mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827 Approved by: https://github.com/eellison
275 lines
8.1 KiB
Python
275 lines
8.1 KiB
Python
import argparse
|
|
import csv
|
|
import dataclasses
|
|
import os
|
|
|
|
from generate import run_llama2_7b_bf16, run_llama2_7b_int8, run_mixtral_8x7b_int8
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch._inductor.runtime.benchmarking import benchmarker
|
|
from torch.utils.flop_counter import FlopCounterMode
|
|
|
|
|
|
WARMUP_ITER = 5
|
|
|
|
A100_40G_BF16_TFLOPS = 312
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class Experiment:
|
|
name: str
|
|
metric: str
|
|
target: float
|
|
actual: float
|
|
dtype: str
|
|
device: str
|
|
is_model: bool = False
|
|
|
|
|
|
class SimpleMLP(nn.Module):
|
|
def __init__(self, input_dim, hidden_dim, output_dim, dtype):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
nn.Linear(input_dim, hidden_dim, dtype=dtype),
|
|
nn.LayerNorm(hidden_dim, dtype=dtype),
|
|
nn.Linear(hidden_dim, output_dim, dtype=dtype),
|
|
nn.LayerNorm(output_dim, dtype=dtype),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
def run_mlp_layer_norm_gelu(device: str = "cuda"):
|
|
dtype_flops_utilization_map = {
|
|
torch.bfloat16: "0.8",
|
|
}
|
|
input_shapes = [1024, 4096, 8192, 16384]
|
|
intermediate_size = 14336
|
|
results = []
|
|
for dtype, expected_flops_utilization in dtype_flops_utilization_map.items():
|
|
flops_utilization = 0
|
|
for D in input_shapes:
|
|
mod = SimpleMLP(
|
|
input_dim=D, hidden_dim=intermediate_size, output_dim=D, dtype=dtype
|
|
).to(device)
|
|
|
|
x = torch.randn(D, device=device, dtype=torch.bfloat16)
|
|
|
|
with FlopCounterMode(display=False) as mode:
|
|
mod(x)
|
|
|
|
flops = mode.get_total_flops()
|
|
|
|
compiled_mod = torch.compile(mod, dynamic=False)
|
|
|
|
for _ in range(WARMUP_ITER):
|
|
compiled_mod(x)
|
|
|
|
us_per_iter = benchmarker.benchmark_gpu(lambda: compiled_mod(x)) * 1000
|
|
flops_utilization += us_per_iter * flops / 1e9 / A100_40G_BF16_TFLOPS
|
|
|
|
flops_utilization = flops_utilization / len(input_shapes)
|
|
dtype_str = str(dtype).replace("torch.", "")
|
|
results.append(
|
|
Experiment(
|
|
"mlp_layer_norm_gelu",
|
|
"flops_utilization",
|
|
expected_flops_utilization,
|
|
f"{flops_utilization:.02f}",
|
|
dtype_str,
|
|
device,
|
|
)
|
|
)
|
|
return results
|
|
|
|
|
|
def run_layer_norm(device: str = "cuda"):
|
|
dtype_memory_bandwidth_map = {
|
|
torch.bfloat16: "950",
|
|
}
|
|
input_shapes = [1024, 4096, 8192, 16384]
|
|
BS = 4096
|
|
results = []
|
|
for dtype, expected_memory_bandwidth in dtype_memory_bandwidth_map.items():
|
|
memory_bandwidth = 0
|
|
for D in input_shapes:
|
|
mod = nn.LayerNorm(D).to(device)
|
|
|
|
x = torch.randn(BS, D, device=device, dtype=dtype)
|
|
|
|
compiled_mod = torch.compile(mod, dynamic=False)
|
|
|
|
for _ in range(WARMUP_ITER):
|
|
compiled_mod(x)
|
|
|
|
us_per_iter = benchmarker.benchmark_gpu(lambda: compiled_mod(x)) * 1000
|
|
memory_bandwidth += (1e6 / us_per_iter) * 2 * BS * D * dtype.itemsize / 1e9
|
|
|
|
memory_bandwidth = memory_bandwidth / len(input_shapes)
|
|
dtype_str = str(dtype).replace("torch.", "")
|
|
results.append(
|
|
Experiment(
|
|
"layer_norm",
|
|
"memory_bandwidth(GB/s)",
|
|
expected_memory_bandwidth,
|
|
f"{memory_bandwidth:.02f}",
|
|
dtype_str,
|
|
device,
|
|
)
|
|
)
|
|
return results
|
|
|
|
|
|
@torch._inductor.config.patch(coordinate_descent_tuning=True)
|
|
def run_gather_gemv(device: str = "cuda"):
|
|
E = 8
|
|
dtype_memory_bandwidth_map = {
|
|
torch.int8: "990",
|
|
torch.bfloat16: "1060",
|
|
}
|
|
input_shapes = [1024, 4096, 8192, 16384]
|
|
results = []
|
|
for dtype, expected_memory_bandwidth in dtype_memory_bandwidth_map.items():
|
|
memory_bandwidth = 0
|
|
