mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/97812 Approved by: https://github.com/Skylion007, https://github.com/kiukchung, https://github.com/malfet, https://github.com/mlazos
700 lines
34 KiB
Python
700 lines
34 KiB
Python
"""
|
|
This is a script for launching PyTorch inference on Intel(R) Xeon(R) Scalable Processors with optimal configurations.
|
|
Single instance inference, multi-instance inference are enabled.
|
|
|
|
Note: term "instance" here doesn't refer to a cloud instance. This script is executed as a single process. It invokes
|
|
multiple "instances" which are formed from multiple threads for each. "instance" is kind of group of threads in this
|
|
context.
|
|
|
|
Illustrated as below:
|
|
|
|
::
|
|
|
|
+-----------------------------+----------------------+-------+
|
|
| process | thread | core |
|
|
+=============================+======================+=======+
|
|
| torch.backends.xeon.run_cpu | instance 0: thread 0 | 0 |
|
|
| | thread 1 | 1 |
|
|
| +----------------------+-------+
|
|
| | instance 1: thread 0 | 2 |
|
|
| | thread 1 | 3 |
|
|
| +----------------------+-------+
|
|
| | ... | ... |
|
|
| +----------------------+-------+
|
|
| | instance N: thread 0 | M |
|
|
| | thread 1 | M+1 |
|
|
+-----------------------------+----------------------+-------+
|
|
|
|
To get the peak performance on Intel(R) Xeon(R) Scalable Processors, the script optimizes the configuration of thread and memory
|
|
management. For thread management, the script configures thread affinity and the preload of Intel OMP library.
|
|
For memory management, it configures NUMA binding and preload optimized memory allocation library (e.g. tcmalloc, jemalloc).
|
|
|
|
Environment variables that will be set by this script:
|
|
|
|
+------------------+-------------------------------------------------------------------------------------------------+
|
|
| Environ Variable | Value |
|
|
+==================+=================================================================================================+
|
|
| LD_PRELOAD | Depending on knobs you set, <lib>/libiomp5.so, <lib>/libjemalloc.so, <lib>/libtcmalloc.so might |
|
|
| | be appended to LD_PRELOAD. |
|
|
+------------------+-------------------------------------------------------------------------------------------------+
|
|
| KMP_AFFINITY | If libiomp5.so is preloaded, KMP_AFFINITY could be set to "granularity=fine,compact,1,0". |
|
|
+------------------+-------------------------------------------------------------------------------------------------+
|
|
| KMP_BLOCKTIME | If libiomp5.so is preloaded, KMP_BLOCKTIME is set to "1". |
|
|
+------------------+-------------------------------------------------------------------------------------------------+
|
|
| OMP_NUM_THREADS | value of ncores_per_instance |
|
|
+------------------+-------------------------------------------------------------------------------------------------+
|
|
| MALLOC_CONF | If libjemalloc.so is preloaded, MALLOC_CONF will be set to |
|
|
| | "oversize_threshold:1,background_thread:true,metadata_thp:auto". |
|
|
+------------------+-------------------------------------------------------------------------------------------------+
|
|
|
|
*Note*: This script respects environment variables set preliminarily. I.e. If you set the environment variables
|
|
mentioned above before running the script, the script will not overwrite the values in the script.
|
|
|
|
How to use this module:
|
|
~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Single instance inference
|
|
-------------------------
|
|
|
|
1. Run single-instance inference on a single node with all CPU nodes.
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --throughput-mode script.py args
|
|
|
|
2. Run single-instance inference on a single CPU node.
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --node-id 1 script.py args
|
|
|
|
Multi-instance inference
|
|
------------------------
|
|
|
|
1. Multi-instance
|
|
By default this tool runs one process per node. If you want to set the instance numbers and core per instance,
|
|
--ninstances and --ncores-per-instance should be set.
