale_func(*([A_ref, BLOCK_SIZE] + recipe if recipe == "mxfp4" else [A_ref, BLOCK_SIZE]))
B_scale = scale_func(*([B_ref, BLOCK_SIZE] + recipe if recipe == "mxfp4" else [B_ref, BLOCK_SIZE]))
max_val = FP4_MAX_VAL
min_val = -1 * max_val
A = (A_ref.reshape(-1, BLOCK_SIZE) / A_scale.reshape(M * ceil_div(K, BLOCK_SIZE), 1).bfloat16()).reshape(M, K)
A = A.clamp(min=min_val, max=max_val)
A = _bfloat16_to_float4_e2m1fn_x2(A)
B = (B_ref.reshape(-1, BLOCK_SIZE) / B_scale.reshape(N * ceil_div(K, BLOCK_SIZE), 1).bfloat16()).reshape(N, K)
B = B.clamp(min=min_val, max=max_val)
B = _bfloat16_to_float4_e2m1fn_x2(B)
approx_match_sqnr_target = 12.0 if torch.version.hip else 15.8
C_ref = A_ref @ B_ref.t()
# convert to swizzled format
if not torch.version.hip:
A_scale = to_blocked(A_scale)
B_scale = to_blocked(B_scale)
C = torch._scaled_mm(
A,
B.t(),
A_scale,
B_scale,
out_dtype=torch.bfloat16,
use_fast_accum=fast_accum,
)
if require_exact_match:
torch.testing.assert_close(C, C_ref, atol=0, rtol=0)
else:
sqnr = compute_error(C_ref, C)
assert sqnr.item() > approx_match_sqnr_target
@unittest.skipIf(not PLATFORM_SUPPORTS_MX_GEMM or IS_WINDOWS, mx_skip_msg)
@parametrize("recipe", ["mxfp8", "nvfp4"])
def test_blockwise_mxfp8_nvfp4_error_messages(self, device, recipe) -> None:
M, K, N = (1024, 512, 2048)
BLOCK_SIZE_K = 16 if recipe == "nvfp4" else 32
BLOCK_SIZE_MN = 128
fill_value = 0.5
scale_dtype = torch.float8_e4m3fn if recipe == "nvfp4" else torch.float8_e8m0fnu
x = torch.full((M, K), fill_value, device=device)
y = torch.full((N, K), fill_value, device=device)
if recipe == "mxfp8":
x_lowp = x.to(e4m3_type)
y_lowp = y.to(e4m3_type).t()
else: # nvfp4
x_lowp = _bfloat16_to_float4_e2m1fn_x2(x.bfloat16())
y_lowp = _bfloat16_to_float4_e2m1fn_x2(y.bfloat16()).t()
num_k_blocks = ceil_div(K, BLOCK_SIZE_K)
padded_num_k_blocks = ceil_div(num_k_blocks, 4) * 4
expected_a_size = BLOCK_SIZE_MN * ceil_div(M, BLOCK_SIZE_MN) * padded_num_k_blocks
expected_b_size = BLOCK_SIZE_MN * ceil_div(N, BLOCK_SIZE_MN) * padded_num_k_blocks
# Test wrong scale tensor size for scale_a with correct dtype
with self.assertRaisesRegex(
RuntimeError,
f".*For Block[W,w]ise.*scaling.*scale_a should have {expected_a_size} "
f"elements.*"
,
):
incorrect_size_a = torch.ones(expected_a_size - 1, device=device, dtype=scale_dtype)
correct_size_b = torch.ones(expected_b_size, device=device, dtype=scale_dtype)
torch._scaled_mm(
x_lowp,
y_lowp,
scale_a=incorrect_size_a,
scale_b=correct_size_b,
out_dtype=torch.bfloat16,
)
# Test wrong scale tensor size for scale_b with correct dtype
with self.assertRaisesRegex(
RuntimeError,
f"For Block[W,w]ise.*scaling.*scale_b should have {expected_b_size} "
f"elements.*"
,
):
correct_size_a = torch.ones(expected_a_size, device=device, dtype=scale_dtype)
incorrect_size_b = torch.ones(expected_b_size + 1, device=device, dtype=scale_dtype)
torch._scaled_mm(
x_lowp,
y_lowp,
scale_a=correct_size_a,
scale_b=incorrect_size_b,
out_dtype=torch.bfloat16,
)
# Test non-contiguous scale tensors with correct dtype
with self.assertRaisesRegex(
RuntimeError,
"For Block[W,w]ise.*scaling.*both should be contiguous"
,
):
non_contiguous_a = torch.ones(expected_a_size * 2, device=device, dtype=scale_dtype)[::2]
contiguous_b = torch.ones(expected_b_size, device=device, dtype=scale_dtype)
torch._scaled_mm(
x_lowp,
y_lowp,
scale_a=non_contiguous_a,
scale_b=contiguous_b,
out_dtype=torch.bfloat16,
)
def scaled_grouped_mm_helper(self, alist, blist, ascalelist, bscalelist, outlist, use_fast_accum):
for a, b, ascale, bscale, out in zip(alist, blist, ascalelist, bscalelist, outlist):
out_ref = torch._scaled_mm(a, b.t(), ascale.view(-1, 1), bscale.view(1, -1),
out_dtype=torch.bfloat16, use_fast_accum=use_fast_accum)
self.assertEqual(out, out_ref, atol=5e-2, rtol=5e-4)
