mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Test Plan: revert-hammer
Differential Revision:
D25977352 (73dffc8452
)
Original commit changeset: 4b3a5e8a9071
fbshipit-source-id: a0383ea4158f54be6f128b9ddb2cd12fc3a3ea53
492 lines
21 KiB
Python
492 lines
21 KiB
Python
import torch
|
|
|
|
import math
|
|
|
|
from torch.testing._internal.common_utils import \
|
|
(TestCase, make_tensor, run_tests, slowTest)
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, onlyCUDA, onlyOnCPUAndCUDA, dtypes)
|
|
|
|
# For testing TestCase methods and torch.testing functions
|
|
class TestTesting(TestCase):
|
|
# Ensure that assertEqual handles numpy arrays properly
|
|
@dtypes(*(torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False,
|
|
include_bool=True, include_complex=True)))
|
|
def test_assertEqual_numpy(self, device, dtype):
|
|
S = 10
|
|
test_sizes = [
|
|
(),
|
|
(0,),
|
|
(S,),
|
|
(S, S),
|
|
(0, S),
|
|
(S, 0)]
|
|
for test_size in test_sizes:
|
|
a = make_tensor(test_size, device, dtype, low=-5, high=5)
|
|
a_n = a.cpu().numpy()
|
|
msg = f'size: {test_size}'
|
|
self.assertEqual(a_n, a, rtol=0, atol=0, msg=msg)
|
|
self.assertEqual(a, a_n, rtol=0, atol=0, msg=msg)
|
|
self.assertEqual(a_n, a_n, rtol=0, atol=0, msg=msg)
|
|
|
|
# Tests that when rtol or atol (including self.precision) is set, then
|
|
# the other is zeroed.
|
|
# TODO: this is legacy behavior and should be updated after test
|
|
# precisions are reviewed to be consistent with torch.isclose.
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparetensors_legacy(self, device):
|
|
a = torch.tensor((10000000.,))
|
|
b = torch.tensor((10000002.,))
|
|
|
|
x = torch.tensor((1.,))
|
|
y = torch.tensor((1. + 1e-5,))
|
|
|
|
# Helper for reusing the tensor values as scalars
|
|
def _scalar_helper(a, b, rtol=None, atol=None):
|
|
return self._compareScalars(a.item(), b.item(), rtol=rtol, atol=atol)
|
|
|
|
for op in (self._compareTensors, _scalar_helper):
|
|
# Tests default
|
|
result, debug_msg = op(a, b)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting atol
|
|
result, debug_msg = op(a, b, atol=2, rtol=0)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting atol too small
|
|
result, debug_msg = op(a, b, atol=1, rtol=0)
|
|
self.assertFalse(result)
|
|
|
|
# Tests setting rtol too small
|
|
result, debug_msg = op(x, y, atol=0, rtol=1.05e-5)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting rtol too small
|
|
result, debug_msg = op(x, y, atol=0, rtol=1e-5)
|
|
self.assertFalse(result)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparescalars_debug_msg(self, device):
|
|
# float x float
|
|
result, debug_msg = self._compareScalars(4., 7.)
|
|
expected_msg = ("Comparing 4.0 and 7.0 gives a difference of 3.0, "
|
|
"but the allowed difference with rtol=1.3e-06 and "
|
|
"atol=1e-05 is only 1.9100000000000003e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x complex, real difference
|
|
result, debug_msg = self._compareScalars(complex(1, 3), complex(3, 1))
|
|
expected_msg = ("Comparing the real part 1.0 and 3.0 gives a difference "
|
|
"of 2.0, but the allowed difference with rtol=1.3e-06 "
|
|
"and atol=1e-05 is only 1.39e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x complex, imaginary difference
|
|
result, debug_msg = self._compareScalars(complex(1, 3), complex(1, 5.5))
|
|
expected_msg = ("Comparing the imaginary part 3.0 and 5.5 gives a "
|
|
"difference of 2.5, but the allowed difference with "
|
|
"rtol=1.3e-06 and atol=1e-05 is only 1.715e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x int
|
|
result, debug_msg = self._compareScalars(complex(1, -2), 1)
|
|
expected_msg = ("Comparing the imaginary part -2.0 and 0.0 gives a "
|
|
"difference of 2.0, but the allowed difference with "
|
|
"rtol=1.3e-06 and atol=1e-05 is only 1e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# NaN x NaN, equal_nan=False
|
|
result, debug_msg = self._compareScalars(float('nan'), float('nan'), equal_nan=False)
|
|
expected_msg = ("Found nan and nan while comparing and either one is "
|
|
"nan and the other isn't, or both are nan and equal_nan "
|
|
"is False")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks that compareTensors provides the correct debug info
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparetensors_debug_msg(self, device):
|
|
# Acquires atol that will be used
|
|