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu -- python_script args
|
|
|
|
eg: on an Intel(R) Xeon(R) Scalable Processor with 14 instance, 4 cores per instance
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --ninstances 14 --ncores-per-instance 4 python_script args
|
|
|
|
2. Run single-instance inference among multiple instances.
|
|
By default, runs all ninstances. If you want to independently run a single instance among ninstances, specify rank.
|
|
|
|
eg: run 0th instance on an Intel(R) Xeon(R) Scalable Processor with 2 instance (i.e., numactl -C 0-27)
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --ninstances 2 --rank 0 python_script args
|
|
|
|
eg: run 1st instance on an Intel(R) Xeon(R) Scalable Processor with 2 instance (i.e., numactl -C 28-55)
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --ninstances 2 --rank 1 python_script args
|
|
|
|
eg: run 0th instance on an Intel(R) Xeon(R) Scalable Processor with 2 instance, 2 cores per instance,
|
|
first four cores (i.e., numactl -C 0-1)
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --core-list "0, 1, 2, 3" --ninstances 2 --ncores-per-instance 2
|
|
--rank 0 python_script args
|
|
|
|
3. To look up what optional arguments this module offers:
|
|
|
|
::
|
|
|
|
python -m torch.backends.xeon.run_cpu --help
|
|
|
|
Memory allocator
|
|
----------------
|
|
|
|
"--enable-tcmalloc" and "--enable-jemalloc" can be used to enable different memory allcator.
|
|
|
|
"""
|
|
|
|
import sys
|
|
import platform
|
|
import subprocess
|
|
import os
|
|
from os.path import expanduser
|
|
import re
|
|
import glob
|
|
from argparse import ArgumentParser, REMAINDER
|
|
from argparse import RawTextHelpFormatter
|
|
import logging
|
|
from torch.distributed.elastic.multiprocessing import Std, start_processes
|
|
from typing import List, Dict
|
|
|
|
format_str = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
|
logging.basicConfig(level=logging.INFO, format=format_str)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class _CPUinfo():
|
|
"""
|
|
Get CPU information, such as cores list and NUMA information.
|
|
"""
|
|
def __init__(self, test_input=""):
|
|
|
|
self.cpuinfo = []
|
|
if platform.system() in ["Windows", "Darwin"]:
|
|
raise RuntimeError(f"{platform.system()} is not supported!!!")
|
|
elif platform.system() == "Linux":
|
|
# Sample output of: `lscpu --parse=CPU,Core,Socket,Node`
|
|
#
|
|
# # The following is the parsable format, which can be fed to other
|
|
# # programs. Each different item in every column has an unique ID
|
|
# # starting from zero.
|
|
# # CPU,Core,Socket,Node
|
|
# 0,0,0,0
|
|
# 1,1,0,0
|
|
# ...
|
|
if test_input == "":
|
|
lscpu_cmd = ["lscpu", "--parse=CPU,Core,Socket,Node"]
|
|
lscpu_info = subprocess.check_output(lscpu_cmd, universal_newlines=True).split("\n")
|
|
else:
|
|
lscpu_info = test_input.split("\n")
|
|
|
|
# Get information about cpu, core, socket and node
|
|
for line in lscpu_info:
|
|
pattern = r"^([\d]+,[\d]+,[\d]+,[\d]?)"
|
|
regex_out = re.search(pattern, line)
|
|
if regex_out:
|
|
self.cpuinfo.append(regex_out.group(1).strip().split(","))
|
|
|
|
# physical cores := core column in lscpu output
|
|
# logical cores := cPU column in lscpu output
|
|
self.node_nums = int(max([line[3] for line in self.cpuinfo])) + 1
|
|
self.node_physical_cores: List[List[int]] = [] # node_id is index
|
|
self.node_logical_cores: List[List[int]] = [] # node_id is index
|
|
self.physical_core_node_map = {} # physical core to numa node id
|
|
self.logical_core_node_map = {} # logical core to numa node id
|
|
|
|
for node_id in range(self.node_nums):
|
|
cur_node_physical_core = []
|
|
cur_node_logical_core = []
|
|
for cpuinfo in self.cpuinfo:
|
|
nid = cpuinfo[3] if cpuinfo[3] != "" else "0"
|
|
if node_id == int(nid):
|
|
if int(cpuinfo[1]) not in cur_node_physical_core:
|
|
cur_node_physical_core.append(int(cpuinfo[1]))
|
|
self.physical_core_node_map[int(cpuinfo[1])] = int(node_id)
|
|
cur_node_logical_core.append(int(cpuinfo[0]))
|
|
self.logical_core_node_map[int(cpuinfo[0])] = int(node_id)
|
|
self.node_physical_cores.append(cur_node_physical_core)
|
|
self.node_logical_cores.append(cur_node_logical_core)
|
|
|
|
def _physical_core_nums(self):
|
|
return len(self.node_physical_cores) * len(self.node_physical_cores[0])
|
|
|
|
def _logical_core_nums(self):
|
|
return len(self.node_logical_cores) * len(self.node_logical_cores[0])
|
|
|
|
def get_node_physical_cores(self, node_id):
|
|
if node_id < 0 or node_id > self.node_nums - 1:
|
|
raise ValueError(f"Invalid node id: {node_id}. Valid node ids: {list(range(len(self.node_physical_cores)))}")
|
|
return self.node_physical_cores[node_id]
|
|
|
|
def get_node_logical_cores(self, node_id):
|
|
if node_id < 0 or node_id > self.node_nums - 1:
|
|
raise ValueError(f"Invalid node id: {node_id}. Valid node ids: {list(range(len(self.node_physical_cores)))}")
|
|
return self.node_logical_cores[node_id]
|
|
|
|
def get_all_physical_cores(self):
|
|
all_cores = []
|
|
for cores in self.node_physical_cores:
|
|
all_cores.extend(cores)
|
|
return all_cores
|
|
|
|
def get_all_logical_cores(self):
|
|
all_cores = []
|
|
for cores in self.node_logical_cores:
|
|
all_cores.extend(cores)
|
|
return all_cores
|
|
|
|
def numa_aware_check(self, core_list):
|
|
"""
|
|
Check whether all cores in core_list are in the same NUMA node. cross NUMA will reduce performance.
