Files
pytorch/test/cpp/api/dataloader.cpp
Sam Estep 5bcbbf5373 Lint trailing newlines (#54737)
Summary:
*Context:* https://github.com/pytorch/pytorch/issues/53406 added a lint for trailing whitespace at the ends of lines. However, in order to pass FB-internal lints, that PR also had to normalize the trailing newlines in four of the files it touched. This PR adds an OSS lint to normalize trailing newlines.

The changes to the following files (made in 54847d0adb9be71be4979cead3d9d4c02160e4cd) are the only manually-written parts of this PR:

- `.github/workflows/lint.yml`
- `mypy-strict.ini`
- `tools/README.md`
- `tools/test/test_trailing_newlines.py`
- `tools/trailing_newlines.py`

I would have liked to make this just a shell one-liner like the other three similar lints, but nothing I could find quite fit the bill. Specifically, all the answers I tried from the following Stack Overflow questions were far too slow (at least a minute and a half to run on this entire repository):

- [How to detect file ends in newline?](https://stackoverflow.com/q/38746)
- [How do I find files that do not end with a newline/linefeed?](https://stackoverflow.com/q/4631068)
- [How to list all files in the Git index without newline at end of file](https://stackoverflow.com/q/27624800)
- [Linux - check if there is an empty line at the end of a file [duplicate]](https://stackoverflow.com/q/34943632)
- [git ensure newline at end of each file](https://stackoverflow.com/q/57770972)

To avoid giving false positives during the few days after this PR is merged, we should probably only merge it after https://github.com/pytorch/pytorch/issues/54967.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54737

Test Plan:
Running the shell script from the "Ensure correct trailing newlines" step in the `quick-checks` job of `.github/workflows/lint.yml` should print no output and exit in a fraction of a second with a status of 0. That was not the case prior to this PR, as shown by this failing GHA workflow run on an earlier draft of this PR:

- https://github.com/pytorch/pytorch/runs/2197446987?check_suite_focus=true

In contrast, this run (after correcting the trailing newlines in this PR) succeeded:

- https://github.com/pytorch/pytorch/pull/54737/checks?check_run_id=2197553241

To unit-test `tools/trailing_newlines.py` itself (this is run as part of our "Test tools" GitHub Actions workflow):
```
python tools/test/test_trailing_newlines.py
```

Reviewed By: malfet

Differential Revision: D27409736

Pulled By: samestep

fbshipit-source-id: 46f565227046b39f68349bbd5633105b2d2e9b19
2021-03-30 13:09:52 -07:00