atol = max(1e-05, self.precision)
|
|
|
|
# Checks float tensor comparisons (2D tensor)
|
|
a = torch.tensor(((0, 6), (7, 9)), device=device, dtype=torch.float32)
|
|
b = torch.tensor(((0, 7), (7, 22)), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 4) "
|
|
"whose difference(s) exceeded the margin of error (including 0 nan comparisons). "
|
|
"The greatest difference was 13.0 (9.0 vs. 22.0), "
|
|
"which occurred at index (1, 1).").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks float tensor comparisons (with extremal values)
|
|
a = torch.tensor((float('inf'), 5, float('inf')), device=device, dtype=torch.float32)
|
|
b = torch.tensor((float('inf'), float('nan'), float('-inf')), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 3) "
|
|
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
|
|
"The greatest difference was nan (5.0 vs. nan), "
|
|
"which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks float tensor comparisons (with finite vs nan differences)
|
|
a = torch.tensor((20, -6), device=device, dtype=torch.float32)
|
|
b = torch.tensor((-1, float('nan')), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 2) "
|
|
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
|
|
"The greatest difference was nan (-6.0 vs. nan), "
|
|
"which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks int tensor comparisons (1D tensor)
|
|
a = torch.tensor((1, 2, 3, 4), device=device)
|
|
b = torch.tensor((2, 5, 3, 4), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Found 2 different element(s) (out of 4), "
|
|
"with the greatest difference of 3 (2 vs. 5) "
|
|
"occuring at index 1.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks bool tensor comparisons (0D tensor)
|
|
a = torch.tensor((True), device=device)
|
|
b = torch.tensor((False), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Found 1 different element(s) (out of 1), "
|
|
"with the greatest difference of 1 (1 vs. 0) "
|
|
"occuring at index 0.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks complex tensor comparisons (real part)
|
|
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
|
|
b = torch.tensor((1 - 1j, 1 + 3j), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Real parts failed to compare as equal! "
|
|
"With rtol=1.3e-06 and atol={0}, "
|
|
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
|
|
"margin of error (including 0 nan comparisons). The greatest difference was "
|
|
"3.0 (4.0 vs. 1.0), which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks complex tensor comparisons (imaginary part)
|
|
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
|
|
b = torch.tensor((1 - 1j, 4 - 21j), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Imaginary parts failed to compare as equal! "
|
|
"With rtol=1.3e-06 and atol={0}, "
|
|
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
|
|
"margin of error (including 0 nan comparisons). The greatest difference was "
|
|
"24.0 (3.0 vs. -21.0), which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks size mismatch
|
|
a = torch.tensor((1, 2), device=device)
|
|
b = torch.tensor((3), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"with different sizes. Got sizes torch.Size([2]) and torch.Size([]).")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks dtype mismatch
|
|
a = torch.tensor((1, 2), device=device, dtype=torch.long)
|
|
b = torch.tensor((1, 2), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b, exact_dtype=True)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"with different dtypes. Got dtypes torch.int64 and torch.float32.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks device mismatch
|
|
if self.device_type == 'cuda':
|
|
a = torch.tensor((5), device='cpu')
|
|
b = torch.tensor((5), device=device)
|
|
result, debug_msg = self._compareTensors(a, b, exact_device=True)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"on different devices! Got devices cpu and cuda:0.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Helper for testing _compareTensors and _compareScalars
|
|
# Works on single element tensors
|
|
def _comparetensors_helper(self, tests, device, dtype, equal_nan, exact_dtype=True, atol=1e-08, rtol=1e-05):
|
|
for test in tests:
|
|
a = torch.tensor((test[0],), device=device, dtype=dtype)
|
|
b = torch.tensor((test[1],), device=device, dtype=dtype)
|
|
|
|
# Tensor x Tensor comparison
|
|
