Files
pytorch/caffe2/python/onnx/tests/c2_ref_test.py
Richard Barnes 9945fd7253 Drop unused imports from caffe2/python (#49980)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49980

From
```
./python/libcst/libcst codemod remove_unused_imports.RemoveUnusedImportsWithGlean --no-format caffe2/
```

Test Plan: Standard sandcastle tests

Reviewed By: xush6528

Differential Revision: D25727359

fbshipit-source-id: c4f60005b10546423dc093d31d46deb418352286
2021-01-05 13:17:46 -08:00

870 lines
31 KiB
Python

# @package onnx
# Module caffe2.python.onnx.tests.c2_ref_test
import os
import unittest
from caffe2.python import core
from caffe2.proto import caffe2_pb2
import onnx
from onnx.helper import make_node, make_graph, make_tensor, make_tensor_value_info, make_model
from caffe2.python.onnx.helper import c2_native_run_net, c2_native_run_op
from onnx import mapping
import caffe2.python.onnx.frontend as c2_onnx
import caffe2.python.onnx.backend as c2
import numpy as np
from caffe2.python.models.download import ModelDownloader
from caffe2.python.onnx.tests.test_utils import TestCase
import caffe2.python._import_c_extension as C
class TestCaffe2Basic(TestCase):
def test_dummy_name(self):
g = C.DummyName()
n1 = g.new_dummy_name()
n2 = g.new_dummy_name()
assert n1 != n2, "Got same names in different calls: {}".format(n1)
def test_check_arguments(self):
b2 = C.Caffe2Backend()
node_def = make_node("Add", inputs=["X", "Y"], outputs=["Z"])
b2.convert_node(node_def.SerializeToString())
bad_node_def = make_node("Add", inputs=["X", "Y"], outputs=["Z"], foo=42, bar=56)
with self.assertRaisesRegex(RuntimeError,
"Don't know how to map unexpected argument (foo|bar)"):
b2.convert_node(bad_node_def.SerializeToString())
def test_dynamicslice_3inputs_graph(self):
node_def = make_node(
"DynamicSlice", ["X1", "X2", "X3"], ["Y"])
graph_def = make_graph(
[node_def],
name="test",
inputs=[make_tensor_value_info("X1", onnx.TensorProto.FLOAT, (2, 4)),
make_tensor_value_info("X2", onnx.TensorProto.INT32, (1, 2)),
make_tensor_value_info("X3", onnx.TensorProto.INT32, (1, 2))],
outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, (1, 2))])
model_def = make_model(graph_def, producer_name='caffe2-ref-test')
x = [[1,2,3,4],[5,6,7,8]]
start = [0, 0]
end = [-1, 4]
prepared = c2.prepare(model_def)
output = prepared.run(inputs=[np.array(x), np.array(start), np.array(end)])
self.assertSameOutputs(output[0], np.array(x)[0:-1, 0:4])
def test_dynamicslice_4inputs_graph(self):
node_def = make_node(
"DynamicSlice", ["X1", "X2", "X3", "axes"], ["Y"])
graph_def = make_graph(
[node_def],
name="test",
inputs=[make_tensor_value_info("X1", onnx.TensorProto.FLOAT, (2, 4)),
make_tensor_value_info("X2", onnx.TensorProto.INT32, (1, 2)),
make_tensor_value_info("X3", onnx.TensorProto.INT32, (1, 2)),
make_tensor_value_info("axes", onnx.TensorProto.INT32, (1, 2))],
outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, (1, 2))])
model_def = make_model(graph_def, producer_name='caffe2-ref-test')
x = [[1,2,3,4],[5,6,7,8]]
start = [0, 1]
end = [4, 5]
axes = [1, 0]
prepared = c2.prepare(model_def)
output = prepared.run(inputs=[np.array(x), np.array(start), np.array(end), np.array(axes)])
self.assertSameOutputs(output[0], np.array(x)[1:5, 0:4])
def test_relu_graph(self):
X = np.random.randn(3, 2).astype(np.float32)
Y_ref = np.clip(X, 0, np.inf)
node_def = make_node(
"Relu", ["X"], ["Y"])
output = c2.run_node(
node_def, {"X": X})
np.testing.assert_almost_equal(output.Y, Y_ref)
graph_def = make_graph(
[node_def],
name="test",
inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [3, 2])],
outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [3, 2])])
c2_rep = c2.prepare(make_model(graph_def, producer_name='caffe2-ref-test'))
output = c2_rep.run(X)
np.testing.assert_almost_equal(output.Y, Y_ref)
def test_elementwiselinear(self):
X = np.random.randn(4, 2, 5, 7, 3).astype(np.float32)
W = np.random.randn(21).astype(np.float32)
B = np.random.randn(21).astype(np.float32)
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-elementwiselinear-net'
predict_net.external_input[:] = ['X', 'W', 'B']
predict_net.external_output[:] = ['Y']
predict_net.op.extend([
core.CreateOperator(
'ElementwiseLinear',
inputs=['X', 'W', 'B'],
outputs=['Y'],
axis=3,
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X, W, B])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape),
'W': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[W.dtype], W.shape),