|
|
We strongly advice to not use cores on different nodes.
|
|
"""
|
|
cores_numa_map = self.logical_core_node_map
|
|
numa_ids = []
|
|
for core in core_list:
|
|
numa_id = cores_numa_map[core]
|
|
if numa_id not in numa_ids:
|
|
numa_ids.append(numa_id)
|
|
if len(numa_ids) > 1:
|
|
logger.warning(f"Numa Aware: cores:{str(core_list)} on different NUMA nodes:{str(numa_ids)}. To avoid \
|
|
this behavior, please use --ncores-per-instance knob to make sure number of cores is divisible by --ncores-per-\
|
|
instance. Alternatively, please use --skip-cross-node-cores knob.")
|
|
if len(numa_ids) == 0:
|
|
raise RuntimeError("invalid number of NUMA nodes; please make sure numa_ids >= 1")
|
|
return numa_ids
|
|
|
|
class _Launcher():
|
|
r"""
|
|
Class for launcher
|
|
"""
|
|
|
|
msg_lib_notfound = f"Unable to find the {{0}} library file lib{{1}}.so in $CONDA_PREFIX/lib or $VIRTUAL_ENV/lib \
|
|
or /.local/lib/ or /usr/local/lib/ or /usr/local/lib64/ or /usr/lib or /usr/lib64 or \
|
|
{expanduser('~')}/.local/lib/ so the LD_PRELOAD environment variable will not be set."
|
|
|
|
def __init__(self):
|
|
self.cpuinfo = _CPUinfo()
|
|
|
|
def add_lib_preload(self, lib_type):
|
|
"""
|
|
Enable TCMalloc/JeMalloc/intel OpenMP
|
|
"""
|
|
library_paths = []
|
|
if "CONDA_PREFIX" in os.environ:
|
|
library_paths.append(f"{os.environ['CONDA_PREFIX']}/lib")
|
|
if "VIRTUAL_ENV" in os.environ:
|
|
library_paths.append(f"{os.environ['VIRTUAL_ENV']}/lib")
|
|
|
|
library_paths += [f"{expanduser('~')}/.local/lib", "/usr/local/lib",
|
|
"/usr/local/lib64", "/usr/lib", "/usr/lib64"]
|
|
|
|
lib_find = False
|
|
lib_set = False
|
|
for item in os.getenv("LD_PRELOAD", "").split(":"):
|
|
if item.endswith(f"lib{lib_type}.so"):
|
|
lib_set = True
|
|
break
|
|
if not lib_set:
|
|
for lib_path in library_paths:
|
|
library_file = os.path.join(lib_path, f"lib{lib_type}.so")
|
|
matches = glob.glob(library_file)
|
|
if len(matches) > 0:
|
|
ld_preloads = [f"{matches[0]}", os.getenv("LD_PRELOAD", "")]
|
|
os.environ["LD_PRELOAD"] = os.pathsep.join([p.strip(os.pathsep) for p in ld_preloads if p])
|
|
lib_find = True
|
|
break
|
|
return lib_set or lib_find
|
|
|
|
|
|
def is_numactl_available(self):
|
|
numactl_available = False
|
|
try:
|
|
cmd = ["numactl", "-C", "0", "-m", "0", "hostname"]
|
|
r = subprocess.run(cmd, env=os.environ, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
|
if r.returncode == 0:
|
|
numactl_available = True
|
|
except Exception:
|
|
pass
|
|
return numactl_available
|
|
|
|
|
|
def set_memory_allocator(self, enable_tcmalloc=True, enable_jemalloc=False, use_default_allocator=False):
|
|
"""
|
|
Enable TCMalloc/JeMalloc with LD_PRELOAD and set configuration for JeMalloc.