2306 lines
74 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/tempfile.h>
#include <algorithm>
#include <chrono>
#include <future>
#include <iostream>
#include <iterator>
#include <limits>
#include <mutex>
#include <numeric>
#include <stdexcept>
#include <string>
#include <thread>
#include <unordered_set>
#include <vector>
using namespace torch::data; // NOLINT
const std::chrono::milliseconds kMillisecond(1);
struct DummyDataset : datasets::Dataset<DummyDataset, int> {
explicit DummyDataset(size_t size = 100) : size_(size) {}
int get(size_t index) override {
return 1 + index;
}
torch::optional<size_t> size() const override {
return size_;
}
size_t size_;
};
TEST(DataTest, DatasetCallsGetCorrectly) {
DummyDataset d;
std::vector<int> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<int> expected = {1, 2, 3, 4, 5};
ASSERT_EQ(batch, expected);
}
TEST(DataTest, TransformCallsGetApplyCorrectly) {
struct T : transforms::Transform<int, std::string> {
std::string apply(int input) override {
return std::to_string(input);
}
};
auto d = DummyDataset{}.map(T{});
std::vector<std::string> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(batch, expected);
}
// dummy chunk data reader with 3 chunks and 35 examples in total. Each chunk
// contains 10, 5, 20 examples respectively.
struct DummyChunkDataReader
: public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
using DataType = datasets::ChunkDataReader<int>::ExampleType;
/// Read an entire chunk.
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data;
int start_index = chunk_index == 0
? 0
: std::accumulate(chunk_sizes, chunk_sizes + chunk_index, 0);
batch_data.resize(chunk_sizes[chunk_index]);
std::iota(batch_data.begin(), batch_data.end(), start_index);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
const static size_t chunk_count_ = 3;
size_t chunk_sizes[chunk_count_] = {10, 5, 20};
};
TEST(DataTest, ChunkDataSetWithInvalidInitParameter) {
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
auto initialization_function = [&](size_t preloader_count,
size_t batch_size,
size_t cache_size,
size_t cross_chunk_shuffle_count = 1) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
preloader_count,
batch_size,
cache_size,
cross_chunk_shuffle_count));
};
ASSERT_THROWS_WITH(
initialization_function(0, 1, 1),
"Preloader count is 0. At least one preloader needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 0, 1),
"Batch size is 0. A positive batch size needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 1, 0),
"Cache size is 0. A positive cache size needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 10, 5),
"Cache size is less than batch size. Cache needs to be large enough to "
"hold at least one batch.");
ASSERT_THROWS_WITH(
initialization_function(1, 10, 20, 0),
"cross_chunk_shuffle_count needs to be greater than 0.");
}
struct InfiniteStreamDataset
: datasets::StreamDataset<InfiniteStreamDataset, std::vector<int>> {
std::vector<int> get_batch(size_t batch_size) override {
std::vector<int> batch(batch_size);
for (auto& i : batch) {
i = counter++;
}
return batch;
}
torch::optional<size_t> size() const override {
return torch::nullopt;
}
size_t counter = 0;
};
TEST(DataTest, InfiniteStreamDataset) {
const size_t kBatchSize = 13;
auto dataset = InfiniteStreamDataset().map(
transforms::Lambda<int>([](int x) { return x + 1; }));
auto data_loader = torch::data::make_data_loader(
std::move(dataset),
samplers::StreamSampler(/*epoch_size=*/39),
kBatchSize);
size_t batch_index = 0;
for (auto& batch : *data_loader) {
ASSERT_LT(batch_index, 3);
ASSERT_EQ(batch.size(), kBatchSize);
for (size_t j = 0; j < kBatchSize; ++j) {
ASSERT_EQ(batch.at(j), 1 + (batch_index * kBatchSize) + j);
}
batch_index += 1;
}
ASSERT_EQ(batch_index, 3);
}
TEST(DataTest, NoSequencerIsIdentity) {
using namespace torch::data::detail::sequencers; // NOLINT
NoSequencer<int> no_sequencer;
const auto value = no_sequencer.next([] { return 5; }).value();
ASSERT_EQ(value, 5);
}
TEST(DataTest, OrderedSequencerIsSetUpWell) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
ASSERT_EQ(sequencer.next_sequence_number_, 0);
ASSERT_EQ(sequencer.buffer_.size(), kMaxJobs);
}
TEST(DataTest, OrderedSequencerReOrdersValues) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
std::vector<size_t> v = {0, 2, 4, 3, 1};
size_t index = 0;
auto getter = [&v, &index]() { return S{v.at(index++)}; };
// Let's say the sequence number matches for the batch one, then it should
// return immediately.
const auto batch = sequencer.next(getter);
ASSERT_EQ(batch.value().sequence_number, 0);
ASSERT_EQ(index, 1);
// Now it should call the getter until it gets the next value.
ASSERT_EQ(1, sequencer.next(getter).value().sequence_number);
ASSERT_EQ(index, 5);
// The next three should come in order.
for (size_t i = 2; i <= 4; ++i) {
// New value doesn't matter. In fact, it shouldn't be accessed.
ASSERT_EQ(i, sequencer.next(getter).value().sequence_number);
// The index doesn't change.
ASSERT_EQ(index, 5);
}
}
TEST(DataTest, BatchLambdaAppliesFunctionToBatch) {
using InputBatch = std::vector<int>;
using OutputBatch = std::string;
DummyDataset d;
auto e = d.map(transforms::BatchLambda<InputBatch, OutputBatch>(
[](std::vector<int> input) {
return std::to_string(std::accumulate(input.begin(), input.end(), 0));
}));
ASSERT_EQ(e.get_batch({1, 2, 3, 4, 5}), std::string("20"));
}
TEST(DataTest, LambdaAppliesFunctionToExample) {
auto d = DummyDataset().map(transforms::Lambda<int, std::string>(
static_cast<std::string (*)(int)>(std::to_string)));
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(d.get_batch({0, 1, 2, 3, 4}), expected);
}
TEST(DataTest, CollateReducesBatch) {
auto d =
DummyDataset().map(transforms::Collate<int>([](std::vector<int> input) {
return std::accumulate(input.begin(), input.end(), 0);
}));
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, CollationReducesBatch) {
struct Summer : transforms::Collation<int> {
int apply_batch(std::vector<int> input) override {
return std::accumulate(input.begin(), input.end(), 0);
}
};
auto d = DummyDataset().map(Summer{});
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, SequentialSamplerReturnsIndicesInOrder) {
samplers::SequentialSampler sampler(10);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({3, 4, 5, 6, 7}));
ASSERT_EQ(sampler.next(2).value(), std::vector<size_t>({8, 9}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerReturnsLessValuesForLastBatch) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(100).value(), std::vector<size_t>({3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWithNewSizeWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(
sampler.next(7).value(), std::vector<size_t>({0, 1, 2, 3, 4, 5, 6}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, CanSaveAndLoadSequentialSampler) {
{
samplers::SequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::SequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataTest, RandomSamplerReturnsIndicesInCorrectRange) {
samplers::RandomSampler sampler(10);
std::vector<size_t> indices = sampler.next(3).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(5).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(2).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
ASSERT_FALSE(sampler.next(10).has_value());
}
TEST(DataTest, RandomSamplerReturnsLessValuesForLastBatch) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_EQ(sampler.next(100).value().size(), 2);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWithNewSizeWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(sampler.next(7).value().size(), 7);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SavingAndLoadingRandomSamplerYieldsSameSequence) {
{