for D in input_shapes:
|
|
|
|
def gather_gemv(W, score_idxs, x):
|
|
return W[score_idxs].to(x.dtype) @ x
|
|
|
|
W = torch.randn(E, D, D, device=device).to(dtype=dtype)
|
|
x = torch.randn(D, device=device, dtype=torch.bfloat16)
|
|
score_idxs = torch.tensor([3, 5], device=device)
|
|
|
|
compiled_fn = torch.compile(gather_gemv, dynamic=False)
|
|
|
|
for _ in range(WARMUP_ITER):
|
|
compiled_fn(W, score_idxs, x)
|
|
|
|
us_per_iter = (
|
|
benchmarker.benchmark_gpu(lambda: compiled_fn(W, score_idxs, x)) * 1000
|
|
)
|
|
memory_bandwidth += (1e6 / us_per_iter) * 2 * D * D * dtype.itemsize / 1e9
|
|
|
|
memory_bandwidth = memory_bandwidth / len(input_shapes)
|
|
dtype_str = str(dtype).replace("torch.", "")
|
|
results.append(
|
|
Experiment(
|
|
"gather_gemv",
|
|
"memory_bandwidth(GB/s)",
|
|
expected_memory_bandwidth,
|
|
f"{memory_bandwidth:.02f}",
|
|
dtype_str,
|
|
device,
|
|
)
|
|
)
|
|
return results
|
|
|
|
|
|
@torch._inductor.config.patch(coordinate_descent_tuning=True)
|
|
def run_gemv(device: str = "cuda"):
|
|
dtype_memory_bandwidth_map = {
|
|
torch.int8: "870",
|
|
torch.bfloat16: "990",
|
|
}
|
|
input_shapes = [1024, 4096, 8192, 16384]
|
|
results = []
|
|
for dtype, expected_memory_bandwidth in dtype_memory_bandwidth_map.items():
|
|
memory_bandwidth = 0
|
|
for D in input_shapes:
|
|
|
|
def gemv(W, x):
|
|
return W.to(x.dtype) @ x
|
|
|
|
W = torch.randn(D, D, device="cuda").to(dtype=dtype)
|
|
x = torch.randn(D, device="cuda", dtype=torch.bfloat16)
|
|
|
|
compiled_fn = torch.compile(gemv, dynamic=False)
|
|
|
|
for _ in range(WARMUP_ITER):
|
|
compiled_fn(W, x)
|
|
|
|
us_per_iter = benchmarker.benchmark_gpu(lambda: compiled_fn(W, x)) * 1000
|
|
memory_bandwidth += (1e6 / us_per_iter) * D * D * dtype.itemsize / 1e9
|
|
|
|
memory_bandwidth = memory_bandwidth / len(input_shapes)
|
|
dtype_str = str(dtype).replace("torch.", "")
|
|
results.append(
|
|
Experiment(
|
|
"gemv",
|
|
"memory_bandwidth(GB/s)",
|
|
expected_memory_bandwidth,
|
|
f"{memory_bandwidth:.02f}",
|
|
dtype_str,
|
|
device,
|
|
)
|
|
)
|
|
return results
|
|
|
|
|
|
def output_csv(output_file, headers, row):
|
|
if os.path.exists(output_file):
|
|
with open(output_file) as fd:
|
|
lines = list(csv.reader(fd)) or [[]]
|
|
if headers and len(headers) > len(lines[0]):
|
|
# if prior results failed the header might not be filled in yet
|
|
lines[0] = headers
|
|
else:
|
|
headers = lines[0]
|
|
else:
|
|
lines = [headers]
|
|
|
|
if output_file != DEFAULT_OUTPUT_FILE:
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
|
lines.append([(f"{x:.6f}" if isinstance(x, float) else x) for x in row])
|
|
with open(output_file, "w") as fd:
|
|
writer = csv.writer(fd, lineterminator="\n")
|
|
for line in lines:
|
|
writer.writerow(list(line) + ["0"] * (len(headers) - len(line)))
|
|
|
|
|
|
DEFAULT_OUTPUT_FILE = "gpt_fast_benchmark.csv"
|
|
|
|
all_experiments = {
|
|
# A list of GPT models: LlaMa, Mixtral, etc.
|
|
run_llama2_7b_bf16,
|
|
run_llama2_7b_int8,
|
|
run_mixtral_8x7b_int8,
|
|
# A list of micro-benchmarks.
|
|
run_mlp_layer_norm_gelu,
|
|
run_layer_norm,
|
|
run_gather_gemv,
|
|
run_gemv,
|
|
}
|
|
|
|
|
|
def main(output_file=DEFAULT_OUTPUT_FILE):
|
|
results = []
|
|
|
|
for func in all_experiments:
|
|
lst = func()
|
|
for x in lst:
|
|
results.append(dataclasses.astuple(x))
|
|
|
|
headers = [field.name for field in dataclasses.fields(Experiment)]
|
|
|
|
for row in results:
|
|
output_csv(output_file, headers, row)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run experiments.")
|
|
parser.add_argument(
|
|
"--output",
|
|
default=DEFAULT_OUTPUT_FILE,
|
|
help="Set the output CSV file to save the benchmark results",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(output_file=args.output)
|