mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: This PR implements auto-conversion of GPU arrays that support the `__cuda_array_interface__` protocol (fixes #15601). If an object exposes the `__cuda_array_interface__` attribute, `touch.as_tensor()` and `touch.tensor()` will use the exposed device memory. #### Zero-copy When using `touch.as_tensor(...,device=D)` where `D` is the same device as the one used in `__cuda_array_interface__`. #### Implicit copy When using `touch.as_tensor(...,device=D)` where `D` is the CPU or another non-CUDA device. #### Explicit copy When using `torch.tensor()`. #### Exception When using `touch.as_tensor(...,device=D)` where `D` is a CUDA device not used in `__cuda_array_interface__`. #### Lifetime `torch.as_tensor(obj)` tensor grabs a reference to `obj` so that the lifetime of `obj` exceeds the tensor Pull Request resolved: https://github.com/pytorch/pytorch/pull/20584 Differential Revision: D15435610 Pulled By: ezyang fbshipit-source-id: c423776ba2f2c073b902e0a0ce272d54e9005286
318 lines
10 KiB
C++
318 lines
10 KiB
C++
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
|
|
#ifndef USE_NUMPY
|
|
namespace torch { namespace utils {
|
|
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
at::Tensor tensor_from_numpy(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
bool is_numpy_scalar(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
|
|
throw std::runtime_error("PyTorch was compiled without NumPy support");
|
|
}
|
|
}}
|
|
#else
|
|
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/TensorUtils.h>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
|
|
using namespace at;
|
|
using namespace torch::autograd;
|
|
|
|
namespace torch { namespace utils {
|
|
|
|
static std::vector<npy_intp> to_numpy_shape(IntArrayRef x) {
|
|
// shape and stride conversion from int64_t to npy_intp
|
|
auto nelem = x.size();
|
|
auto result = std::vector<npy_intp>(nelem);
|
|
for (size_t i = 0; i < nelem; i++) {
|
|
result[i] = static_cast<npy_intp>(x[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
|
|
// shape and stride conversion from npy_intp to int64_t
|
|
auto result = std::vector<int64_t>(ndim);
|
|
for (int i = 0; i < ndim; i++) {
|
|
result[i] = static_cast<int64_t>(values[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<int64_t> seq_to_aten_shape(PyObject *py_seq) {
|
|
int ndim = PySequence_Length(py_seq);
|
|
if (ndim == -1) {
|
|
throw TypeError("shape and strides must be sequences");
|
|
}
|
|
auto result = std::vector<int64_t>(ndim);
|
|
for (int i = 0; i < ndim; i++) {
|
|
auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
|
|
if (!item) throw python_error();
|
|
|
|
result[i] = PyLong_AsLongLong(item);
|
|
if (result[i] == -1 && PyErr_Occurred()) throw python_error();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int aten_to_dtype(const ScalarType scalar_type);
|
|
|
|
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
|
|
if (tensor.is_cuda()) {
|
|
throw TypeError(
|
|
"can't convert CUDA tensor to numpy. Use Tensor.cpu() to "
|
|
"copy the tensor to host memory first.");
|
|
}
|
|
if (tensor.is_sparse()) {
|
|
throw TypeError(
|
|
"can't convert sparse tensor to numpy. Use Tensor.to_dense() to "
|
|
"convert to a dense tensor first.");
|
|
}
|
|
if (tensor.type().backend() != Backend::CPU) {
|
|
throw TypeError("NumPy conversion for %s is not supported", tensor.type().toString().c_str());
|
|
}
|
|
auto dtype = aten_to_dtype(tensor.scalar_type());
|
|
auto sizes = to_numpy_shape(tensor.sizes());
|
|
auto strides = to_numpy_shape(tensor.strides());
|
|
// NumPy strides use bytes. Torch strides use element counts.
|
|
auto element_size_in_bytes = tensor.element_size();
|
|
for (auto& stride : strides) {
|
|
stride *= element_size_in_bytes;
|
|
}
|
|
|
|
auto array = THPObjectPtr(PyArray_New(
|
|
&PyArray_Type,
|
|
tensor.dim(),
|
|
sizes.data(),
|
|
dtype,
|
|
strides.data(),
|
|
tensor.data_ptr(),
|
|
0,
|
|
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE,
|
|
nullptr));
|
|
if (!array) return nullptr;
|
|
|
|
// TODO: This attempts to keep the underlying memory alive by setting the base
|
|
// object of the ndarray to the tensor and disabling resizes on the storage.