|
|
By default, PTMalloc will be used for PyTorch, but TCMalloc and JeMalloc can get better
|
|
memory reuse and reduce page fault to improve performance.
|
|
"""
|
|
if enable_tcmalloc and enable_jemalloc:
|
|
raise RuntimeError("Unable to enable TCMalloc and JEMalloc at the same time.")
|
|
|
|
if enable_tcmalloc:
|
|
find_tc = self.add_lib_preload(lib_type="tcmalloc")
|
|
if not find_tc:
|
|
msg = f"{self.msg_lib_notfound} you can use \"conda install -c conda-forge gperftools\" to install {{0}}"
|
|
logger.warning(msg.format("TCmalloc", "tcmalloc")) # noqa: G001
|
|
else:
|
|
logger.info("Use TCMalloc memory allocator")
|
|
|
|
elif enable_jemalloc:
|
|
find_je = self.add_lib_preload(lib_type="jemalloc")
|
|
if not find_je:
|
|
msg = f"{self.msg_lib_notfound} you can use \"conda install -c conda-forge jemalloc\" to install {{0}}"
|
|
logger.warning(msg.format("Jemalloc", "jemalloc")) # noqa: G001
|
|
else:
|
|
logger.info("Use JeMalloc memory allocator")
|
|
self.set_env("MALLOC_CONF", "oversize_threshold:1,background_thread:true,metadata_thp:auto")
|
|
|
|
elif use_default_allocator:
|
|
pass
|
|
|
|
else:
|
|
find_tc = self.add_lib_preload(lib_type="tcmalloc")
|
|
if find_tc:
|
|
logger.info("Use TCMalloc memory allocator")
|
|
return
|
|
find_je = self.add_lib_preload(lib_type="jemalloc")
|
|
if find_je:
|
|
logger.info("Use JeMalloc memory allocator")
|
|
return
|
|
logger.warning(f"""Neither TCMalloc nor JeMalloc is found in $CONDA_PREFIX/lib or $VIRTUAL_ENV/lib
|
|
or /.local/lib/ or /usr/local/lib/ or /usr/local/lib64/ or /usr/lib or /usr/lib64 or
|
|
{expanduser("~")}/.local/lib/ so the LD_PRELOAD environment variable will not be set.
|
|
This may drop the performance""")
|
|
|
|
def log_env_var(self, env_var_name=""):
|
|
if env_var_name in os.environ:
|
|
logger.info(f"{env_var_name}={os.environ[env_var_name]}")
|
|
|
|
def set_env(self, env_name, env_value):
|
|
if not env_value:
|
|
logger.warning(f"{env_name} is None")
|
|
if env_name not in os.environ:
|
|
os.environ[env_name] = env_value
|
|
elif os.environ[env_name] != env_value:
|
|
logger.warning(f"Overriding value with the one set in environment variable: {env_name}. \
|
|
Value applied: {os.environ[env_name]}. Value ignored: {env_value}")
|
|
self.log_env_var(env_name)
|
|
|
|
# set_kmp_affinity is used to control whether to set KMP_AFFINITY or not.
|
|
# In scenario that use all cores on all nodes, including logical cores, setting KMP_AFFINITY disables logical cores.
|
|
# In this case, KMP_AFFINITY should not be set.
|
|
def set_multi_thread_and_allocator(self, ncores_per_instance,
|
|
disable_iomp=False,
|
|
set_kmp_affinity=True,
|
|
enable_tcmalloc=True,
|
|
enable_jemalloc=False,
|
|
use_default_allocator=False):
|
|
"""
|
|
Set multi-thread configuration and enable Intel openMP and TCMalloc/JeMalloc.
|
|
By default, GNU openMP and PTMalloc are used in PyTorch. but Intel openMP and TCMalloc/JeMalloc are better alternatives
|
|
to get performance benefit.
