mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41507 These fields have always been a part of tensor types, this change just makes them serializable through IR dumps. Test Plan: Imported from OSS Reviewed By: Krovatkin, ngimel Differential Revision: D22563661 Pulled By: ZolotukhinM fbshipit-source-id: f01aaa130b7e0005bf1ff21f65827fc24755b360
92 lines
2.5 KiB
C++
92 lines
2.5 KiB
C++
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/passes/constant_pooling.h>
|
|
#include <torch/csrc/jit/passes/constant_propagation.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
#include "test/cpp/jit/test_base.h"
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
void testConstantPooling() {
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%8 : int = prim::Constant[value=1]()
|
|
%10 : int = prim::Constant[value=1]()
|
|
return (%8, %10)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%cond : Tensor):
|
|
%a : str = prim::Constant[value="bcd"]()
|
|
%3 : bool = aten::Bool(%cond)
|
|
%b : str = prim::If(%3)
|
|
block0():
|
|
%b.1 : str = prim::Constant[value="abc"]()
|
|
-> (%b.1)
|
|
block1():
|
|
%b.2 : str = prim::Constant[value="abc"]()
|
|
-> (%b.2)
|
|
%7 : (str, str) = prim::TupleConstruct(%a, %b)
|
|
return (%7)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant[value=\"abc\"]", 1, /*exactly*/ true)
|
|
->check_count("prim::Constant[value=\"bcd\"]", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%2 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=1]()
|
|
%5 : int? = prim::Constant()
|
|
%7 : Device? = prim::Constant()
|
|
%15: bool = prim::Constant[value=0]()
|
|
%10 : int = prim::Constant[value=6]()
|
|
%3 : int[] = prim::ListConstruct(%1, %2)
|
|
%x : Tensor = aten::tensor(%3, %5, %7, %15)
|
|
%y : Tensor = aten::tensor(%3, %10, %7, %15)
|
|
%9 : int[] = prim::ListConstruct(%1, %2)
|
|
%z : Tensor = aten::tensor(%9, %10, %7, %15)
|
|
prim::Print(%x, %y, %z)
|
|
return (%1)
|
|
)IR",
|
|
&*graph);
|
|
// three tensors created - two different devices among the three
|
|
// don't have good support for parsing tensor constants
|
|
ConstantPropagation(graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count(
|
|
"Float(2:1, requires_grad=0, device=cpu) = prim::Constant",
|
|
1,
|
|
/*exactly*/ true)
|
|
->check_count(
|
|
"Long(2:1, requires_grad=0, device=cpu) = prim::Constant",
|
|
1,
|
|
/*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|