# Testing only _scaled_grouped_mm() with multiple shapes, as
# _scaled_mm() already has more combinations of parameters than
# _scaled_grouped_mm(), for supporting more than one inputs layout
# combinations.
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8_GROUPED_GEMM, f8_grouped_msg)
@parametrize("fast_accum", [False, True])
# AMD does not support non-contiguous inputs yet
@parametrize("strided", [False] + ([True] if torch.version.cuda else []))
def test_scaled_grouped_gemm_2d_2d(self, fast_accum, strided):
device = "cuda"
fp8_dtype = torch.float8_e4m3fnuz if torch.version.hip else torch.float8_e4m3fn
m, n, k, n_groups = 16, 32, 64, 4
a = torch.randn(m, k * n_groups + k * int(strided), device=device).to(fp8_dtype)[:, :k * n_groups]
b = torch.randn(n, k * n_groups + k * int(strided), device=device).to(fp8_dtype)[:, :k * n_groups]
scale_a = torch.rand(m * n_groups, device=device, dtype=torch.float32)
scale_b = torch.rand(n * n_groups, device=device, dtype=torch.float32)
offs = torch.arange(k, n_groups * k + 1, k, device=device, dtype=torch.int32)
f = torch._scaled_grouped_mm
out = f(a, b.t(), scale_a, scale_b, offs=offs,
out_dtype=torch.bfloat16, use_fast_accum=fast_accum)
offs_cpu = offs.cpu()
alist, blist, ascalelist, bscalelist = [], [], [], []
start = 0
for i in range(n_groups):
alist.append(a[:, start:offs_cpu[i]])
blist.append(b[:, start:offs_cpu[i]])
ascalelist.append(scale_a[i * m : (i + 1) * m])
bscalelist.append(scale_b[i * n : (i + 1) * n])
start = offs_cpu[i]
self.scaled_grouped_mm_helper(alist, blist, ascalelist, bscalelist, out, fast_accum)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8_GROUPED_GEMM, f8_grouped_msg)
@parametrize("fast_accum", [False, True])
# AMD does not support non-contiguous inputs yet
@parametrize("strided", [False] + ([True] if torch.version.cuda else []))
def test_scaled_grouped_gemm_2d_3d(self, fast_accum, strided):
device = "cuda"
fp8_dtype = torch.float8_e4m3fnuz if torch.version.hip else torch.float8_e4m3fn
m, n, k, n_groups = 16, 32, 64, 4
s_int = int(strided)
a = torch.randn(m * n_groups, k * (1 + s_int), device=device).to(fp8_dtype)[:, :k]
b = torch.randn(n_groups * (1 + s_int), n, k * (1 + s_int), device=device).to(fp8_dtype)[::(1 + s_int), :, :k]
self.assertTrue(a.is_contiguous() is not strided)
self.assertTrue(b.is_contiguous() is not strided)
for check_zero_size in (True, False):
if check_zero_size and n_groups <= 1:
continue
offs = torch.arange(m, n_groups * m + 1, m, device="cuda", dtype=torch.int32)
if check_zero_size:
offs[0] = offs[1]
scale_a = torch.rand(n_groups * m, device="cuda", dtype=torch.float32)
scale_b = torch.rand(n_groups * n, device="cuda", dtype=torch.float32).view(n_groups, n)
f = torch._scaled_grouped_mm
out = f(a, b.transpose(-2, -1), scale_a, scale_b, offs=offs,
out_dtype=torch.bfloat16, use_fast_accum=fast_accum)
offs_cpu = offs.cpu()
alist, ascalelist, outlist = [], [], []
start = 0
for i in range(n_groups):
alist.append(a[start:offs_cpu[i]])
ascalelist.append(scale_a[start:offs_cpu[i]])
outlist.append(out[start:offs_cpu[i]])
start = offs_cpu[i]
self.scaled_grouped_mm_helper(alist, b, ascalelist, scale_b, outlist, fast_accum)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8_GROUPED_GEMM, f8_grouped_msg)
@parametrize("fast_accum", [False, True])
# AMD does not support non-contiguous inputs yet
@parametrize("strided", [False] + ([True] if torch.version.cuda else []))
def test_scaled_grouped_gemm_3d_3d(self, fast_accum, strided):
device = "cuda"
fp8_dtype = torch.float8_e4m3fnuz if torch.version.hip else torch.float8_e4m3fn