|
|
"""
|
|
self.set_memory_allocator(enable_tcmalloc, enable_jemalloc, use_default_allocator)
|
|
self.set_env("OMP_NUM_THREADS", str(ncores_per_instance))
|
|
if not disable_iomp:
|
|
find_iomp = self.add_lib_preload(lib_type="iomp5")
|
|
if not find_iomp:
|
|
msg = f"{self.msg_lib_notfound} you can use \"conda install mkl\" to install {{0}}"
|
|
logger.warning(msg.format("iomp", "iomp5")) # noqa: G001
|
|
else:
|
|
logger.info("Using Intel OpenMP")
|
|
if set_kmp_affinity:
|
|
self.set_env("KMP_AFFINITY", "granularity=fine,compact,1,0")
|
|
self.set_env("KMP_BLOCKTIME", "1")
|
|
self.log_env_var("LD_PRELOAD")
|
|
|
|
r"""
|
|
Launcher for single instance and multi-instance
|
|
"""
|
|
def launch(self, args):
|
|
cores = []
|
|
set_kmp_affinity = True
|
|
enable_taskset = False
|
|
if args.core_list: # user specify what cores will be used by params
|
|
cores = [int(x) for x in args.core_list.split(",")]
|
|
if args.ncores_per_instance == -1:
|
|
raise RuntimeError("please specify the \"--ncores-per-instance\" if you have pass the --core-list params")
|
|
elif args.ninstances > 1 and args.ncores_per_instance * args.ninstances < len(cores):
|
|
logger.warning(f"only first {args.ncores_per_instance * args.ninstances} cores will be used, \
|
|
but you specify {len(cores)} cores in core_list")
|
|
else:
|
|
args.ninstances = len(cores) // args.ncores_per_instance
|
|
|
|
else:
|
|
if args.use_logical_core:
|
|
if args.node_id != -1:
|
|
cores = self.cpuinfo.get_node_logical_cores(args.node_id)
|
|
else:
|
|
cores = self.cpuinfo.get_all_logical_cores()
|
|
# When using all cores on all nodes, including logical cores,
|
|
# setting KMP_AFFINITY disables logical cores. Thus, KMP_AFFINITY should not be set.
|
|
set_kmp_affinity = False
|
|
else:
|
|
if args.node_id != -1:
|
|
cores = self.cpuinfo.get_node_physical_cores(args.node_id)
|
|
else:
|
|
cores = self.cpuinfo.get_all_physical_cores()
|
|
if not args.multi_instance and args.ninstances == -1 and args.ncores_per_instance == -1:
|
|
args.ninstances = 1
|
|
args.ncores_per_instance = len(cores)
|
|
elif args.multi_instance and args.ninstances == -1 and args.ncores_per_instance == -1:
|
|
args.throughput_mode = True
|
|
elif args.ncores_per_instance == -1 and args.ninstances != -1:
|
|
if args.ninstances > len(cores):
|
|
raise RuntimeError(f"there are {len(cores)} total cores but you specify {args.ninstances} ninstances; \
|
|
please make sure ninstances <= total_cores)")
|
|
else:
|
|
args.ncores_per_instance = len(cores) // args.ninstances
|
|
elif args.ncores_per_instance != -1 and args.ninstances == -1:
|
|
if not args.skip_cross_node_cores:
|
|
args.ninstances = len(cores) // args.ncores_per_instance
|
|
else:
|
|
ncore_per_node = len(self.cpuinfo.node_physical_cores[0])
|
|
num_leftover_cores = ncore_per_node % args.ncores_per_instance
|
|
if args.ncores_per_instance > ncore_per_node:
|
|
# too many ncores_per_instance to skip cross-node cores
|
|
logger.warning("there are %s core(s) per socket, but you specify %s ncores_per_instance and \
|
|
skip_cross_node_cores. Please make sure --ncores-per-instance < core(s) per \
|
|
socket", ncore_per_node, args.ncores_per_instance)
|
|
exit(-1)
|
|
elif num_leftover_cores == 0:
|
|
# aren't any cross-node cores
|
|
logger.info('--skip-cross-node-cores is set, but there are no cross-node cores.')
|
|
args.ninstances = len(cores) // args.ncores_per_instance
|
|
else:
|
|
# skip cross-node cores
|
|
if args.ninstances != -1:
|
|
logger.warning('--skip-cross-node-cores is exclusive to --ninstances. --ninstances \
|
|
won\'t take effect even if it is set explicitly.')
