mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Ref https://github.com/pytorch/pytorch/issues/42175 This removes the 4 deprecated spectral functions: `torch.{fft,rfft,ifft,irfft}`. `torch.fft` is also now imported by by default. The actual `at::native` functions are still used in `torch.stft` so can't be full removed yet. But will once https://github.com/pytorch/pytorch/issues/47601 has been merged. Pull Request resolved: https://github.com/pytorch/pytorch/pull/48594 Reviewed By: heitorschueroff Differential Revision: D25298929 Pulled By: mruberry fbshipit-source-id: e36737fe8192fcd16f7e6310f8b49de478e63bf0
127 lines
4.1 KiB
C++
127 lines
4.1 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/torch.h>
|
|
#include <test/cpp/api/support.h>
|
|
|
|
|
|
// Naive DFT of a 1 dimensional tensor
|
|
torch::Tensor naive_dft(torch::Tensor x, bool forward=true) {
|
|
TORCH_INTERNAL_ASSERT(x.dim() == 1);
|
|
x = x.contiguous();
|
|
auto out_tensor = torch::zeros_like(x);
|
|
const int64_t len = x.size(0);
|
|
|
|
// Roots of unity, exp(-2*pi*j*n/N) for n in [0, N), reversed for inverse transform
|
|
std::vector<c10::complex<double>> roots(len);
|
|
const auto angle_base = (forward ? -2.0 : 2.0) * M_PI / len;
|
|
for (int64_t i = 0; i < len; ++i) {
|
|
auto angle = i * angle_base;
|
|
roots[i] = c10::complex<double>(std::cos(angle), std::sin(angle));
|
|
}
|
|
|
|
const auto in = x.data_ptr<c10::complex<double>>();
|
|
const auto out = out_tensor.data_ptr<c10::complex<double>>();
|
|
for (int64_t i = 0; i < len; ++i) {
|
|
for (int64_t j = 0; j < len; ++j) {
|
|
out[i] += roots[(j * i) % len] * in[j];
|
|
}
|
|
}
|
|
return out_tensor;
|
|
}
|
|
|
|
// NOTE: Visual Studio and ROCm builds don't understand complex literals
|
|
// as of August 2020
|
|
|
|
TEST(FFTTest, fft) {
|
|
auto t = torch::randn(128, torch::kComplexDouble);
|
|
auto actual = torch::fft::fft(t);
|
|
auto expect = naive_dft(t);
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
}
|
|
|
|
TEST(FFTTest, fft_real) {
|
|
auto t = torch::randn(128, torch::kDouble);
|
|
auto actual = torch::fft::fft(t);
|
|
auto expect = torch::fft::fft(t.to(torch::kComplexDouble));
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
}
|
|
|
|
TEST(FFTTest, fft_pad) {
|
|
auto t = torch::randn(128, torch::kComplexDouble);
|
|
auto actual = torch::fft::fft(t, 200);
|
|
auto expect = torch::fft::fft(torch::constant_pad_nd(t, {0, 72}));
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
|
|
actual = torch::fft::fft(t, 64);
|
|
expect = torch::fft::fft(torch::constant_pad_nd(t, {0, -64}));
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
}
|
|
|
|
TEST(FFTTest, fft_norm) {
|
|
auto t = torch::randn(128, torch::kComplexDouble);
|
|
auto unnorm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/{});
|
|
auto norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"forward");
|
|
ASSERT_TRUE(torch::allclose(unnorm / 128, norm));
|
|
|
|
auto ortho_norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"ortho");
|
|
ASSERT_TRUE(torch::allclose(unnorm / std::sqrt(128), ortho_norm));
|
|
}
|
|
|
|
TEST(FFTTest, ifft) {
|
|
auto T = torch::randn(128, torch::kComplexDouble);
|
|
auto actual = torch::fft::ifft(T);
|
|
auto expect = naive_dft(T, /*forward=*/false) / 128;
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
}
|
|
|
|
TEST(FFTTest, fft_ifft) {
|
|
auto t = torch::randn(77, torch::kComplexDouble);
|
|
auto T = torch::fft::fft(t);
|
|
ASSERT_EQ(T.size(0), 77);
|
|
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
|
|
|
|
auto t_round_trip = torch::fft::ifft(T);
|
|
ASSERT_EQ(t_round_trip.size(0), 77);
|
|
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
|
|
ASSERT_TRUE(torch::allclose(t, t_round_trip));
|
|
}
|
|
|
|
TEST(FFTTest, rfft) {
|
|
auto t = torch::randn(129, torch::kDouble);
|
|
auto actual = torch::fft::rfft(t);
|
|
auto expect = torch::fft::fft(t.to(torch::kComplexDouble)).slice(0, 0, 65);
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
}
|
|
|
|
TEST(FFTTest, rfft_irfft) {
|
|
auto t = torch::randn(128, torch::kDouble);
|
|
auto T = torch::fft::rfft(t);
|
|
ASSERT_EQ(T.size(0), 65);
|
|
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
|
|
|
|
auto t_round_trip = torch::fft::irfft(T);
|
|
ASSERT_EQ(t_round_trip.size(0), 128);
|
|
ASSERT_EQ(t_round_trip.scalar_type(), torch::kDouble);
|
|
ASSERT_TRUE(torch::allclose(t, t_round_trip));
|
|
}
|
|
|
|
TEST(FFTTest, ihfft) {
|
|
auto T = torch::randn(129, torch::kDouble);
|
|
auto actual = torch::fft::ihfft(T);
|
|
auto expect = torch::fft::ifft(T.to(torch::kComplexDouble)).slice(0, 0, 65);
|
|
ASSERT_TRUE(torch::allclose(actual, expect));
|
|
}
|
|
|
|
TEST(FFTTest, hfft_ihfft) {
|
|
auto t = torch::randn(64, torch::kComplexDouble);
|
|
t[0] = .5; // Must be purely real to satisfy hermitian symmetry
|
|
auto T = torch::fft::hfft(t, 127);
|
|
ASSERT_EQ(T.size(0), 127);
|
|
ASSERT_EQ(T.scalar_type(), torch::kDouble);
|
|
|
|
auto t_round_trip = torch::fft::ihfft(T);
|
|
ASSERT_EQ(t_round_trip.size(0), 64);
|
|
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
|
|
ASSERT_TRUE(torch::allclose(t, t_round_trip));
|
|
}
|