'B': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[B.dtype], B.shape),
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X, W, B])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_initializer(self):
X = np.array([[1, 2], [3, 4]]).astype(np.float32)
Y = np.array([[1, 2], [3, 4]]).astype(np.float32)
weight = np.array([[1, 0], [0, 1]])
graph_def = make_graph(
[make_node("Add", ["X", "Y"], ["Z0"]),
make_node("Cast", ["Z0"], ["Z"], to=onnx.TensorProto.FLOAT),
make_node("Mul", ["Z", "weight"], ["W0"]),
make_node("Tanh", ["W0"], ["W1"]),
make_node("Sigmoid", ["W1"], ["W2"]),
make_node("Scale", ["W2"], ["W3"], scale=-1.0)],
name="test_initializer",
inputs=[
make_tensor_value_info("X", onnx.TensorProto.FLOAT, (2, 2)),
make_tensor_value_info("Y", onnx.TensorProto.FLOAT, (2, 2)),
make_tensor_value_info("weight", onnx.TensorProto.FLOAT, (2, 2)),
],
outputs=[
make_tensor_value_info("W3", onnx.TensorProto.FLOAT, (2, 2))
],
initializer=[make_tensor("weight",
onnx.TensorProto.FLOAT,
[2, 2],
weight.flatten().astype(float))]
)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
W_ref = -sigmoid(np.tanh((X + Y) * weight))
c2_rep = c2.prepare(make_model(graph_def, producer_name='caffe2-ref-test'))
output = c2_rep.run({"X": X, "Y": Y})
np.testing.assert_almost_equal(output["W3"], W_ref)
def test_reducemean(self):
X = np.random.randn(4, 6, 10, 5, 3).astype(np.float32)
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-reducemean-net'
predict_net.external_input[:] = ['X']
predict_net.external_output[:] = [
'reduce_front_mean',
'reduce_back_mean',
'reduce_mean_0',
'reduce_mean_1',
]
predict_net.op.extend([
core.CreateOperator(
'ReduceFrontMean',
inputs=['X'],
outputs=['reduce_front_mean'],
num_reduce_dim=2,
),
core.CreateOperator(
'ReduceBackMean',
inputs=['X'],
outputs=['reduce_back_mean'],
num_reduce_dim=2,
),
core.CreateOperator(
'ReduceMean',
inputs=['X'],
outputs=['reduce_mean_0'],
axes=[1, 3],
keepdims=0,
),
core.CreateOperator(
'ReduceMean',
inputs=['X'],
outputs=['reduce_mean_1'],
axes=[1, 3],
keepdims=1,
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_upsample(self):
X = np.random.randn(1, 1, 2, 2).astype(np.float32)
width_scale = 2.0
height_scale = 2.0
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-upsample-net'
predict_net.external_input[:] = ['X']
predict_net.external_output[:] = ['Y']
predict_net.op.extend([
core.CreateOperator(
'ResizeNearest',
inputs=['X'],
outputs=['Y'],
width_scale=width_scale,
height_scale=height_scale,
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_fc(self):
X_fake = np.zeros((3, 1, 3, 1, 7), dtype=np.float32)
X = np.random.randn(5, 2, 3, 1, 7).astype(np.float32)
W = np.random.randn(11, 21).astype(np.float32)
B = np.random.randn(11).astype(np.float32)
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-fc-net'
predict_net.external_input[:] = ['X', 'W', 'B']
predict_net.external_output[:] = ['Y']
predict_net.op.extend([
core.CreateOperator(
'FC',
inputs=['X', 'W', 'B'],
outputs=['Y'],
axis=2,
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X, W, B])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X_fake.shape),
'W': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[W.dtype], W.shape),
'B': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[B.dtype], B.shape),
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X, W, B])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_gemm(self):
# simple
A = np.random.randn(3, 2).astype(np.float32)
B = np.random.randn(2, 4).astype(np.float32)
C = np.random.randn(3, 4).astype(np.float32)
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"])
output = c2.run_node(node_def, [A, B, C])
np.testing.assert_almost_equal(output["Y"], np.dot(A, B) + C)
# transA
A = np.transpose(A)
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
transA=1)
output = c2.run_node(node_def, [A, B, C])
np.testing.assert_almost_equal(
output["Y"],
np.dot(np.transpose(A), B) + C)
# revert A
A = np.transpose(A)
# transB
B = np.transpose(B)
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
transB=1)
output = c2.run_node(node_def, [A, B, C])
np.testing.assert_almost_equal(
output["Y"],
np.dot(A, np.transpose(B)) + C)
# revert B
B = np.transpose(B)
# scale
alpha = np.random.random()
beta = np.random.random()
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta)
output = c2.run_node(node_def, [A, B, C])
