mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48340 This changes the context managed classes from using a decorator to define them to using inheritance. Inheritance allows the python static type checking to work correctly. ``` context.define_context() class Bar(object): ... context.define_context(allow_default=True) class Foo(object): ... ``` becomes ``` class Foo(context.Managed): ... class Bar(context.DefaultManaged): ... ``` Behavior differences: * arg_name has been removed since it's not used anywhere * classes need to call `super()` in `__enter__/__exit__` methods if they override (none do) This also defines a context.pyi file to add types for python3. python2 support should not be affected Test Plan: ci buck test //caffe2/caffe2/python:context_test //caffe2/caffe2/python:checkpoint_test Reviewed By: dongyuzheng Differential Revision: D25133469 fbshipit-source-id: 16368bf723eeb6ce3308d6827f5ac5e955b4e29a
54 lines
1.4 KiB
Python
54 lines
1.4 KiB
Python
## @package optimizer_context
|
|
# Module caffe2.python.optimizer_context
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import context
|
|
from caffe2.python.modifier_context import (
|
|
ModifierContext, UseModifierBase)
|
|
|
|
|
|
DEFAULT_OPTIM = 'DEFAULT'
|
|
|
|
|
|
class OptimizerContext(ModifierContext, context.DefaultManaged):
|
|
"""
|
|
provide context to allow param_info to have different optimizers
|
|
"""
|
|
|
|
def has_optimizer(self, name):
|
|
return self._has_modifier(name)
|
|
|
|
def get_optimizer(self, name):
|
|
assert self.has_optimizer(name), (
|
|
"{} optimizer is not provided!".format(name))
|
|
return self._get_modifier(name)
|
|
|
|
|
|
class UseOptimizer(UseModifierBase):
|
|
'''
|
|
context class to allow setting the current context.
|
|
Example usage with brew:
|
|
- with UseOptimizer(optim):
|
|
brew.func
|
|
- with UseOptimizer({'WEIGHT': weight_optim}):
|
|
brew.func
|
|
- with UseOptimizer({'DEFAULT': optim, 'BIAS': bias_optim,
|
|
'WEIGHT': weight_optim}):
|
|
brew.func
|
|
- with UseOptimizer(optim1):
|
|
brew.func
|
|
with UseOptimizer(optim2):
|
|
brew.func
|
|
|
|
Example usage with layer:
|
|
optimizers = {'optim1': optim1, 'optim2': optim2}
|
|
with Optimizers(optimizers):
|
|
optim = OptimizerContext.current().get_optimizer('optim1')
|
|
layer(optim=optim)
|
|
'''
|
|
def _context_class(self):
|
|
return OptimizerContext
|