|
|
|
|
i = 1
|
|
leftover_cores = set()
|
|
while ncore_per_node * i <= len(cores):
|
|
leftover_cores.update(cores[ncore_per_node * i - num_leftover_cores : ncore_per_node * i])
|
|
i += 1
|
|
cores = list(set(cores) - leftover_cores)
|
|
assert len(cores) % args.ncores_per_instance == 0
|
|
args.ninstances = len(cores) // args.ncores_per_instance
|
|
else:
|
|
if args.ninstances * args.ncores_per_instance > len(cores):
|
|
raise RuntimeError("Please make sure ninstances * ncores_per_instance <= total_cores")
|
|
if args.latency_mode:
|
|
logger.warning("--latency-mode is exclusive to --ninstances, --ncores-per-instance, --node-id and \
|
|
--use-logical-core. They won't take effect even they are set explicitly.")
|
|
args.ncores_per_instance = 4
|
|
cores = self.cpuinfo.get_all_physical_cores()
|
|
args.ninstances = len(cores) // args.ncores_per_instance
|
|
|
|
if args.throughput_mode:
|
|
logger.warning("--throughput-mode is exclusive to --ninstances, --ncores-per-instance, --node-id and \
|
|
--use-logical-core. They won't take effect even they are set explicitly.")
|
|
args.ninstances = self.cpuinfo.node_nums
|
|
cores = self.cpuinfo.get_all_physical_cores()
|
|
args.ncores_per_instance = len(cores) // args.ninstances
|
|
|
|
if args.ninstances > 1 and args.rank != -1:
|
|
logger.info(f"assigning {args.ncores_per_instance} cores for instance {args.rank}")
|
|
|
|
if not args.disable_numactl:
|
|
numactl_available = self.is_numactl_available()
|
|
if not numactl_available:
|
|
if not args.disable_taskset:
|
|
logger.warning("Core binding with numactl is not available. Disabling numactl and using taskset instead. \
|
|
This may affect performance in multi-socket system; please use numactl if memory binding is needed.")
|
|
args.disable_numactl = True
|
|
enable_taskset = True
|
|
else:
|
|
logger.warning("Core binding with numactl is not available, and --disable_taskset is set. \
|
|
Please unset --disable_taskset to use taskset instead of numactl.")
|
|
exit(-1)
|
|
|
|
if not args.disable_taskset:
|
|
enable_taskset = True
|
|
|
|
self.set_multi_thread_and_allocator(args.ncores_per_instance,
|
|
args.disable_iomp,
|
|
set_kmp_affinity,
|
|
args.enable_tcmalloc,
|
|
args.enable_jemalloc,
|
|
args.use_default_allocator)
|
|
entrypoint = ""
|
|
launch_args = {}
|
|
launch_envs: Dict[int, Dict] = {}
|
|
launch_tee = {}
|
|
for i in range(args.ninstances):
|
|
cmd = []
|
|
cur_process_cores = ""
|
|
if not args.disable_numactl or enable_taskset:
|
|
if not args.disable_numactl:
|
|
cmd = ["numactl"]
|
|
elif enable_taskset:
|
|
cmd = ["taskset"]
|
|
cores = sorted(cores)
|
|
if args.rank == -1: # sequentially assign ncores_per_instance to ninstances
|
|
core_list = cores[i * args.ncores_per_instance : (i + 1) * args.ncores_per_instance]
|
|
else: # assign ncores_per_instance from rank
|
|
core_list = cores[args.rank * args.ncores_per_instance
|
|
: (args.rank + 1) * args.ncores_per_instance]
|
|
|
|
core_ranges: List[Dict] = []
|
|
for core in core_list:
|
|
if len(core_ranges) == 0:
|
|
range_elem = {"start": core, "end": core}
|
|
core_ranges.append(range_elem)
|
|
else:
|
|
if core - core_ranges[-1]["end"] == 1:
|
|
core_ranges[-1]["end"] = core
|
|
else:
|
|
range_elem = {"start": core, "end": core}
|
|
core_ranges.append(range_elem)
|
|
for r in core_ranges:
|
|
cur_process_cores = f"{cur_process_cores}{r['start']}-{r['end']},"
|
|
cur_process_cores = cur_process_cores[:-1]
|
|
if not args.disable_numactl:
|
|
numa_params = f"-C {cur_process_cores} "
|
|
numa_ids = ",".join([str(numa_id) for numa_id in self.cpuinfo.numa_aware_check(core_list)])
|
|
numa_params += f"-m {numa_ids}"
|
|