samplers::RandomSampler a(10);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(a.next(10).value(), b.next(10).value());
}
{
samplers::RandomSampler a(10);
a.next(3);
ASSERT_EQ(a.index(), 3);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 3);
auto b_sequence = b.next(10).value();
ASSERT_EQ(b_sequence.size(), 7);
ASSERT_EQ(a.next(10).value(), b_sequence);
}
}
TEST(DataTest, StreamSamplerReturnsTheBatchSizeAndThenRemainder) {
samplers::StreamSampler sampler(/*epoch_size=*/100);
ASSERT_EQ(sampler.next(10).value(), 10);
ASSERT_EQ(sampler.next(2).value(), 2);
ASSERT_EQ(sampler.next(85).value(), 85);
ASSERT_EQ(sampler.next(123).value(), 3);
ASSERT_FALSE(sampler.next(1).has_value());
}
TEST(DataTest, StreamSamplerResetsWell) {
samplers::StreamSampler sampler(/*epoch_size=*/5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, StreamSamplerResetsWithNewSizeWell) {
samplers::StreamSampler sampler(/*epoch_size=*/5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(sampler.next(7).value().size(), 7);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, TensorDatasetConstructsFromSingleTensor) {
datasets::TensorDataset dataset(torch::eye(5));
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, TensorDatasetConstructsFromInitializerListOfTensors) {
std::vector<torch::Tensor> vector = torch::eye(5).chunk(5);
datasets::TensorDataset dataset(vector);
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, StackTransformWorksForExample) {
struct D : public datasets::Dataset<D> {
Example<> get(size_t index) override {
return {tensor[index], 1 + tensor[index]};
}
torch::optional<size_t> size() const override {
return tensor.size(0);
}
torch::Tensor tensor{torch::eye(4)};
};
auto d = D().map(transforms::Stack<Example<>>());
Example<> batch = d.get_batch({0, 1});
ASSERT_TRUE(batch.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
ASSERT_TRUE(batch.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 0, 2)));
Example<> second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
ASSERT_TRUE(second.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
TEST(DataTest, StackTransformWorksForTensorExample) {
auto d = datasets::TensorDataset(torch::eye(4))
.map(transforms::Stack<TensorExample>());
TensorExample batch = d.get_batch({0, 1});
ASSERT_TRUE(batch.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
TensorExample second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
// Template classes cannot be nested in functions.
template <typename Target>
struct T : transforms::TensorTransform<Target> {
torch::Tensor operator()(torch::Tensor input) override {
return input * 2;
}
};
struct TensorStringDataset
: datasets::
Dataset<TensorStringDataset, Example<torch::Tensor, std::string>> {
Example<torch::Tensor, std::string> get(size_t index) override {
return {torch::tensor(static_cast<double>(index)), std::to_string(index)};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, TensorTransformWorksForAnyTargetType) {
auto d = TensorStringDataset().map(T<std::string>{});
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
TEST(DataTest, TensorLambdaWorksforAnyTargetType) {
auto d = TensorStringDataset().map(transforms::TensorLambda<std::string>(
[](torch::Tensor input) { return input * 2; }));
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
struct DummyTensorDataset
: datasets::Dataset<DummyTensorDataset, Example<torch::Tensor, int>> {
Example<torch::Tensor, int> get(size_t index) override {
const auto channels = static_cast<int64_t>(index);
torch::Tensor tensor =
(channels > 0) ? torch::ones({channels, 4, 4}) : torch::ones({4, 4});
return {tensor, static_cast<int>(channels)};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, NormalizeTransform) {
auto dataset = DummyTensorDataset().map(transforms::Normalize<int>(0.5, 0.1));
// Works for zero (one implicit) channels
std::vector<Example<torch::Tensor, int>> output = dataset.get_batch(0);
ASSERT_EQ(output.size(), 1);
// (1 - 0.5) / 0.1 = 5
ASSERT_TRUE(output[0].data.allclose(torch::ones({4, 4}) * 5))
<< output[0].data;
// Works for one explicit channel
output = dataset.get_batch(1);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 1);
ASSERT_TRUE(output[0].data.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
// Works for two channels with different moments
dataset = DummyTensorDataset().map(
transforms::Normalize<int>({0.5, 1.5}, {0.1, 0.2}));
output = dataset.get_batch(2);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 2);
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/0, /*end=*/1)
.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/1)
.allclose(torch::ones({1, 4, 4}) * -2.5))
<< output[0].data;
// Works for three channels with one moment value
dataset = DummyTensorDataset().map(transforms::Normalize<int>(1.5, 0.2));
output = dataset.get_batch(3);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 3);
ASSERT_TRUE(output[0].data.allclose(torch::ones({3, 4, 4}) * -2.5))
<< output[0].data;
// Works for three channels with different moments
dataset = DummyTensorDataset().map(
transforms::Normalize<int>({0.5, 1.5, -1.5}, {0.1, 0.2, 0.2}));
output = dataset.get_batch(3);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 3);
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/0, /*end=*/1)
.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/1, /*end=*/2)
.allclose(torch::ones({1, 4, 4}) * -2.5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/2)
.allclose(torch::ones({1, 4, 4}) * 12.5))
<< output[0].data;
}
struct UnCopyableDataset : public datasets::Dataset<UnCopyableDataset> {
UnCopyableDataset() = default;
UnCopyableDataset(const UnCopyableDataset&) = delete;
UnCopyableDataset& operator=(const UnCopyableDataset&) = delete;
UnCopyableDataset(UnCopyableDataset&&) = default;
UnCopyableDataset& operator=(UnCopyableDataset&&) = default;
~UnCopyableDataset() = default;
Example<> get(size_t index) override {
return {torch::tensor({static_cast<int64_t>(index)}),
torch::tensor({static_cast<int64_t>(index)})};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, MapDoesNotCopy) {
auto dataset = UnCopyableDataset()
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 1; }))
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 2; }))
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 3; }));
auto data = dataset.get_batch(1).at(0).data;
ASSERT_EQ(data.numel(), 1);
ASSERT_EQ(data[0].item<float>(), 7);
}
TEST(DataTest, QueuePushAndPopFromSameThread) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
ASSERT_EQ(queue.pop(), 1);
ASSERT_EQ(queue.pop(), 2);
}
TEST(DataTest, QueuePopWithTimeoutThrowsUponTimeout) {
torch::data::detail::Queue<int> queue;
ASSERT_THROWS_WITH(
queue.pop(10 * kMillisecond),
"Timeout in DataLoader queue while waiting for next batch "
"(timeout was 10 ms)");
}
TEST(DataTest, QueuePushAndPopFromDifferentThreads) {
using torch::data::detail::Queue;
// First test: push batch and the pop in thread.
{
Queue<int> queue;
queue.push(1);
auto future =
std::async(std::launch::async, [&queue] { return queue.pop(); });
ASSERT_EQ(future.get(), 1);
}
// Second test: attempt to pop batch (and block), then push.
{
Queue<int> queue;
std::thread thread([&queue] {
std::this_thread::sleep_for(20 * kMillisecond);
queue.push(123);
});
ASSERT_EQ(queue.pop(), 123);
thread.join();
}
}
TEST(DataTest, QueueClearEmptiesTheQueue) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
queue.push(3);
ASSERT_EQ(queue.clear(), 3);
ASSERT_THROWS_WITH(queue.pop(1 * kMillisecond), "Timeout");
}
TEST(DataTest, DataShuttleCanPushAndPopJob) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_job(2);
ASSERT_EQ(shuttle.pop_job(), 1);
ASSERT_EQ(shuttle.pop_job(), 2);
}
TEST(DataTest, DataShuttleCanPushAndPopResult) {