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, B) + beta * C)
# setup broadcastable C
C = np.random.randn(4).astype(np.float32)
# broadcast for opset7
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta)
output = c2.run_node(node_def, [A, B, C], opset_version=7)
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, B) + beta * C)
# broadcast for opset3 and 6
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta,
broadcast=1)
output = c2.run_node(node_def, [A, B, C], opset_version=6)
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, B) + beta * C)
# transB
B = np.transpose(B)
# transB and broadcast for opset7
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta,
transB=1)
output = c2.run_node(node_def, [A, B, C], opset_version=7)
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, np.transpose(B)) + beta * C)
# transB and broadcast for opset3 and 6
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta,
broadcast=1,
transB=1)
output = c2.run_node(node_def, [A, B, C], opset_version=6)
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, np.transpose(B)) + beta * C)
# revert B
B = np.transpose(B)
# set a scalar to C
C = np.random.randn(1).astype(np.float32)
# scalar broadcast for opset7
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta)
output = c2.run_node(node_def, [A, B, C], opset_version=7)
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, B) + beta * C)
# scalar broadcast for opset3 and 6
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=alpha,
beta=beta,
broadcast=1)
output = c2.run_node(node_def, [A, B, C], opset_version=6)
np.testing.assert_almost_equal(
output["Y"],
alpha * np.dot(A, B) + beta * C)
def test_gemm_conversion(self):
node_def = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=2.,
beta=3.)
node_def_broadcast = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=2.,
beta=3.,
broadcast=1)
node_def_transpose_b = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=2.,
beta=3.,
transB=1)
node_def_transpose_b_broadcast = make_node(
'Gemm',
['A', 'B', 'C'],
["Y"],
alpha=2.,
beta=3.,
transB=1,
broadcast=1)
backend = C.Caffe2Backend()
# without broadcast and without shape info, gemm will be
# converted to matmul + add
_, op_strs = backend.convert_node(node_def.SerializeToString())
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add'])
# opset7
# If C is a 1d tensor, gemm will be converted to FC/FCTransposed
_, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString(
), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()],
7)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'FC'])
_, op_strs = backend.convert_node(node_def.SerializeToString(
), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()],
7)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'FCTransposed'])
# opset6 without broadcast(C should match A*B's dim)
# The gemm will be converted to matmul + add, since the FC requires c
# to be 1d tensor.
_, op_strs = backend.convert_node(node_def.SerializeToString(
), [make_tensor_value_info("A", onnx.TensorProto.FLOAT, (3,2)).SerializeToString(),
make_tensor_value_info("B", onnx.TensorProto.FLOAT, (2,3)).SerializeToString(),
make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,3)).SerializeToString()],
6)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add'])
# opset6 with broadcast
# If C is a 1d tensor, gemm will be converted to FC/FCTransposed
_, op_strs = backend.convert_node(node_def_transpose_b_broadcast.SerializeToString(
), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()],
6)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'FC'])
_, op_strs = backend.convert_node(node_def_broadcast.SerializeToString(
), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()],
6)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'FCTransposed'])
# opset7
# If C is a scalar and B's last dim is 1, gemm will be converted to FC/FCTransposed
_, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString(
), [make_tensor_value_info("B", onnx.TensorProto.FLOAT, (1,2)).SerializeToString(),
make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()],
7)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'FC'])
_, op_strs = backend.convert_node(node_def.SerializeToString(
), [make_tensor_value_info("B", onnx.TensorProto.FLOAT, (2,1)).SerializeToString(),
make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()],
7)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'FCTransposed'])