cmd.extend(numa_params.split())
|
|
elif enable_taskset:
|
|
taskset_params = f"-c {cur_process_cores} "
|
|
cmd.extend(taskset_params.split())
|
|
with_python = not args.no_python
|
|
if with_python:
|
|
cmd.append(sys.executable)
|
|
cmd.append("-u")
|
|
if args.module:
|
|
cmd.append("-m")
|
|
cmd.append(args.program)
|
|
cmd.extend(args.program_args)
|
|
cmd_s = " ".join(cmd)
|
|
logger.info(cmd_s)
|
|
if entrypoint == "":
|
|
entrypoint = cmd[0]
|
|
del cmd[0]
|
|
launch_args[i] = tuple(cmd)
|
|
launch_envs[i] = {}
|
|
launch_tee[i] = Std.ALL
|
|
|
|
if args.rank != -1: # launches single instance, rank, only
|
|
break
|
|
|
|
ctx = start_processes(name=args.log_file_prefix,
|
|
entrypoint=entrypoint,
|
|
args=launch_args,
|
|
envs=launch_envs,
|
|
log_dir=args.log_path,
|
|
tee=launch_tee)
|
|
ctx.wait()
|
|
|
|
|
|
def _add_memory_allocator_params(parser):
|
|
|
|
group = parser.add_argument_group("Memory Allocator Parameters")
|
|
# allocator control
|
|
group.add_argument("--enable-tcmalloc", "--enable_tcmalloc", action="store_true", default=False,
|
|
help="Enable tcmalloc allocator")
|
|
group.add_argument("--enable-jemalloc", "--enable_jemalloc", action="store_true", default=False,
|
|
help="Enable jemalloc allocator")
|
|
group.add_argument("--use-default-allocator", "--use_default_allocator", action="store_true", default=False,
|
|
help="Use default memory allocator")
|
|
|
|
def _add_multi_instance_params(parser):
|
|
|
|
group = parser.add_argument_group("Multi-instance Parameters")
|
|
# multi-instance control
|
|
group.add_argument("--ncores-per-instance", "--ncores_per_instance", metavar="\b", default=-1, type=int,
|
|
help="Cores per instance")
|
|
group.add_argument("--ninstances", metavar="\b", default=-1, type=int,
|
|
help="For multi-instance, you should give the cores number you used for per instance.")
|
|
group.add_argument("--skip-cross-node-cores", "--skip_cross_node_cores", action='store_true', default=False,
|
|
help="If specified --ncores-per-instance, skips cross-node cores.")
|
|
group.add_argument("--rank", metavar="\b", default="-1", type=int,
|
|
help="Specify instance index to assign ncores_per_instance for rank; \
|
|
otherwise ncores_per_instance will be assigned sequentially to ninstances. Please refer to \
|
|
https://github.com/intel/intel-extension-for-pytorch/blob/master/docs/tutorials/performance_tuning/launch_script.md")
|
|
group.add_argument("--latency-mode", "--latency_mode", action="store_true", default=False,
|
|
help="By default 4 core per instance and use all physical cores")
|
|
group.add_argument("--throughput-mode", "--throughput_mode", action="store_true", default=False,
|
|
help="By default one instance per node and use all physical cores")
|
|
group.add_argument("--node-id", "--node_id", metavar="\b", default=-1, type=int,
|
|
help="node id for multi-instance, by default all nodes will be used")
|
|
group.add_argument("--use-logical-core", "--use_logical_core", action="store_true", default=False,
|
|
help="Whether only use physical cores")
|
|
group.add_argument("--disable-numactl", "--disable_numactl", action="store_true", default=False,
|
|
help="Disable numactl")
|
|
group.add_argument("--disable-taskset", "--disable_taskset", action="store_true", default=False,
|
|
help="Disable taskset")
|
|
group.add_argument("--core-list", "--core_list", metavar="\b", default=None, type=str,
|
|
help="Specify the core list as \"core_id, core_id, ....\", otherwise, all the cores will be used.")
|
|
group.add_argument("--log-path", "--log_path", metavar="\b", default="", type=str,
|
|
help="The log file directory. Default path is "", which means disable logging to files.")