torch::data::detail::DataShuttle<int, int> shuttle;
// pop_result() will only attempt to pop if there was a push_job() batch.
shuttle.push_job(1);
shuttle.push_job(2);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
shuttle.pop_job();
shuttle.push_result(2);
ASSERT_EQ(shuttle.pop_result().value(), 2);
}
TEST(DataTest, DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight) {
torch::data::detail::DataShuttle<int, int> shuttle;
ASSERT_FALSE(shuttle.pop_result().has_value());
shuttle.push_job(1);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
ASSERT_FALSE(shuttle.pop_result().has_value());
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttleDrainMeansPopResultReturnsNullopt) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_result(1);
shuttle.drain();
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttlePopResultTimesOut) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
ASSERT_THROWS_WITH(shuttle.pop_result(10 * kMillisecond), "Timeout");
}
struct UncopyableDataset : datasets::Dataset<UncopyableDataset, int> {
UncopyableDataset(const std::string& /* unused */) {}
UncopyableDataset(UncopyableDataset&&) = default;
UncopyableDataset& operator=(UncopyableDataset&&) = default;
UncopyableDataset(const UncopyableDataset&) = delete;
UncopyableDataset& operator=(const UncopyableDataset&) = delete;
int get(size_t index) override {
return 1 + index;
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, SharedBatchDatasetReallyIsShared) {
// This test will only compile if we really are not making any copies.
// There is otherwise no logic to test and because it is not deterministic
// how many and when worker threads access the shareddataset, we don't have
// any additional assertions here.
auto shared_dataset =
torch::data::datasets::make_shared_dataset<UncopyableDataset>(
"uncopyable");
auto data_loader = torch::data::make_data_loader(
shared_dataset, torch::data::DataLoaderOptions().workers(3));
for (auto batch : *data_loader) {
/* exhaust */
}
}
TEST(DataTest, SharedBatchDatasetDoesNotIncurCopyWhenPassedDatasetObject) {
// This will not compile if a copy is made.
auto shared_dataset =
torch::data::datasets::make_shared_dataset<UncopyableDataset>(
UncopyableDataset("uncopyable"));
ASSERT_EQ(shared_dataset.size().value(), 100);
}
struct TestIndex : public torch::data::samplers::CustomBatchRequest {
explicit TestIndex(size_t offset, std::vector<size_t> index)
: offset(offset), index(std::move(index)) {}
size_t size() const override {
return index.size();
}
size_t offset;
std::vector<size_t> index;
};
struct TestIndexDataset
: datasets::BatchDataset<TestIndexDataset, std::vector<int>, TestIndex> {
explicit TestIndexDataset(size_t size) : data(size) {
std::iota(data.begin(), data.end(), size_t(0));
}
std::vector<int> get_batch(TestIndex index) override {
std::vector<int> batch;
for (auto i : index.index) {
batch.push_back(index.offset + data.at(i));
}
return batch;
}
torch::optional<size_t> size() const override {
return data.size();
}
std::vector<int> data;
};
struct TestIndexSampler : public samplers::Sampler<TestIndex> {
explicit TestIndexSampler(size_t size) : size_(size) {}
void reset(torch::optional<size_t> new_size = torch::nullopt) override {}
torch::optional<TestIndex> next(size_t batch_size) override {
if (index_ >= size_) {
return torch::nullopt;
}
std::vector<size_t> indices(batch_size);
std::iota(indices.begin(), indices.end(), size_t(0));
index_ += batch_size;
return TestIndex(batch_size, std::move(indices));
}
void save(torch::serialize::OutputArchive& archive) const override {}
void load(torch::serialize::InputArchive& archive) override {}
size_t index_ = 0;
size_t size_;
};
TEST(DataTest, CanUseCustomTypeAsIndexType) {
const int kBatchSize = 10;
auto data_loader = torch::data::make_data_loader(
TestIndexDataset(23), TestIndexSampler(23), kBatchSize);
size_t i = 0;
for (auto batch : *data_loader) {
for (int j = 0; j < kBatchSize; ++j) {
ASSERT_EQ(batch.at(j), 10 + j);
}
i += 1;
}
}
TEST(DataTest, DistributedRandomSamplerSingleReplicaProduceCorrectSamples) {
size_t sample_count = 10;
samplers::DistributedRandomSampler drs(sample_count);
std::vector<size_t> res;
torch::optional<std::vector<size_t>> idx;
while ((idx = drs.next(3)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), sample_count);
std::sort(res.begin(), res.end());
for (size_t i = 0; i < res.size(); ++i) {
ASSERT_EQ(res[i], i);
}
}
TEST(DataTest, DistributedRandomSamplerMultiReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t num_replicas = 3;
auto test_function = [&](bool allow_duplicates,
size_t local_sample_count,
std::vector<size_t>& output,
size_t batch_size) {
std::vector<std::unique_ptr<samplers::DistributedRandomSampler>> samplers;
for (size_t i = 0; i < num_replicas; ++i) {
samplers.emplace_back(
torch::make_unique<samplers::DistributedRandomSampler>(
sample_count, num_replicas, i, allow_duplicates));
}
std::vector<size_t> res;
for (size_t i = 0; i < num_replicas; ++i) {
(*samplers[i]).reset();
torch::optional<std::vector<size_t>> idx;
while ((idx = (*samplers[i]).next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), local_sample_count * (i + 1));
}
std::sort(res.begin(), res.end());
ASSERT_EQ(res, output);
};
for (size_t batch_size = 1; batch_size <= 3; ++batch_size) {
size_t local_sample_count =
static_cast<size_t>(std::ceil(sample_count * 1.0 / num_replicas));
std::vector<size_t> output1{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
test_function(true, local_sample_count, output1, batch_size);
local_sample_count =
static_cast<size_t>(std::floor(sample_count * 1.0 / num_replicas));
std::vector<size_t> output2{0, 1, 2, 3, 4, 5, 6, 7, 8};
test_function(false, local_sample_count, output2, batch_size);
}
}
TEST(DataTest, CanSaveAndLoadDistributedRandomSampler) {
{
samplers::DistributedRandomSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::DistributedRandomSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
{
samplers::DistributedRandomSampler a(10);
a.set_epoch(3);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.epoch(), 3);
}
}
TEST(DataTest, DistributedSequentialSamplerSingleReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t batch_size = 3;
samplers::DistributedSequentialSampler dss(sample_count);
std::vector<size_t> res;
torch::optional<std::vector<size_t>> idx;
while ((idx = dss.next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), sample_count);
std::sort(res.begin(), res.end());
for (size_t i = 0; i < res.size(); ++i) {
ASSERT_EQ(res[i], i);
}
}
TEST(DataTest, DistributedSequentialSamplerMultiReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t num_replicas = 3;
auto test_function = [&](bool allow_duplicates,
size_t local_sample_count,
std::vector<size_t>& output,
size_t batch_size) {
std::vector<std::unique_ptr<samplers::DistributedSequentialSampler>>
samplers;
for (size_t i = 0; i < num_replicas; ++i) {
samplers.emplace_back(
torch::make_unique<samplers::DistributedSequentialSampler>(
sample_count, num_replicas, i, allow_duplicates));
}
std::vector<size_t> res;
for (size_t i = 0; i < num_replicas; ++i) {
(*samplers[i]).reset();
torch::optional<std::vector<size_t>> idx;
while ((idx = (*samplers[i]).next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), local_sample_count * (i + 1));
}
std::sort(res.begin(), res.end());
ASSERT_EQ(res, output);
};
for (size_t batch_size = 1; batch_size <= 3; ++batch_size) {
size_t local_sample_count =
static_cast<size_t>(std::ceil(sample_count * 1.0 / num_replicas));
std::vector<size_t> output1{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
test_function(true, local_sample_count, output1, batch_size);
local_sample_count =