|
|
// This is not sufficient. For example, the tensor's storage may be changed
|
|
// via Tensor.set_, which can free the underlying memory.
|
|
PyObject* py_tensor = THPVariable_Wrap(make_variable(tensor, false));
|
|
if (!py_tensor) throw python_error();
|
|
if (PyArray_SetBaseObject((PyArrayObject*)array.get(), py_tensor) == -1) {
|
|
return nullptr;
|
|
}
|
|
// Use the private storage API
|
|
tensor.storage().unsafeGetStorageImpl()->set_resizable(false);
|
|
|
|
return array.release();
|
|
}
|
|
|
|
at::Tensor tensor_from_numpy(PyObject* obj) {
|
|
if (!PyArray_Check(obj)) {
|
|
throw TypeError("expected np.ndarray (got %s)", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
auto array = (PyArrayObject*)obj;
|
|
int ndim = PyArray_NDIM(array);
|
|
auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
|
|
auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
|
|
// NumPy strides use bytes. Torch strides use element counts.
|
|
auto element_size_in_bytes = PyArray_ITEMSIZE(array);
|
|
for (auto& stride : strides) {
|
|
if (stride%element_size_in_bytes != 0) {
|
|
throw ValueError(
|
|
"given numpy array strides not a multiple of the element byte size. "
|
|
"Copy the numpy array to reallocate the memory.");
|
|
}
|
|
stride /= element_size_in_bytes;
|
|
}
|
|
|
|
size_t storage_size = 1;
|
|
for (int i = 0; i < ndim; i++) {
|
|
if (strides[i] < 0) {
|
|
throw ValueError(
|
|
"some of the strides of a given numpy array are negative. This is "
|
|
"currently not supported, but will be added in future releases.");
|
|
}
|
|
// XXX: this won't work for negative strides
|
|
storage_size += (sizes[i] - 1) * strides[i];
|
|
}
|
|
|
|
void* data_ptr = PyArray_DATA(array);
|
|
if (!PyArray_EquivByteorders(PyArray_DESCR(array)->byteorder, NPY_NATIVE)) {
|
|
throw ValueError(
|
|
"given numpy array has byte order different from the native byte order. "
|
|
"Conversion between byte orders is currently not supported.");
|
|
}
|
|
Py_INCREF(obj);
|
|
return at::from_blob(
|
|
data_ptr,
|
|
sizes,
|
|
strides,
|
|
[obj](void* data) {
|
|
AutoGIL gil;
|
|
Py_DECREF(obj);
|
|
},
|
|
at::device(kCPU).dtype(numpy_dtype_to_aten(PyArray_TYPE(array)))
|
|
);
|
|
}
|
|
|
|
static int aten_to_dtype(const ScalarType scalar_type) {
|
|
switch (scalar_type) {
|
|
case kDouble: return NPY_DOUBLE;
|
|
case kFloat: return NPY_FLOAT;
|
|
case kHalf: return NPY_HALF;
|
|
case kLong: return NPY_INT64;
|
|
case kInt: return NPY_INT32;
|
|
case kShort: return NPY_INT16;
|
|
case kChar: return NPY_INT8;
|
|
case kByte: return NPY_UINT8;
|
|
case kBool: return NPY_BOOL;
|
|
default:
|
|
throw ValueError("Got unsupported ScalarType ", toString(scalar_type));
|
|
}
|
|
}
|
|
|
|
ScalarType numpy_dtype_to_aten(int dtype) {
|
|
switch (dtype) {
|
|
case NPY_DOUBLE: return kDouble;
|
|
case NPY_FLOAT: return kFloat;
|
|
case NPY_HALF: return kHalf;
|
|
case NPY_INT32: return kInt;
|
|
case NPY_INT16: return kShort;
|
|
case NPY_INT8: return kChar;
|
|
case NPY_UINT8: return kByte;
|
|
case NPY_BOOL: return kBool;
|
|
default:
|
|
// Workaround: MSVC does not support two switch cases that have the same value
|
|
if (dtype == NPY_LONGLONG || dtype == NPY_INT64) {
|
|
return kLong;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
|
|
if (!pytype) throw python_error();
|
|
throw TypeError(
|
|
"can't convert np.ndarray of type %s. The only supported types are: "