m, n, k, n_groups = 16, 32, 64, 4
s_int = int(strided)
a = torch.randn(n_groups * (1 + s_int), m, k * (1 + s_int), device=device).to(fp8_dtype)[::(1 + s_int), :, :k]
b = torch.randn(n_groups * (1 + s_int), n, k * (1 + s_int), device=device).to(fp8_dtype)[::(1 + s_int), :, :k]
self.assertTrue(a.is_contiguous() is not strided)
self.assertTrue(b.is_contiguous() is not strided)
scale_a = torch.rand(n_groups * m, device="cuda", dtype=torch.float32).view(n_groups, m)
scale_b = torch.rand(n_groups * n, device="cuda", dtype=torch.float32).view(n_groups, n)
f = torch._scaled_grouped_mm
out = f(a, b.transpose(-2, -1), scale_a, scale_b,
out_dtype=torch.bfloat16, use_fast_accum=fast_accum)
self.scaled_grouped_mm_helper(a, b, scale_a, scale_b, out, fast_accum)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8_GROUPED_GEMM, f8_grouped_msg)
@parametrize("fast_accum", [False, True])
# AMD does not support non-contiguous inputs yet
@parametrize("strided", [False] + ([True] if torch.version.cuda else []))
def test_scaled_grouped_gemm_3d_2d(self, fast_accum, strided):
device = "cuda"
fp8_dtype = torch.float8_e4m3fnuz if torch.version.hip else torch.float8_e4m3fn
m, n, k, n_groups = 16, 32, 64, 4
s_int = int(strided)
a = torch.randn(n_groups * (1 + s_int), m, k * (1 + s_int), device=device).to(fp8_dtype)[::(1 + s_int), :, :k]
b = torch.randn(n * n_groups, k * (1 + s_int), device=device).to(fp8_dtype)[:, :k]
self.assertTrue(a.is_contiguous() is not strided)
self.assertTrue(b.is_contiguous() is not strided)
scale_a = torch.rand(n_groups * m, device="cuda", dtype=torch.float32).view(n_groups, m)
scale_b = torch.rand(n_groups * n, device="cuda", dtype=torch.float32)
for check_zero_size in (True, False):
if check_zero_size and n_groups <= 1:
continue
offs = torch.arange(n, n_groups * n + 1, n, device="cuda", dtype=torch.int32)
if check_zero_size:
offs[0] = offs[1]
f = torch._scaled_grouped_mm
out = f(a, b.transpose(-2, -1), scale_a, scale_b, offs=offs,
out_dtype=torch.bfloat16, use_fast_accum=fast_accum)
offs_cpu = offs.cpu()
blist, bscalelist, outlist = [], [], []
start = 0
for i in range(n_groups):
blist.append(b[start:offs_cpu[i]])
bscalelist.append(scale_b[start:offs_cpu[i]])
outlist.append(out[:, start:offs_cpu[i]])
start = offs_cpu[i]
self.scaled_grouped_mm_helper(a, blist, scale_a, bscalelist, outlist, fast_accum)
@unittest.skipIf(not PLATFORM_SUPPORTS_MX_GEMM, mx_skip_msg)
def test_blockwise_mxfp8_compile(self) -> None:
device = "cuda"
M, K, N = 128, 128, 128
BLOCK_SIZE = 32
A_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
B_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
A = A_ref.to(torch.float8_e4m3fn)
B = B_ref.to(torch.float8_e4m3fn)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e8m0fnu)
C_ref = A_ref @ B_ref.t()
compiled_scaled_mm = torch.compile(torch._scaled_mm, backend="inductor")
C = compiled_scaled_mm(
A,
B.t(),
A_scale,
B_scale,
out_dtype=torch.bfloat16,
use_fast_accum=False,
)
torch.testing.assert_close(C, C_ref, atol=0, rtol=0)
@unittest.skipIf(not PLATFORM_SUPPORTS_MX_GEMM, mx_skip_msg)
def test_blockwise_nvfp4_compile(self) -> None:
device = "cuda"
M, K, N = 128, 128, 128
BLOCK_SIZE = 16
A_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
B_ref = torch.eye(M, device=device, dtype=torch.bfloat16)
A = _bfloat16_to_float4_e2m1fn_x2(A_ref)
B = _bfloat16_to_float4_e2m1fn_x2(B_ref)
A_scale = torch.full((M, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e4m3fn)
B_scale = torch.full((N, ceil_div(K, BLOCK_SIZE)), 1.0, device=device, dtype=torch.float8_e4m3fn)
