mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/46875 Pull Request resolved: https://github.com/pytorch/pytorch/pull/46876 Reviewed By: glaringlee Differential Revision: D24758448 Pulled By: ezyang fbshipit-source-id: afbc19637fbfaa1b0276cdd707043111aee3abc3
166 lines
5.6 KiB
Python
166 lines
5.6 KiB
Python
import io
|
|
|
|
import torch
|
|
from ._utils import _type, _cuda
|
|
from typing import Any, TypeVar, Type
|
|
|
|
T = TypeVar('T', bound='_StorageBase')
|
|
class _StorageBase(object):
|
|
_cdata: Any
|
|
is_cuda: bool = False
|
|
is_sparse: bool = False
|
|
|
|
def __init__(self, *args, **kwargs): ... # noqa: E704
|
|
def __len__(self) -> int: ... # noqa: E704
|
|
def __getitem__(self, idx): ... # noqa: E704
|
|
def copy_(self, source: T) -> T: ... # noqa: E704
|
|
def size(self) -> int: ... # noqa: E704
|
|
def type(self, dtype: str = None, non_blocking: bool = False) -> T: ... # noqa: E704
|
|
def cuda(self, device=None, non_blocking=False, **kwargs) -> T: ... # noqa: E704
|
|
def element_size(self) -> int: ... # noqa: E704
|
|
def get_device(self) -> int: ... # noqa: E704
|
|
|
|
# Defined in torch/csrc/generic/StorageSharing.cpp
|
|
def _share_filename_(self): ... # noqa: E704
|
|
def _share_fd_(self): ... # noqa: E704
|
|
@classmethod
|
|
def _new_using_filename(cls: Type[T], size: int) -> T: ... # noqa: E704
|
|
@classmethod
|
|
def _new_using_fd(cls: Type[T], size: int) -> T: ... # noqa: E704
|
|
|
|
def __str__(self):
|
|
content = ' ' + '\n '.join(str(self[i]) for i in range(len(self)))
|
|
return content + f'\n[{torch.typename(self)} of size {len(self)}]'
|
|
|
|
def __repr__(self):
|
|
return str(self)
|
|
|
|
def __iter__(self):
|
|
return iter(map(lambda i: self[i], range(self.size())))
|
|
|
|
def __copy__(self):
|
|
return self.clone()
|
|
|
|
def __deepcopy__(self, memo):
|
|
memo = memo.setdefault('torch', {})
|
|
if self._cdata in memo:
|
|
return memo[self._cdata]
|
|
new_storage = self.clone()
|
|
memo[self._cdata] = new_storage
|
|
return new_storage
|
|
|
|
def __reduce__(self):
|
|
b = io.BytesIO()
|
|
torch.save(self, b, _use_new_zipfile_serialization=False)
|
|
return (_load_from_bytes, (b.getvalue(),))
|
|
|
|
def __sizeof__(self):
|
|
return super(_StorageBase, self).__sizeof__() + self.element_size() * self.size()
|
|
|
|
def clone(self):
|
|
"""Returns a copy of this storage"""
|
|
device = self.get_device() if self.is_cuda else -1
|
|
with torch.cuda.device(device):
|
|
return type(self)(self.size()).copy_(self)
|
|
|
|
def tolist(self):
|
|
"""Returns a list containing the elements of this storage"""
|
|
return list(self)
|
|
|
|
def cpu(self):
|
|
"""Returns a CPU copy of this storage if it's not already on the CPU"""
|
|
return self.type(getattr(torch, self.__class__.__name__))
|
|
|
|
def double(self):
|
|
"""Casts this storage to double type"""
|
|
return self.type(type(self).__module__ + '.DoubleStorage')
|
|
|
|
def float(self):
|
|
"""Casts this storage to float type"""
|
|
return self.type(type(self).__module__ + '.FloatStorage')
|
|
|
|
def half(self):
|
|
"""Casts this storage to half type"""
|
|
return self.type(type(self).__module__ + '.HalfStorage')
|
|
|
|
def long(self):
|
|
"""Casts this storage to long type"""
|
|
return self.type(type(self).__module__ + '.LongStorage')
|
|
|
|
def int(self):
|
|
"""Casts this storage to int type"""
|
|
return self.type(type(self).__module__ + '.IntStorage')
|
|
|
|
def short(self):
|
|
"""Casts this storage to short type"""
|
|
return self.type(type(self).__module__ + '.ShortStorage')
|
|
|
|
def char(self):
|
|
"""Casts this storage to char type"""
|
|
return self.type(type(self).__module__ + '.CharStorage')
|
|
|
|
def byte(self):
|
|
"""Casts this storage to byte type"""
|
|
return self.type(type(self).__module__ + '.ByteStorage')
|
|
|
|
def bool(self):
|
|
"""Casts this storage to bool type"""
|
|
return self.type(type(self).__module__ + '.BoolStorage')
|
|
|
|
def bfloat16(self):
|
|
"""Casts this storage to bfloat16 type"""
|
|
return self.type(type(self).__module__ + '.BFloat16Storage')
|
|
|
|
def complex_double(self):
|
|
"""Casts this storage to complex double type"""
|
|
return self.type(type(self).__module__ + '.ComplexDoubleStorage')
|
|
|
|
def complex_float(self):
|
|
"""Casts this storage to complex float type"""
|
|
return self.type(type(self).__module__ + '.ComplexFloatStorage')
|
|
|
|
def pin_memory(self):
|
|
"""Copies the storage to pinned memory, if it's not already pinned."""
|
|
if self.is_cuda:
|
|
raise TypeError(f"cannot pin '{self.type()}' only CPU memory can be pinned")
|
|
import torch.cuda
|
|
allocator = torch.cuda._host_allocator() # type: ignore[attr-defined]
|
|
return type(self)(self.size(), allocator=allocator).copy_(self)
|
|
|
|
def share_memory_(self):
|
|
"""Moves the storage to shared memory.
|
|
|
|
This is a no-op for storages already in shared memory and for CUDA
|
|
storages, which do not need to be moved for sharing across processes.
|
|
Storages in shared memory cannot be resized.
|
|
|
|
Returns: self
|
|
"""
|
|
from torch.multiprocessing import get_sharing_strategy
|
|
if self.is_cuda:
|
|
pass # CUDA doesn't use POSIX shared memory
|
|
elif get_sharing_strategy() == 'file_system':
|
|
self._share_filename_()
|
|
else:
|
|
self._share_fd_()
|
|
return self
|
|
|
|
@classmethod
|
|
def _new_shared(cls, size):
|
|
"""Creates a new storage in shared memory with the same data type"""
|
|
from torch.multiprocessing import get_sharing_strategy
|
|
if cls.is_cuda:
|
|
return cls(size)
|
|
elif get_sharing_strategy() == 'file_system':
|
|
return cls._new_using_filename(size)
|
|
else:
|
|
return cls._new_using_fd(size)
|
|
|
|
|
|
def _load_from_bytes(b):
|
|
return torch.load(io.BytesIO(b))
|
|
|
|
|
|
_StorageBase.type = _type # type: ignore[assignment]
|
|
_StorageBase.cuda = _cuda # type: ignore[assignment]
|