|
|
group.add_argument("--log-file-prefix", "--log_file_prefix", metavar="\b", default="run", type=str,
|
|
help="log file prefix")
|
|
|
|
def _add_kmp_iomp_params(parser):
|
|
|
|
group = parser.add_argument_group("IOMP Parameters")
|
|
group.add_argument("--disable-iomp", "--disable_iomp", action="store_true", default=False,
|
|
help="By default, we use Intel OpenMP and libiomp5.so will be add to LD_PRELOAD")
|
|
|
|
def create_args(parser=None):
|
|
"""
|
|
Helper function parsing the command line options
|
|
@retval ArgumentParser
|
|
"""
|
|
parser.add_argument("--multi-instance", "--multi_instance", action="store_true", default=False,
|
|
help="Enable multi-instance, by default one instance per node")
|
|
|
|
parser.add_argument("-m", "--module", default=False, action="store_true",
|
|
help="Changes each process to interpret the launch script "
|
|
"as a python module, executing with the same behavior as"
|
|
"\"python -m\".")
|
|
|
|
parser.add_argument("--no-python", "--no_python", default=False, action="store_true",
|
|
help="Do not prepend the --program script with \"python\" - just exec "
|
|
"it directly. Useful when the script is not a Python script.")
|
|
|
|
_add_memory_allocator_params(parser)
|
|
_add_kmp_iomp_params(parser)
|
|
|
|
_add_multi_instance_params(parser)
|
|
# positional
|
|
parser.add_argument("program", type=str,
|
|
help="The full path to the program/script to be launched. "
|
|
"followed by all the arguments for the script")
|
|
|
|
# rest from the training program
|
|
parser.add_argument("program_args", nargs=REMAINDER)
|
|
|
|
def main(args):
|
|
env_before = set(os.environ.keys())
|
|
if platform.system() in ["Windows", "Darwin"]:
|
|
raise RuntimeError(f"{platform.system()} is not supported!!!")
|
|
|
|
if args.log_path:
|
|
os.makedirs(args.log_path, exist_ok=True)
|
|
else:
|
|
args.log_path = os.devnull
|
|
|
|
if args.latency_mode and args.throughput_mode:
|
|
raise RuntimeError("Either args.latency_mode or args.throughput_mode should be set")
|
|
|
|
if not args.no_python and not args.program.endswith(".py"):
|
|
raise RuntimeError("For non Python script, you should use \"--no-python\" parameter.")
|
|
|
|
# Verify LD_PRELOAD
|
|
if "LD_PRELOAD" in os.environ:
|
|
lst_valid = []
|
|
tmp_ldpreload = os.environ["LD_PRELOAD"]
|
|
for item in tmp_ldpreload.split(":"):
|
|
matches = glob.glob(item)
|
|
if len(matches) > 0:
|
|
lst_valid.append(item)
|
|
else:
|
|
logger.warning(f"{item} doesn't exist. Removing it from LD_PRELOAD.")
|
|
if len(lst_valid) > 0:
|
|
os.environ["LD_PRELOAD"] = ":".join(lst_valid)
|
|
else:
|
|
os.environ["LD_PRELOAD"] = ""
|
|
|
|
launcher = _Launcher()
|
|
launcher.launch(args)
|
|
for x in sorted(set(os.environ.keys()) - env_before):
|
|
logger.debug("{x}={os.environ[x]}")
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser(description="This is a script for launching PyTorch inference on Intel(R) Xeon(R) Scalable "
|
|
"Processors with optimal configurations. Single instance inference, "
|
|
"multi-instance inference are enable. To get the peak performance on Intel(R) "
|
|
"Xeon(R) Scalable Processors, the script optimizes the configuration "
|
|
"of thread and memory management. For thread management, the script configures thread "
|
|
"affinity and the preload of Intel OMP library. For memory management, it configures "
|
|
"NUMA binding and preload optimized memory allocation library (e.g. tcmalloc, jemalloc) "
|
|
"\n################################# Basic usage ############################# \n"
|
|
"\n 1. single instance\n"
|
|
"\n >>> python -m torch.backends.xeon.run_cpu python_script args \n"
|
|
"\n2. multi-instance \n"
|
|
"\n >>> python -m torch.backends.xeon.run_cpu --ninstances xxx "
|
|
"--ncores-per-instance xx python_script args\n"
|
|
"\n############################################################################# \n",
|
|
formatter_class=RawTextHelpFormatter)
|
|
create_args(parser)
|
|
args = parser.parse_args()
|
|
main(args)
|