static_cast<size_t>(std::floor(sample_count * 1.0 / num_replicas));
std::vector<size_t> output2{0, 1, 2, 3, 4, 5, 6, 7, 8};
test_function(false, local_sample_count, output2, batch_size);
}
}
TEST(DataTest, CanSaveAndLoadDistributedSequentialSampler) {
{
samplers::DistributedSequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedSequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::DistributedSequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedSequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataLoaderTest, DataLoaderOptionsDefaultAsExpected) {
DataLoaderOptions partial_options;
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 1);
ASSERT_FALSE(full_options.drop_last);
ASSERT_EQ(full_options.workers, 0);
ASSERT_EQ(full_options.max_jobs, 0);
ASSERT_FALSE(full_options.timeout.has_value());
ASSERT_TRUE(full_options.enforce_ordering);
}
TEST(DataLoaderTest, DataLoaderOptionsCoalesceOptionalValues) {
auto partial_options = DataLoaderOptions(32).workers(10);
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 32);
ASSERT_EQ(full_options.max_jobs, 2 * 10);
}
TEST(DataLoaderTest, MakeDataLoaderDefaultsAsExpected) {
auto data_loader = torch::data::make_data_loader(
DummyDataset().map(transforms::Lambda<int>([](int x) { return x + 1; })));
ASSERT_EQ(data_loader->options().batch_size, 1);
}
struct UnsizedDataset : public datasets::Dataset<UnsizedDataset> {
torch::data::Example<> get(size_t i) {
return {torch::ones(i), torch::ones(i)};
}
torch::optional<size_t> size() const noexcept {
return torch::nullopt;
}
};
TEST(
DataLoaderTest,
MakeDataLoaderThrowsWhenConstructingSamplerWithUnsizedDataset) {
ASSERT_THROWS_WITH(
torch::data::make_data_loader(UnsizedDataset{}),
"Expected the dataset to be sized in order to construct the Sampler");
}
TEST(DataLoaderTest, IteratorsCompareEqualToThemselves) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto begin = data_loader->begin();
ASSERT_EQ(begin, begin);
auto end = data_loader->end();
ASSERT_EQ(end, end);
}
TEST(DataLoaderTest, ValidIteratorsCompareUnequalToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->begin();
auto j = data_loader->begin();
ASSERT_NE(i, j);
++j;
ASSERT_NE(i, j);
}
TEST(DataLoaderTest, SentinelIteratorsCompareEqualToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->end();
auto j = data_loader->end();
ASSERT_EQ(i, j);
}
TEST(DataLoaderTest, IteratorsCompareEqualToSentinelWhenExhausted) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 4);
auto i = data_loader->begin();
auto end = data_loader->end();
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_EQ(i, end);
}
TEST(DataLoaderTest, IteratorsShareState) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 2);
auto i = data_loader->begin();
auto j = i;
auto end = data_loader->end();
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++i;
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++j;
ASSERT_EQ(i, end);
ASSERT_EQ(j, end);
}
TEST(DataLoaderTest, CanDereferenceIteratorMultipleTimes) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
dataset,
/*batch_size=*/1);
auto iterator = data_loader->begin();
std::vector<int> expected = {1};
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
++iterator;
expected[0] = 2;
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
++iterator;
expected[0] = 3;
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
}
TEST(DataLoaderTest, CanUseIteratorAlgorithms) {
struct D : datasets::BatchDataset<D, int> {
int get_batch(torch::ArrayRef<size_t> indices) override {
return 1 + indices.front();
}
torch::optional<size_t> size() const override {
return 10;
}
};
D dataset;
auto data_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
dataset, 1);
std::vector<int> values;
std::copy(
data_loader->begin(), data_loader->end(), std::back_inserter(values));
std::vector<int> expected(dataset.size().value());
std::iota(expected.begin(), expected.end(), size_t(1));
ASSERT_EQ(values, expected);
}
TEST(DataLoaderTest, CallingBeginWhileOtherIteratorIsInFlightThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, DataLoaderOptions(1).workers(2));
auto i = data_loader->begin();
ASSERT_THROWS_WITH(
data_loader->begin(),
"Attempted to get a new DataLoader iterator "
"while another iterator is not yet exhausted");
}
TEST(DataLoaderTest, IncrementingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->begin();
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(++i, "Attempted to increment iterator past the end");
}
TEST(DataLoaderTest, DereferencingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->begin();
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(
*i, "Attempted to dereference iterator that was past the end");
}
TEST(DataLoaderTest, IncrementingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
++i,
"Incrementing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, DereferencingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
*i,
"Dereferencing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, YieldsCorrectBatchSize) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, 25);
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(false));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 1);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(true));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(DataLoaderTest, RespectsTimeout) {
struct Baton {
std::condition_variable cv;
std::mutex mutex;
};
struct D : datasets::Dataset<DummyDataset, int> {
D(std::shared_ptr<Baton> b) : baton(std::move(b)) {}
int get(size_t index) override {
std::unique_lock<std::mutex> lock(baton->mutex);
baton->cv.wait_for(lock, 1000 * kMillisecond);
return 0;
}
torch::optional<size_t> size() const override {
return 100;
}
std::shared_ptr<Baton> baton;
};
auto baton = std::make_shared<Baton>();
auto data_loader = torch::data::make_data_loader(
D{baton}, DataLoaderOptions().workers(1).timeout(10 * kMillisecond));
auto start = std::chrono::system_clock::now();
ASSERT_THROWS_WITH(*data_loader->begin(), "Timeout");
baton->cv.notify_one();
auto end = std::chrono::system_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(end - start);
ASSERT_LT(duration.count(), 1);
}
// stackoverflow.com/questions/24465533/implementing-boostbarrier-in-c11
struct Barrier {
explicit Barrier(size_t target) : counter_(target) {}
void wait() {
std::unique_lock<std::mutex> lock(mutex_);
if (--counter_ == 0) {
cv_.notify_all();
} else {
cv_.wait(lock, [this] { return this->counter_ == 0; });
}
}
size_t counter_;
std::condition_variable cv_;
std::mutex mutex_;
};
// On the OrderingTest: This test is intended to verify that the
// `enforce_ordering` option of the dataloader works correctly. The reason this
// flag exists is because when the dataloader has multiple workers (threads)
// enabled and this flag is not set, the order in which worker threads finish
// loading their respective batch and push it back to the dataloader's main
// thread (for outside consumption) is not deterministic. Imagine the sampler is
// a SequentialSampler with indices 0, 1, 2, 3. With batch size 1, each index
// will be a single "job". Inside the dataloader, worker threads block until a
// job is available. It is not deterministic which worker thread wakes up batch
// to dequeue a particular batch. Further, some worker threads may take longer
// than others to read the data for their index. As such, it could be that
// worker thread 2 finishes before all other threads and returns its batch to
// the main thread. In that case, the dataloader iterator would return the datum
// at index 2 batch, and afterwards the datum from whatever thread finishes
// next. As such, the user may see data from indices 2, 0, 3, 1. On another run