|
|
"float64, float32, float16, int64, int32, int16, int8, and uint8.",
|
|
((PyTypeObject*)pytype.get())->tp_name);
|
|
}
|
|
|
|
bool is_numpy_scalar(PyObject* obj) {
|
|
return (PyArray_IsIntegerScalar(obj) ||
|
|
PyArray_IsScalar(obj, Floating));
|
|
}
|
|
|
|
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
|
|
auto cuda_dict = THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
|
|
TORCH_INTERNAL_ASSERT(cuda_dict);
|
|
|
|
if (!PyDict_Check(cuda_dict)) {
|
|
throw TypeError("`__cuda_array_interface__` must be a dict");
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['shape']` attribute
|
|
std::vector<int64_t> sizes;
|
|
{
|
|
PyObject *py_shape = PyDict_GetItemString(cuda_dict, "shape");
|
|
if (py_shape == nullptr) {
|
|
throw TypeError("attribute `shape` must exist");
|
|
}
|
|
sizes = seq_to_aten_shape(py_shape);
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['typestr']` attribute
|
|
ScalarType dtype;
|
|
int dtype_size_in_bytes;
|
|
{
|
|
PyObject *py_typestr = PyDict_GetItemString(cuda_dict, "typestr");
|
|
if (py_typestr == nullptr) {
|
|
throw TypeError("attribute `typestr` must exist");
|
|
}
|
|
PyArray_Descr *descr;
|
|
if(!PyArray_DescrConverter(py_typestr, &descr)) {
|
|
throw ValueError("cannot parse `typestr`");
|
|
}
|
|
dtype = numpy_dtype_to_aten(descr->type_num);
|
|
dtype_size_in_bytes = descr->elsize;
|
|
TORCH_INTERNAL_ASSERT(dtype_size_in_bytes > 0);
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['data']` attribute
|
|
void *data_ptr;
|
|
{
|
|
PyObject *py_data = PyDict_GetItemString(cuda_dict, "data");
|
|
if (py_data == nullptr) {
|
|
throw TypeError("attribute `shape` data exist");
|
|
}
|
|
if(!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
|
|
throw TypeError("`data` must be a 2-tuple of (int, bool)");
|
|
}
|
|
data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
|
|
if (data_ptr == nullptr && PyErr_Occurred()) {
|
|
throw python_error();
|
|
}
|
|
int read_only = PyObject_IsTrue(PyTuple_GET_ITEM(py_data, 1));
|
|
if (read_only == -1) {
|
|
throw python_error();
|
|
}
|
|
if (read_only) {
|
|
throw TypeError("the read only flag is not supported, should always be False");
|
|
}
|
|
}
|
|
|
|
// Extract the `obj.__cuda_array_interface__['strides']` attribute
|
|
std::vector<int64_t> strides;
|
|
{
|
|
PyObject *py_strides = PyDict_GetItemString(cuda_dict, "strides");
|
|
if (py_strides != nullptr && py_strides != Py_None) {
|
|
if (PySequence_Length(py_strides) == -1 || PySequence_Length(py_strides) != sizes.size()) {
|
|
throw TypeError("strides must be a sequence of the same length as shape");
|
|
}
|
|
strides = seq_to_aten_shape(py_strides);
|
|
} else {
|
|
strides = at::detail::defaultStrides(sizes);
|
|
}
|
|
|
|
// __cuda_array_interface__ strides use bytes. Torch strides use element counts.
|
|
for (auto& stride : strides) {
|
|
if (stride%dtype_size_in_bytes != 0) {
|
|
throw ValueError(
|
|
"given array strides not a multiple of the element byte size. "
|
|
"Make a copy of the array to reallocate the memory.");
|
|
}
|
|
stride /= dtype_size_in_bytes;
|
|
}
|
|
}
|
|
|
|
Py_INCREF(obj);
|
|
return at::from_blob(
|
|
data_ptr,
|
|
sizes,
|
|
strides,
|
|
[obj](void* data) {
|
|
AutoGIL gil;
|
|
Py_DECREF(obj);
|
|
},
|
|
at::device(kCUDA).dtype(dtype)
|
|
);
|
|
}
|
|
}} // namespace torch::utils
|
|
|
|
#endif // USE_NUMPY
|