mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
152 lines
5.6 KiB
Python
152 lines
5.6 KiB
Python
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
import numpy as np
|
|
|
|
|
|
def FakeQuantization8BitsRowwise(data):
|
|
min_el = np.min(data, axis=1)
|
|
max_el = np.max(data, axis=1)
|
|
scale = (max_el - min_el) / 255.
|
|
bias = min_el
|
|
inv_scale = 1. / scale
|
|
data = data.T
|
|
data = np.round((data - bias) * inv_scale) * scale + bias
|
|
return data.T
|
|
|
|
|
|
class TestQuantize8bits(hu.HypothesisTestCase):
|
|
|
|
def test_quantize_op(self):
|
|
op = core.CreateOperator(
|
|
'FloatToRowwiseQuantized8Bits',
|
|
['input_data'],
|
|
['quantized_input', 'scale_bias'])
|
|
input_data = np.float32(np.asarray([[801., 786, 235.2, 2353.3434],
|
|
[5., 11., 9., -2.]]))
|
|
workspace.FeedBlob('input_data', input_data)
|
|
workspace.RunOperatorOnce(op)
|
|
op1 = core.CreateOperator(
|
|
'Rowwise8BitQuantizedToFloat',
|
|
['quantized_input', 'scale_bias'],
|
|
['dequantized_input'])
|
|
workspace.RunOperatorOnce(op1)
|
|
result = workspace.FetchBlob('dequantized_input')
|
|
ground_truth = FakeQuantization8BitsRowwise(input_data)
|
|
np.testing.assert_array_almost_equal(
|
|
result, ground_truth)
|
|
|
|
def test_quantize_tensor_with_const_row_op(self):
|
|
op = core.CreateOperator(
|
|
'FloatToRowwiseQuantized8Bits',
|
|
['input_data'],
|
|
['quantized_input', 'scale_bias'])
|
|
input_data = np.float32(np.asarray([[801., 786, 235.2, 2353.3434],
|
|
[9., 9., 9., 9.]]))
|
|
workspace.FeedBlob('input_data', input_data)
|
|
workspace.RunOperatorOnce(op)
|
|
op1 = core.CreateOperator(
|
|
'Rowwise8BitQuantizedToFloat',
|
|
['quantized_input', 'scale_bias'],
|
|
['dequantized_input'])
|
|
workspace.RunOperatorOnce(op1)
|
|
result = workspace.FetchBlob('dequantized_input')
|
|
ground_truth = FakeQuantization8BitsRowwise(input_data)
|
|
ground_truth[1, :] = 9.
|
|
np.testing.assert_array_almost_equal(
|
|
result, ground_truth)
|
|
|
|
def test_SparseSegmentUint8(self):
|
|
|
|
init_net = core.Net("init")
|
|
net = core.Net("bench")
|
|
size = 10**3
|
|
isize = 10**2
|
|
|
|
# input preparation
|
|
d = init_net.UniformFill([], shape=[size, 32])
|
|
w = init_net.UniformFill([], shape=[isize, ])
|
|
i = init_net.UniformIntFill([], shape=[isize], max=size - 1)
|
|
i = init_net.Cast([i], to=core.DataType.INT64)
|
|
l = init_net.ConstantFill(
|
|
[],
|
|
['l'],
|
|
shape=[isize // 10],
|
|
value=10,
|
|
dtype=core.DataType.INT32,
|
|
)
|
|
net.FloatToRowwiseQuantized8Bits([d],
|
|
['quantized_data', 'scale_bias'])
|
|
net.Rowwise8BitQuantizedToFloat(['quantized_data', 'scale_bias'],
|
|
['dequantized_data'])
|
|
|
|
# SparseLengthsWeightedSum
|
|
net.SparseLengthsWeightedSum(['dequantized_data', w, i, l],
|
|
['PositionWeighted_0'], engine='fp16')
|
|
net.SparseLengthsWeightedSum8BitsRowwise(
|
|
['quantized_data', w, i, l, 'scale_bias'],
|
|
['PositionWeighted_1'])
|
|
|
|
# SparseLengthsSum
|
|
net.SparseLengthsSum(['dequantized_data', i, l],
|
|
['Sum_0'], engine='fp16')
|
|
|
|
net.SparseLengthsSum8BitsRowwise(
|
|
['quantized_data', i, l, 'scale_bias'],
|
|
['Sum_1'])
|
|
|
|
# SparseLengthsWeightedMean
|
|
# net.SparseLengthsWeightedMean(['dequantized_data', w, i, l],
|
|
# ['WeightedMean_0'])
|
|
# net.SparseLengthsWeightedMean8BitsRowwise(
|
|
# ['quantized_data', w, i, l, 'scale_bias'],
|
|
# ['WeightedMean_1'])
|
|
|
|
# SparseLengthsMean
|
|
net.SparseLengthsMean(['dequantized_data', i, l],
|
|
['Mean_0'], engine='fp16')
|
|
|
|
net.SparseLengthsMean8BitsRowwise(
|
|
['quantized_data', i, l, 'scale_bias'],
|
|
['Mean_1'])
|
|
|
|
gathered_w = net.Gather(['quantized_data', i],
|
|
engine='fp16')
|
|
|
|
gathered_scale_bias = net.Gather(['scale_bias', i],
|
|
engine='fp16')
|
|
net.Rowwise8BitQuantizedToFloat(
|
|
[gathered_w, gathered_scale_bias],
|
|
'Gathered_1')
|
|
|
|
net.Gather(['dequantized_data', i], 'Gathered_0')
|
|
|
|
workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
|
|
workspace.RunNetOnce(init_net)
|
|
workspace.CreateNet(net)
|
|
workspace.RunNetOnce(net)
|
|
|
|
PositionWeighted_1 = workspace.FetchBlob('PositionWeighted_1')
|
|
ground_truth_posw = workspace.FetchBlob('PositionWeighted_0')
|
|
np.testing.assert_array_almost_equal(PositionWeighted_1,
|
|
ground_truth_posw, decimal=5)
|
|
Sum_1 = workspace.FetchBlob('Sum_1')
|
|
ground_truth_sum = workspace.FetchBlob('Sum_0')
|
|
np.testing.assert_array_almost_equal(Sum_1,
|
|
ground_truth_sum, decimal=5)
|
|
|
|
Mean_1 = workspace.FetchBlob('Mean_1')
|
|
ground_truth_mean = workspace.FetchBlob('Mean_0')
|
|
np.testing.assert_array_almost_equal(Mean_1,
|
|
ground_truth_mean, decimal=5)
|
|
|
|
Gathered_1 = workspace.FetchBlob('Gathered_1')
|
|
ground_truth_gathered = workspace.FetchBlob('Gathered_0')
|
|
np.testing.assert_array_almost_equal(Gathered_1,
|
|
ground_truth_gathered, decimal=5)
|