// of the same dataloader on the same data, threads may be scheduled differently
// and return in order 0, 2, 3, 1. To force this ordering to deterministically
// be 0, 1, 2, 3, the `enforce_ordering` flag can be set to true. In that case,
// the dataloader will use a *sequencer* internally which keeps track of which
// datum is expected next, and buffers any other results until that next
// expected value arrives. For example, workers 1, 2, 3 may finish before worker
// 0. If `enforce_ordering` is true, the sequencer will internally buffer the
// results from 1, 2, 3 until worker 0 finishes. Only then does the dataloader
// return the datum from worker 0 to the user (and then datum 1 the next time,
// then 2 and so on).
//
// The way the test works is that we start
// `kNumberOfWorkers` workers in the dataloader, which each get an index from a
// `SequentialSampler` in the range `0...kNumberOfWorkers-1`. Each worker thread
// has a copy of the dataset, and thus `get_batch()` is called on the
// thread-local copy in each worker. We want to simulate out-of-order completion
// of these threads. For this, we batch set a barrier in the `get_batch()`
// method to make sure every worker has some index to fetch assigned. Further,
// each worker thread has a unique ID in `0...kNumberOfWorkers-1`.
// There is a hard-coded ordering, `kOrderInWhichWorkersReturnTheirBatch`, in
// which we want the worker threads to return. For this, an iterator into this
// order is maintained. When the derferenced iterator (the current order index)
// matches the thread ID of a worker, it knows it can now return its index as
// well as progress the iterator. Inside the dataloader, the sequencer should
// buffer these indices such that they are ultimately returned in order.
namespace ordering_test {
namespace {
const size_t kNumberOfWorkers = 10;
const std::vector<size_t> kOrderInWhichWorkersReturnTheirBatch =
{3, 7, 0, 5, 4, 8, 2, 1, 9, 6};
} // namespace
struct Dataset : datasets::BatchDataset<Dataset, size_t> {
Dataset() = default;
// This copy constructor will be called when we copy the dataset into a
// particular thread.
Dataset(const Dataset& other) {
static std::atomic<size_t> counter{0};
thread_id_ = counter.fetch_add(1);
}
Dataset(Dataset&& other) noexcept = default;
Dataset& operator=(const Dataset& other) = delete;
Dataset& operator=(Dataset&& other) noexcept = delete;
size_t get_batch(torch::ArrayRef<size_t> indices) override {
static Barrier barrier(kNumberOfWorkers);
static auto order_iterator = kOrderInWhichWorkersReturnTheirBatch.begin();
static std::condition_variable cv;
static std::mutex mutex;
// Wait for all threads to get an index batch and arrive here.
barrier.wait();
std::unique_lock<std::mutex> lock(mutex);
cv.wait(lock, [this] { return *order_iterator == this->thread_id_; });
++order_iterator;
lock.unlock();
cv.notify_all();
return indices.front();
}
torch::optional<size_t> size() const override {
return kNumberOfWorkers;
}
size_t thread_id_ = 0;
};
} // namespace ordering_test
TEST(DataLoaderTest, EnforcesOrderingAmongThreadsWhenConfigured) {
auto data_loader = torch::data::make_data_loader(
ordering_test::Dataset{},
torch::data::samplers::SequentialSampler(ordering_test::kNumberOfWorkers),
DataLoaderOptions()
.batch_size(1)
.workers(ordering_test::kNumberOfWorkers)
.enforce_ordering(true));
std::vector<size_t> output;
for (size_t value : *data_loader) {
output.push_back(value);
}
std::vector<size_t> expected(ordering_test::kNumberOfWorkers);
std::iota(expected.begin(), expected.end(), size_t(0));
ASSERT_EQ(expected, output);
}
TEST(DataLoaderTest, Reset) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 2);
auto end = data_loader->end();
auto iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
}
TEST(DataLoaderTest, TestExceptionsArePropagatedFromWorkers) {
struct D : datasets::Dataset<DummyDataset, int> {
int get(size_t index) override {
throw std::invalid_argument("badness");
}
torch::optional<size_t> size() const override {
return 100;
}
};
auto data_loader = torch::data::make_data_loader(
D{}, samplers::RandomSampler(100), DataLoaderOptions().workers(2));
auto iterator = data_loader->begin();
try {
(void)*iterator;
} catch (torch::data::WorkerException& e) {
ASSERT_EQ(
e.what(),
std::string("Caught exception in DataLoader worker thread. "
"Original message: badness"));
ASSERT_THROW(
std::rethrow_exception(e.original_exception), std::invalid_argument);
}
}
TEST(DataLoaderTest, StatefulDatasetWithNoWorkers) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
};
auto data_loader = torch::data::make_data_loader(D{});
for (size_t i = 0; i < 10; ++i) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const int i : *data_loader) {
ASSERT_LT(i, kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithManyWorkers) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
const int kNumberOfWorkers = 4;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
std::lock_guard<std::mutex> lock(mutex);
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
std::mutex mutex;
};
auto data_loader = torch::data::make_data_loader(
torch::data::datasets::make_shared_dataset<D>(),
DataLoaderOptions().workers(kNumberOfWorkers));
for (size_t i = 0; i < 10; ++i) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const int i : *data_loader) {
ASSERT_LT(i, kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithMap) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
};
auto data_loader = torch::data::make_data_loader(
D().map(transforms::BatchLambda<int, std::string>(
[](int x) { return std::to_string(x); }))
.map(transforms::BatchLambda<std::string, torch::Tensor>(
[](const std::string& x) {
return torch::tensor(static_cast<int64_t>(std::stoi(x)));
})),
DataLoaderOptions{});
for (size_t i = 0; i < 10; ++i) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const torch::Tensor& t : *data_loader) {
ASSERT_LT(t.item<int64_t>(), kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithCollate) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D> {
torch::optional<std::vector<Example<>>> get_batch(
size_t batch_size) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
counter += batch_size;
std::vector<Example<>> batch(
/*count=*/batch_size,
Example<>{torch::ones(batch_size + 1),
torch::zeros(batch_size - 1)});
return batch;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
};
auto d = D().map(transforms::Stack<Example<>>());
const size_t kBatchSize = 5;
// Notice that the `get_batch()` of the dataset returns a vector<Example>, but
// the `Stack` collation stacks the tensors into one.
torch::optional<Example<>> batch = d.get_batch(kBatchSize);
ASSERT_TRUE(batch.has_value());
ASSERT_EQ(batch->data.size(0), kBatchSize);
ASSERT_EQ(batch->data.size(1), kBatchSize + 1);
ASSERT_EQ(batch->target.size(0), kBatchSize);
ASSERT_EQ(batch->target.size(1), kBatchSize - 1);
ASSERT_TRUE(batch->data[0].allclose(torch::ones(kBatchSize + 1)));
ASSERT_TRUE(batch->target[0].allclose(torch::zeros(kBatchSize - 1)));
}
// This test tests the core function for iterate through a chunk dataset. It
// contains test cases with different parameter combination. (For example,
// different prefetch count, batch size and data loader worker count). It
// verifies the return batches size and content when the order is deterministic.
TEST(DataLoaderTest, ChunkDataSetGetBatch) {
// different prefetch count for testing.
const size_t prefetch_counts[] = {1, 2, 3, 4};
// different batch size for testing.
const size_t batch_sizes[] = {5, 7};
// test with/without worker threads
const size_t dataloader_worker_counts[] = {0, 2};
const size_t total_example_count = 35;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