compare_result, debug_msg = self._compareTensors(a, b, rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype)
|
|
self.assertEqual(compare_result, test[2])
|
|
|
|
# Scalar x Scalar comparison
|
|
compare_result, debug_msg = self._compareScalars(a.item(), b.item(),
|
|
rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan)
|
|
self.assertEqual(compare_result, test[2])
|
|
|
|
def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05):
|
|
for test in tests:
|
|
a = torch.tensor((test[0],), device=device, dtype=dtype)
|
|
b = torch.tensor((test[1],), device=device, dtype=dtype)
|
|
|
|
actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol)
|
|
expected = test[2]
|
|
self.assertEqual(actual.item(), expected)
|
|
|
|
# torch.close is not implemented for bool tensors
|
|
# see https://github.com/pytorch/pytorch/issues/33048
|
|
def test_isclose_comparetensors_bool(self, device):
|
|
tests = (
|
|
(True, True, True),
|
|
(False, False, True),
|
|
(True, False, False),
|
|
(False, True, False),
|
|
)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
self._isclose_helper(tests, device, torch.bool, False)
|
|
|
|
self._comparetensors_helper(tests, device, torch.bool, False)
|
|
|
|
@dtypes(torch.uint8,
|
|
torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_isclose_comparetensors_integer(self, device, dtype):
|
|
tests = (
|
|
(0, 0, True),
|
|
(0, 1, False),
|
|
(1, 0, False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
tests = [
|
|
(0, 1, True),
|
|
(1, 0, False),
|
|
(1, 3, True),
|
|
]
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
if dtype is torch.uint8:
|
|
tests = [
|
|
(-1, 1, False),
|
|
(1, -1, False)
|
|
]
|
|
else:
|
|
tests = [
|
|
(-1, 1, True),
|
|
(1, -1, True)
|
|
]
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.float16, torch.float32, torch.float64)
|
|
def test_isclose_comparetensors_float(self, device, dtype):
|
|
tests = (
|
|
(0, 0, True),
|
|
(0, -1, False),
|
|
(float('inf'), float('inf'), True),
|
|
(-float('inf'), float('inf'), False),
|
|
(float('inf'), float('nan'), False),
|
|
(float('nan'), float('nan'), False),
|
|
(0, float('nan'), False),
|
|
(1, 1, True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
self._comparetensors_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
eps = 1e-2 if dtype is torch.half else 1e-6
|
|
tests = (
|
|
(0, 1, True),
|
|
(0, 1 + eps, False),
|
|
(1, 0, False),
|
|
(1, 3, True),
|
|
(1 - eps, 3, False),
|
|
(-.25, .5, True),
|
|
(-.25 - eps, .5, False),
|
|
(.25, -.5, True),
|
|
(.25 + eps, -.5, False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# equal_nan = True tests
|
|
tests = (
|
|
(0, float('nan'), False),
|
|
(float('inf'), float('nan'), False),
|
|
(float('nan'), float('nan'), True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, True)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, True)
|
|
|
|
# torch.close with equal_nan=True is not implemented for complex inputs
|
|
# see https://github.com/numpy/numpy/issues/15959
|
|
# Note: compareTensor will compare the real and imaginary parts of a
|
|
# complex tensors separately, unlike isclose.
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_isclose_comparetensors_complex(self, device, dtype):
|
|
tests = (
|
|
(complex(1, 1), complex(1, 1 + 1e-8), True),
|
|
(complex(0, 1), complex(1, 1), False),
|
|
(complex(1, 1), complex(1, 0), False),
|
|
(complex(1, 1), complex(1, float('nan')), False),
|
|
(complex(1, float('nan')), complex(1, float('nan')), False),
|
|
(complex(1, 1), complex(1, float('inf')), False),
|
|
(complex(float('inf'), 1), complex(1, float('inf')), False),
|
|
(complex(-float('inf'), 1), complex(1, float('inf')), False),
|
|
(complex(-float('inf'), 1), complex(float('inf'), 1), False),
|
|
(complex(float('inf'), 1), complex(float('inf'), 1), True),
|
|
(complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
self._comparetensors_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
|
|
# atol and rtol tests
|
|
eps = 1e-6
|
|
tests = (
|
|
# Complex versions of float tests (real part)
|
|
(complex(0, 0), complex(1, 0), True),
|
|
(complex(0, 0), complex(1 + eps, 0), False),
|
|
(complex(1, 0), complex(0, 0), False),
|
|
(complex(1, 0), complex(3, 0), True),
|
|
(complex(1 - eps, 0), complex(3, 0), False),
|
|
(complex(-.25, 0), complex(.5, 0), True),
|
|
(complex(-.25 - eps, 0), complex(.5, 0), False),
|
|