# If C is a scalar and B's last dim is not 1, gemm will be converted
# to matmul + add.
_, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString(
), [make_tensor_value_info("B", onnx.TensorProto.FLOAT, (2,2)).SerializeToString(),
make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()],
7)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add'])
# If C is a scalar and B's shape info is not available,
# gemm will be converted to matmul + add.
_, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString(
), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()],
7)
op_names = []
for s in op_strs:
op = caffe2_pb2.OperatorDef()
op.ParseFromString(s)
op_names.append(op.type)
self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add'])
def test_mergedim(self):
X = np.random.randn(2, 3, 1, 5).astype(np.float32)
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-mergedim-net'
predict_net.external_input[:] = ['X']
predict_net.external_output[:] = ['Y']
predict_net.op.extend([
core.CreateOperator(
'MergeDim',
inputs=['X'],
outputs=['Y'],
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape),
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_tensor_filling_ops(self):
for dtype in [
onnx.TensorProto.FLOAT,
onnx.TensorProto.DOUBLE,
onnx.TensorProto.BOOL,
onnx.TensorProto.INT8,
onnx.TensorProto.INT16,
onnx.TensorProto.INT32,
onnx.TensorProto.INT64,
onnx.TensorProto.UINT8,
onnx.TensorProto.UINT16,
onnx.TensorProto.UINT32,
]:
shape = (1, 2, 3)
vals = np.random.randn(*shape)
if dtype != onnx.TensorProto.BOOL:
vals *= 5
vals = vals.astype(
mapping.TENSOR_TYPE_TO_NP_TYPE[dtype])
tensor = make_tensor(
name='test-tensor-{}'.format(dtype),
data_type=dtype,
dims=[1, 2, 3],
vals=vals.flatten().tolist(),
)
op = c2.Caffe2Backend._create_tensor_filling_op(tensor)
self.assertEqual(len(op.input), 0)
self.assertEqual(op.output, [tensor.name])
ws, output = c2_native_run_op(op, inputs=[])
self.assertEqual(len(output), 1)
np.testing.assert_almost_equal(output[0], vals)
np.testing.assert_almost_equal(ws.FetchBlob(op.output[0]), vals)
def test_tensor_filling_ops_c_backend(self):
for dtype in [
onnx.TensorProto.FLOAT,
onnx.TensorProto.DOUBLE,
onnx.TensorProto.BOOL,
onnx.TensorProto.INT8,
onnx.TensorProto.INT16,
onnx.TensorProto.INT32,
onnx.TensorProto.INT64,
onnx.TensorProto.UINT8,
onnx.TensorProto.UINT16,
onnx.TensorProto.UINT32,
]:
shape = (1, 2, 3)
vals = np.random.randn(*shape)
if dtype != onnx.TensorProto.BOOL:
vals *= 5
vals = vals.astype(
mapping.TENSOR_TYPE_TO_NP_TYPE[dtype])
tensor = make_tensor(
name='test-tensor-{}'.format(dtype),
data_type=dtype,
dims=[1, 2, 3],
vals=vals.flatten().tolist(),
)
b = C.Caffe2Backend()
op = caffe2_pb2.OperatorDef()
op.ParseFromString(b._build_tensor_filling_op(tensor.SerializeToString(), ''))
self.assertEqual(len(op.input), 0)
self.assertEqual(op.output, [tensor.name])
ws, output = c2_native_run_op(op, inputs=[])
self.assertEqual(len(output), 1)
np.testing.assert_almost_equal(output[0], vals)
np.testing.assert_almost_equal(ws.FetchBlob(op.output[0]), vals)
def test_concat(self):
I0 = np.random.randn(20, 4).astype(np.float32)
I1 = np.random.randn(20, 4).astype(np.float32)
for i in range(2):
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-concat-net'
predict_net.external_input[:] = ['I0', 'I1']
predict_net.external_output[:] = ['Y', 'output_dim']
predict_net.op.extend([
core.CreateOperator(
'Concat',
inputs=['I0', 'I1'],
outputs=['Y', 'output_dim'],
axis=1,
add_axis=(1 if i == 0 else 0),
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[I0, I1])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'I0': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[I0.dtype], I0.shape),
'I1': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[I1.dtype], I1.shape),
})
onnx_outputs = c2.run_model(onnx_model, inputs=[I0, I1])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_slice(self):