// test functionality across epoch boundary
const int epoch_count = 2;
for (auto prefetch_count : prefetch_counts) {
for (auto batch_size : batch_sizes) {
for (auto dataloader_worker_count : dataloader_worker_counts) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (int epoch_index = 0; epoch_index < epoch_count; ++epoch_index) {
std::vector<bool> result(total_example_count, false);
int iteration_count = 0;
for (auto iterator = data_loader->begin();
iterator != data_loader->end();
++iterator, ++iteration_count) {
DummyChunkDataReader::BatchType& batch = *iterator;
ASSERT_EQ(batch.size(), batch_size);
// When prefetch_count is equal to 1 and no worker thread, the batch
// order is deterministic. So we can verify elements in each batch.
if (prefetch_count == 1 && dataloader_worker_count == 0) {
for (size_t j = 0; j < batch_size; ++j) {
ASSERT_EQ(batch[j], iteration_count * batch_size + j);
}
}
for (size_t j = 0; j < batch_size; ++j) {
result[batch[j]] = true;
}
}
for (auto data : result) {
ASSERT_EQ(data, true);
}
}
}
}
}
}
TEST(DataLoaderTest, ChunkDataSetWithBatchSizeMismatch) {
const size_t prefetch_count = 1;
const size_t batch_size = 5;
const size_t requested_batch_size = 6;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(requested_batch_size).workers(0));
std::string exception_msg =
"The requested batch size does not match with the initialized batch "
"size.\n The requested batch size is 6, while the dataset is created"
" with batch size equal to 5";
ASSERT_THROWS_WITH(*(data_loader->begin()), exception_msg);
}
TEST(DataLoaderTest, ChunkDataSetWithEmptyBatch) {
struct DummyEmptyChunkDataReader
: datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
return {};
}
size_t chunk_count() override {
return 1;
};
void reset() override{};
};
const size_t prefetch_count = 1;
const size_t batch_size = 5;
DummyEmptyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyEmptyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyEmptyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
ASSERT_EQ(iterator->size(), 0);
}
}
TEST(DataLoaderTest, ChunkDataSetGetBatchWithUnevenBatchSize) {
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(10, 0);
return batch_data;
}
size_t chunk_count() override {
return 2;
};
void reset() override{};
};
const size_t batch_sizes[] = {17, 30};
D data_reader;
samplers::SequentialSampler sampler(0);
for (auto batch_size : batch_sizes) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(1, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
DummyChunkDataReader::BatchType batch = *iterator;
auto batch_size = batch.size();
if (batch_size == 17) {
ASSERT_TRUE(batch.size() == 17 || batch.size() == 3);
}
if (batch_size == 30) {
ASSERT_TRUE(batch.size() == 20);
}
}
}
}
TEST(DataLoaderTest, CanAccessChunkSamplerWithChunkDataSet) {
const size_t prefetch_count = 2;
const size_t batch_size = 5;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
samplers::SequentialSampler& chunk_sampler = dataset->chunk_sampler();
auto data_loader = torch::data::make_data_loader(
dataset.map(transforms::BatchLambda<DummyChunkDataReader::BatchType, DummyChunkDataReader::DataType>(
[](DummyChunkDataReader::BatchType batch) {
return std::accumulate(batch.begin(), batch.end(), 0);
})),
DataLoaderOptions(batch_size).workers(0));
// before we start, the index should be 0.
ASSERT_EQ(chunk_sampler.index(), 0);
size_t sum = 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
sum += *iterator;
}
ASSERT_EQ(sum, 595); // sum([0, 35))
// 3 chunks, and when exhausted the value is already incremented.
ASSERT_EQ(chunk_sampler.index(), 3);
}
TEST(DataLoaderTest, ChunkDatasetDoesNotHang) {
const size_t prefetch_count = 2;
const size_t batch_size = 5;
// this will make the preloaders to wait till the `get_batch()` calls.
const size_t cache_size = 10;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
prefetch_count, batch_size, cache_size));
samplers::SequentialSampler& chunk_sampler = dataset->chunk_sampler();
auto data_loader = torch::data::make_data_loader(
dataset.map(transforms::BatchLambda<DummyChunkDataReader::BatchType, DummyChunkDataReader::DataType>(
[](DummyChunkDataReader::BatchType batch) {
return std::accumulate(batch.begin(), batch.end(), 0);
})),
DataLoaderOptions(batch_size).workers(0));
// simply creates the iterator but no iteration. chunk preloaders are waiting
// to fill the batch buffer but it is not draining. Still we need to exit
// cleanly.
auto iterator = data_loader->begin();
}
// Test ChunkDataset save function.
// Note [save/load ChunkDataset as ChunkSampler]:
// The chunk sampler inside ChunkDataset is used in a separate thread pool other
// than the main thread. Thus it is very hard to accurately estimate its status
// when ChunkDataset::save/ChunkDataset::load is called. For the pure purpose of
// testing, we utilize the implementation fact that the file format for sampler
// serialization is the same as ChunkDataset serialization, and manually control
// the chunk sampler by calling the sampler's save/load method for value
// validation. This is only for testing the specific save/load functionality. In
// real user case, the user should still use matching ChunkDataset::save and
// ChunkDataset::load method.
TEST(DataLoaderTest, ChunkDatasetSave) {
const size_t chunk_count_ = 6;
const size_t chunk_size = 10;
struct DummyTestChunkDataReader : datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
return batch_data_;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
BatchType batch_data_ = BatchType(chunk_size, 0);
};
const size_t prefetch_count = 1;
const size_t batch_size = chunk_size;
const size_t dataloader_worker_count = 0;
samplers::SequentialSampler sampler(0);
const int epoch_count = 2;
DummyTestChunkDataReader data_reader;
// tested save_intervals
const size_t save_intervals[] = {1, 2};
using datasets::ChunkDatasetOptions;
for (auto save_interval : save_intervals) {
auto tempfile = c10::make_tempfile();
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyTestChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyTestChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
ChunkDatasetOptions(
prefetch_count, batch_size, chunk_size /*cache size*/));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (int epoch_index = 0; epoch_index < epoch_count; ++epoch_index) {
int iteration_count = 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator, ++iteration_count) {
if ((iteration_count + 1) % save_interval == 0) {
torch::save(*dataset, tempfile.name);
samplers::SequentialSampler new_sampler(0);
// See Note [save/load ChunkDataset as ChunkSampler]
torch::load(new_sampler, tempfile.name);
// Verify save logic. For ChunkDataset, the chunk data is stored in a
// cache inside the dataset. One pool of threads are constantly
// writing to the cache, and a different pool of thread are constantly
// reading from the cache. Due to the nature of asynchronization, at
// the time of get_batch(), which chunk is written to the cache is not
// fully deterministic.
// But we can still calculate a restricted window on the expected
// output, hence verify the logic. In this test, the cache size is
// configured to be the same as chunk size and batch size. So the
// chunk data is written to the cache one by one. Only the current
// batch is retrieved, the next chunk is written. Now in iteration 0,
// after the first batch is retrieved, when we save the dataset
// statues, there are three possible scenarios for the writer thread:
// 1. it hasn't started loading the next chunk data yet, so the
// sequential sampler index is still 0;
// 2. it started to load the second chunk, so the sequencial sampler
// index is at 1;
// 3. it finished loading the second chunk, and start to load the