C_ref = A_ref @ B_ref.t()
compiled_scaled_mm = torch.compile(torch._scaled_mm, backend="inductor")
# C = torch._scaled_mm(
C = compiled_scaled_mm(
A,
B.t(),
A_scale,
B_scale,
out_dtype=torch.bfloat16,
use_fast_accum=False,
)
torch.testing.assert_close(C, C_ref, atol=0, rtol=0)
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support CUTLASS")
@unittest.skipIf(IS_WINDOWS, "Windows doesn't support CUTLASS extensions")
@unittest.skipIf(not _IS_SM8X, "mixed dtypes linear only supported on SM 8.x")
class TestMixedDtypesLinearCuda(TestCase):
@dtypes(torch.float16, torch.bfloat16)
def test_mixed_dtypes_linear(self, dtype: torch.dtype, device: str = "cuda"):
version = _get_torch_cuda_version()
if version < (11, 8):
self.skipTest("_mixed_dtypes_linear only compiled for CUDA 11.8+")
def run_test(
batch_shape,
m,
n,
k,
add_bias,
activation,
dtype,
dtypeq,
device,
rtol,
atol,
):
if not add_bias and activation != "none":
return
val_lo, val_hi = -1, 1
valq_lo, valq_hi = -2, 2
input = make_tensor(
*batch_shape, m, k, low=val_lo, high=val_hi, dtype=dtype, device=device
)
weight = make_tensor(
n, k, low=valq_lo, high=valq_hi, dtype=torch.int8, device=device
)
scale = make_tensor(
(n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device
)
bias = (
make_tensor(
(n,), low=val_lo, high=val_hi, dtype=input.dtype, device=device
)
if add_bias
else None
)
input_ref = input.reshape(-1, input.shape[-1])
# First, test plain multiplication.
weight_ref = weight.T.to(input.dtype) * scale.view(1, n)
weightq = (
pack_int4_to_int8(weight.T) if dtypeq == torch.quint4x2 else weight.T
)
output_ref = torch.mm(input_ref, weight_ref).reshape(*input.shape[:-1], n)
output = torch.ops.aten._mixed_dtypes_linear(
input,
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
weightq, dtypeq, transpose=False
),
scale,
)
torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol)
# Second, test the linear operator itself.
weight_ref = weight.to(input.dtype) * scale.view(n, 1)
weightq = pack_int4_to_int8(weight) if dtypeq == torch.quint4x2 else weight
bias_ref = bias.view(1, n) if add_bias else None
output_ref = torch.nn.functional.linear(
input_ref, weight_ref, bias=bias_ref
).reshape(*input.shape[:-1], n)
if activation == "relu":
relu = torch.nn.ReLU()
output_ref = relu(output_ref)
elif activation == "silu":
silu = torch.nn.SiLU()
output_ref = silu(output_ref)
output = torch.ops.aten._mixed_dtypes_linear(
input,
quantized_weight_reorder_for_mixed_dtypes_linear_cutlass(
weightq, dtypeq, transpose=True
),
scale,
bias=bias,
activation=activation,
)
torch.testing.assert_close(output, output_ref, rtol=rtol, atol=atol)
dtypeqs = [torch.int8, torch.quint4x2]
batch_shapes = [[], [2], [2, 1]]
shapes = [
[8, 64, 64],
[8, 64, 128],
[8, 128, 64],
[8, 128, 128],
[8, 128, 192],
[8, 128, 256],
[8, 256, 128],
[8, 256, 384],
[8, 384, 256],
]
activations = [None, "relu", "silu"]
rtol, atol = 1e-3, 1e-3
if dtype == torch.bfloat16:
rtol, atol = 1e-2, 1e-3
for dtypeq, batch_shape, (m, n, k), add_bias, activation in product(
dtypeqs, batch_shapes, shapes, (False, True), activations
):
run_test(
batch_shape,
m,
n,
k,
add_bias,
activation,
dtype,
dtypeq,
device,
rtol,
atol,
)
instantiate_device_type_tests(TestMatmulCuda, globals(), except_for="cpu")
instantiate_device_type_tests(TestMixedDtypesLinearCuda, globals(), except_for="cpu")
instantiate_device_type_tests(TestFP8Matmul, globals(), except_for="cpu")
if __name__ == '__main__':
TestCase._default_dtype_check_enabled = True
run_tests()