(complex(.25, 0), complex(-.5, 0), True),
|
|
(complex(.25 + eps, 0), complex(-.5, 0), False),
|
|
# Complex versions of float tests (imaginary part)
|
|
(complex(0, 0), complex(0, 1), True),
|
|
(complex(0, 0), complex(0, 1 + eps), False),
|
|
(complex(0, 1), complex(0, 0), False),
|
|
(complex(0, 1), complex(0, 3), True),
|
|
(complex(0, 1 - eps), complex(0, 3), False),
|
|
(complex(0, -.25), complex(0, .5), True),
|
|
(complex(0, -.25 - eps), complex(0, .5), False),
|
|
(complex(0, .25), complex(0, -.5), True),
|
|
(complex(0, .25 + eps), complex(0, -.5), False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# atol and rtol tests for isclose
|
|
tests = (
|
|
# Complex-specific tests
|
|
(complex(1, -1), complex(-1, 1), False),
|
|
(complex(1, -1), complex(2, -2), True),
|
|
(complex(-math.sqrt(2), math.sqrt(2)),
|
|
complex(-math.sqrt(.5), math.sqrt(.5)), True),
|
|
(complex(-math.sqrt(2), math.sqrt(2)),
|
|
complex(-math.sqrt(.501), math.sqrt(.499)), False),
|
|
(complex(2, 4), complex(1., 8.8523607), True),
|
|
(complex(2, 4), complex(1., 8.8523607 + eps), False),
|
|
(complex(1, 99), complex(4, 100), True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# atol and rtol tests for compareTensors
|
|
tests = (
|
|
(complex(1, -1), complex(-1, 1), False),
|
|
(complex(1, -1), complex(2, -2), True),
|
|
(complex(1, 99), complex(4, 100), False),
|
|
)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# equal_nan = True tests
|
|
tests = (
|
|
(complex(1, 1), complex(1, float('nan')), False),
|
|
(complex(float('nan'), 1), complex(1, float('nan')), False),
|
|
(complex(float('nan'), 1), complex(float('nan'), 1), True),
|
|
)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
self._isclose_helper(tests, device, dtype, True)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, True)
|
|
|
|
# Tests that isclose with rtol or atol values less than zero throws a
|
|
# RuntimeError
|
|
@dtypes(torch.bool, torch.uint8,
|
|
torch.int8, torch.int16, torch.int32, torch.int64,
|
|
torch.float16, torch.float32, torch.float64)
|
|
def test_isclose_atol_rtol_greater_than_zero(self, device, dtype):
|
|
t = torch.tensor((1,), device=device, dtype=dtype)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=-1, rtol=1)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=1, rtol=-1)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=-1, rtol=-1)
|
|
|
|
def test_assert_messages(self, device):
|
|
self.assertIsNone(self._get_assert_msg(msg=None))
|
|
self.assertEqual("\nno_debug_msg", self._get_assert_msg("no_debug_msg"))
|
|
self.assertEqual("no_user_msg", self._get_assert_msg(msg=None, debug_msg="no_user_msg"))
|
|
self.assertEqual("debug_msg\nuser_msg", self._get_assert_msg(msg="user_msg", debug_msg="debug_msg"))
|
|
|
|
@onlyCUDA
|
|
@slowTest
|
|
def test_cuda_assert_should_stop_test_suite(self, device):
|
|
# This test is slow because it spawn another process to run another test suite.
|
|
|
|
# Test running of cuda assert test suite should early terminate.
|
|
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
|
|
#!/usr/bin/env python
|
|
|
|
import torch
|
|
|
|
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
|
|
# This test is added to ensure that test suite terminates early when
|
|
# CUDA assert was thrown since all subsequent test will fail.
|
|
# See: https://github.com/pytorch/pytorch/issues/49019
|
|
# This test file should be invoked from test_testing.py
|
|
class TestThatContainsCUDAAssertFailure(TestCase):
|
|
|
|
@slowTest
|
|
def test_throw_unrecoverable_cuda_exception(self, device):
|
|
x = torch.rand(10, device=device)
|
|
# cause unrecoverable CUDA exception, recoverable on CPU
|
|
y = x[torch.tensor([25])].cpu()
|
|
|
|
@slowTest
|
|
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
|
|
x1 = torch.tensor([0., 1.], device=device)
|
|
x2 = torch.tensor([0., 1.], device='cpu')
|
|
self.assertEqual(x1, x2)
|
|
|
|
instantiate_device_type_tests(
|
|
TestThatContainsCUDAAssertFailure,
|
|
globals(),
|
|
only_for='cuda'
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|
|
""")
|
|
# should capture CUDA error
|
|
self.assertIn('CUDA error: device-side assert triggered', stderr)
|
|
# should run only 1 test because it throws unrecoverable error.
|
|
self.assertIn('Ran 1 test', stderr)
|
|
|
|
|
|
instantiate_device_type_tests(TestTesting, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|