X = np.random.randn(1, 2, 3).astype(np.float32)
starts = np.array([0, 1, 0], dtype=np.int32)
ends = np.array([-1, 2, 3], dtype=np.int32)
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-slice-net'
predict_net.external_input[:] = ['X']
predict_net.external_output[:] = ['Y']
predict_net.op.extend([
core.CreateOperator(
'Slice',
inputs=['X'],
outputs=['Y'],
starts=starts,
ends=ends,
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X])
self.assertSameOutputs(c2_outputs, onnx_outputs)
def test_cast(self):
X = np.random.randn(1, 2, 3).astype(np.float32)
for to_type in ['INT8', caffe2_pb2.TensorProto.INT8,
'DOUBLE', caffe2_pb2.TensorProto.DOUBLE]:
predict_net = caffe2_pb2.NetDef()
predict_net.name = 'test-cast-net'
predict_net.external_input[:] = ['X']
predict_net.external_output[:] = ['Y']
predict_net.op.extend([
core.CreateOperator(
'Cast',
inputs=['X'],
outputs=['Y'],
to=to_type,
),
])
ws, c2_outputs = c2_native_run_net(
init_net=None,
predict_net=predict_net,
inputs=[X])
onnx_model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=predict_net,
value_info={
'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
})
onnx_outputs = c2.run_model(onnx_model, inputs=[X])
self.assertSameOutputs(c2_outputs, onnx_outputs)
class TestCaffe2End2End(TestCase):
def setUp(self):
self.model_downloader = ModelDownloader('ONNX_MODELS')
def _test_net(self,
net_name,
input_blob_dims=(1, 3, 224, 224),
decimal=7):
np.random.seed(seed=0)
try:
c2_init_net, c2_predict_net, value_info, debug_str = self.model_downloader.get_c2_model_dbg(net_name)
except Exception as e:
# catch IOError/OSError that is caused by FileNotFoundError and PermissionError
# This is helpful because sometimes we get errors due to gfs not available
# get_c2_model_dbg wraps URLError/HTTPErrors into generic Exception
# Skip the tests if model can not be downloaded due to the any of the above
print("\n_test_net exception: ", e)
self.skipTest(str(e))
# start to run the model and compare outputs
n, c, h, w = input_blob_dims
data = np.random.randn(n, c, h, w).astype(np.float32)
inputs = [data]
_, c2_outputs = c2_native_run_net(c2_init_net, c2_predict_net, inputs, debug_str)
del _
model = c2_onnx.caffe2_net_to_onnx_model(
predict_net=c2_predict_net,
init_net=c2_init_net,
value_info=value_info,
)
c2_ir = c2.prepare(model)
onnx_outputs = c2_ir.run(inputs)
self.assertSameOutputs(c2_outputs, onnx_outputs, decimal=decimal)
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_alexnet(self):
self._test_net('bvlc_alexnet', decimal=4)
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_resnet50(self):
self._test_net('resnet50')
@unittest.skipIf(
os.environ.get('JENKINS_URL') or os.environ.get('SKIP_IN_FB'),
'Taking too long to download!')
def test_vgg16(self):
self._test_net('vgg16')
@unittest.skipIf(
os.environ.get('JENKINS_URL') or os.environ.get('SKIP_IN_FB'),
'Taking too long to download!')
def test_zfnet(self):
self._test_net('zfnet')
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_inception_v1(self):
self._test_net('inception_v1', decimal=2)
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_inception_v2(self):
self._test_net('inception_v2')
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_squeezenet(self):
self._test_net('squeezenet')
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_densenet121(self):
self._test_net('densenet121')
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_bvlc_googlenet(self):
self._test_net('bvlc_googlenet')
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_bvlc_reference_caffenet(self):
self._test_net('bvlc_reference_caffenet')
@unittest.skipIf(
os.environ.get('SKIP_IN_FB'),
'Skip internally!')
def test_bvlc_reference_rcnn_ilsvrc13(self):
self._test_net('bvlc_reference_rcnn_ilsvrc13')
if __name__ == '__main__':
unittest.main()