// third chunk, because the cache is still fully occupied by the data
// from the second chunk, it is waiting to write to the cache. At this
// point, the sampler index is at 2.
// So now we have a window of [0, 2], which is what we expected the
// sampler to save the index from. Now noted for sequential sampler,
// it advances to the next index automatically in the call next(). So
// when save the index, it saves the next index in stead of the
// current one. In other word, after getting the first index from
// sequential sampler, it already moves to the second index. So when
// we save it, it is the second index we save. As a result,
// we need to advance the window by one. Now we have the expected
// window of [1, 3].
// This analysis applies to all scenarios. So extend it to a more
// general case: the expected saved index should falling into the
// range of [iteration, iteration + 3], which is the validation
// below.
ASSERT_TRUE(
new_sampler.index() >= iteration_count + 1 &&
new_sampler.index() <= iteration_count + 3);
}
}
}
}
}
// Test ChunkDataset load function.
TEST(DataLoaderTest, ChunkDatasetLoad) {
auto tempfile = c10::make_tempfile();
const size_t prefetch_count = 1;
const size_t batch_size = 10;
const size_t dataloader_worker_count = 0;
const size_t save_interval = 2;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
const size_t skipped_chunk = 2;
// Configure sampler to skip 2 chunks
{
sampler.reset(data_reader.chunk_count());
sampler.next(skipped_chunk);
// See Note [save/load ChunkDataset as ChunkSampler]
torch::save(sampler, tempfile.name);
}
// test functionality across epoch boundary. The first epoch should be
// affected by the checkpoint, but the second should start normally.
const int epoch_count = 2;
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
prefetch_count, batch_size, 20 /*cache size*/));
torch::load(*dataset, tempfile.name);
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (int epoch_index = 0; epoch_index < epoch_count; ++epoch_index) {
int iteration_count = 0;
// For the first epoch, the returned batch should be returned from the
// third chunk, because the check point skipped the first two chunks. But
// for the next epoch, it should start from the first batch.
int initial_value = epoch_index == 0 ? 15 : 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator, ++iteration_count) {
DummyChunkDataReader::BatchType batch = *iterator;
std::vector<int> expected_result;
size_t expected_size = (epoch_index > 0 && iteration_count == 3) ? 5 : 10;
expected_result.resize(expected_size);
std::iota(expected_result.begin(), expected_result.end(), initial_value);
ASSERT_EQ(batch.size(), expected_result.size());
ASSERT_TRUE(
std::equal(batch.begin(), batch.end(), expected_result.begin()));
initial_value += batch_size;
}
}
samplers::SequentialSampler new_sampler(0);
// See Note [save/load ChunkDataset as ChunkSampler]
torch::load(new_sampler, tempfile.name);
ASSERT_EQ(new_sampler.index(), skipped_chunk);
}
TEST(DataLoaderTest, ChunkDatasetCrossChunkShuffle) {
const size_t chunk_size = 5;
const size_t batch_size = 5;
class S : public samplers::Sampler<> {
public:
explicit S(size_t size) : size_(size), index_(0){};
void reset(torch::optional<size_t> new_size = torch::nullopt) override {
if (new_size.has_value()) {
size_ = *new_size;
}
indices_.resize(size_);
size_t index = 0;
// Repeatly sample every 5 indices.
for (size_t i = 0; i < batch_size; ++i) {
for (size_t j = 0; j < size_ / batch_size; ++j) {
indices_[index++] = i + batch_size * j;
}
}
index_ = 0;
}
// Returns the next batch of indices.
torch::optional<std::vector<size_t>> next(size_t batch_size) override {
const auto remaining_indices = size_ - index_;
if (remaining_indices == 0) {
return torch::nullopt;
}
auto return_size = std::min(batch_size, remaining_indices);
std::vector<size_t> index_batch(
indices_.begin() + index_, indices_.begin() + index_ + return_size);
index_ += return_size;
return index_batch;
}
void save(torch::serialize::OutputArchive& archive) const override {}
void load(torch::serialize::InputArchive& archive) override {}
private:
size_t size_;
std::vector<size_t> indices_;
size_t index_{0};
};
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
D(size_t chunk_count) : chunk_count_(chunk_count) {}
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(chunk_size, chunk_index);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
size_t chunk_count_;
};
const size_t prefetch_count = 1;
const size_t cache_size = 10;
const size_t cross_chunk_shuffle_counts[] = {2, 3};
const size_t chunk_counts[] = {3, 4, 5};
samplers::SequentialSampler chunk_sampler(0);
S example_sampler(0);
for (auto chunk_count : chunk_counts) {
for (auto cross_chunk_shuffle_count : cross_chunk_shuffle_counts) {
D data_reader(chunk_count);
datasets::SharedBatchDataset<
datasets::ChunkDataset<D, samplers::SequentialSampler, S>>
dataset = datasets::make_shared_dataset<
datasets::ChunkDataset<D, samplers::SequentialSampler, S>>(
data_reader,
chunk_sampler,
example_sampler,
datasets::ChunkDatasetOptions(
prefetch_count,
batch_size,
cache_size,
cross_chunk_shuffle_count));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
std::vector<int> result;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
auto batch_result = *iterator;
std::copy(
batch_result.begin(),
batch_result.end(),
std::back_inserter(result));
}
std::vector<int> expected_result;
{
// construct expected result
int offset = 0;
for (int i = 0; i < (chunk_count + cross_chunk_shuffle_count - 1) /
cross_chunk_shuffle_count;
i++) {
for (int j = 0; j < chunk_size; ++j) {
for (int k = 0; k < cross_chunk_shuffle_count; ++k) {
if (i * cross_chunk_shuffle_count + k < chunk_count) {
expected_result.push_back(i * cross_chunk_shuffle_count + k);
}
}
}
}
}
ASSERT_EQ(result.size(), expected_result.size());
ASSERT_TRUE(
std::equal(result.begin(), result.end(), expected_result.begin()));
}
}
}
TEST(DataLoaderTest, CustomPreprocessPolicy) {
const size_t chunk_size = 5;
const size_t batch_size = 10;
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
D(size_t chunk_count) : chunk_count_(chunk_count) {}
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(chunk_size);
auto rand_gen = []() { return std::rand() % 100; };
std::generate(batch_data.begin(), batch_data.end(), rand_gen);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
size_t chunk_count_;
};
// custom preprocessing policy - sort the data ascendingly
auto sorting_policy = [](std::vector<int>& raw_batch_data) {
std::sort(raw_batch_data.begin(), raw_batch_data.end());
};
std::function<void(std::vector<int>&)> policy_function =
sorting_policy;
const size_t prefetch_count = 1;
const size_t cache_size = 10;
const size_t cross_chunk_shuffle_counts[] = {1, 2};
const size_t chunk_counts[] = {3, 4};
samplers::SequentialSampler chunk_sampler(0);
for (auto chunk_count : chunk_counts) {
for (auto cross_chunk_shuffle_count : cross_chunk_shuffle_counts) {
D data_reader(chunk_count);
datasets::SharedBatchDataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
chunk_sampler,
chunk_sampler,
datasets::ChunkDatasetOptions(
prefetch_count,
batch_size,
cache_size,
cross_chunk_shuffle_count),
policy_function);
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
std::vector<int> result;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
auto batch_result = *iterator;
if (batch_result.size() > chunk_size * cross_chunk_shuffle_count) {
for (int i = 0; i < batch_result.size(); i += chunk_size) {
ASSERT_TRUE(std::is_sorted(
batch_result.begin() + i,
batch_result.begin() + i + chunk_size));
}
} else {
ASSERT_TRUE(std::is_sorted(batch_result.begin(), batch_result.end()));
}
}
}
}
}