mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
558 lines
22 KiB
Python
558 lines
22 KiB
Python
## @package sparse_lookup
|
|
# Module caffe2.python.layers.sparse_lookup
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python.optimizer import FP16_ENGINES, Optimizer
|
|
from caffe2.python.helpers.arg_scope import get_current_scope
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import (
|
|
get_categorical_limit,
|
|
get_key,
|
|
IdList,
|
|
IdScoreList,
|
|
IdListWithEvicted,
|
|
IdScoreListWithEvicted,
|
|
LayerPsParam,
|
|
ModelLayer,
|
|
almost_equal_schemas,
|
|
)
|
|
import collections
|
|
import functools
|
|
import logging
|
|
import math
|
|
import numpy as np
|
|
import operator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_trainer_version_based_on_optim(optim_def):
|
|
if isinstance(optim_def, Optimizer) and hasattr(optim_def, "engine"):
|
|
logger.info(
|
|
"Attempting to set trainer version for engine {}".format(optim_def.engine)
|
|
)
|
|
if optim_def.engine in FP16_ENGINES:
|
|
logger.info("Setting FP16 trainer for engine {}".format(optim_def.engine))
|
|
return "fp16"
|
|
else:
|
|
logger.info("Setting FP32 trainer for engine {}".format(optim_def.engine))
|
|
return "fp32"
|
|
else:
|
|
return "fp32"
|
|
|
|
|
|
def get_sparse_lookup_predictor_version(
|
|
version,
|
|
blob_size=None,
|
|
min_blob_size_4bits=None,
|
|
embedding_dim=None,
|
|
sparse_feature_name=None,
|
|
):
|
|
assert version in {
|
|
'fp32', 'fp16', 'uint8rowwise', 'fused_uint8rowwise', 'fused_uint4rowwise'
|
|
}, "Unexpected version of sparse_lookup layer {0}".format(version)
|
|
if version == 'fused_uint4rowwise':
|
|
if (
|
|
blob_size is not None
|
|
and min_blob_size_4bits is not None
|
|
and embedding_dim is not None
|
|
):
|
|
if blob_size < min_blob_size_4bits:
|
|
logger.info(
|
|
"{} fall back to uint8 because lookup table size {} < min_blob_size_4bits {}".format(
|
|
sparse_feature_name,
|
|
blob_size,
|
|
min_blob_size_4bits,
|
|
)
|
|
)
|
|
version = 'fused_uint8rowwise'
|
|
|
|
if embedding_dim % 2 == 1:
|
|
logger.info(
|
|
"{} fall back to uint8 because lookup table dimension {} is not divisible by 2".format(
|
|
sparse_feature_name, embedding_dim
|
|
)
|
|
)
|
|
version = 'fused_uint8rowwise'
|
|
else:
|
|
raise ValueError(
|
|
(
|
|
"When 4 bit quantization is enabled for {}, "
|
|
"(i.e., Sparse lookup predictor version:{}), "
|
|
"requires arguments blob_size:{}, "
|
|
"min_blob_size_4bits:{}, embedding_dim:{}"
|
|
).format(
|
|
sparse_feature_name,
|
|
version,
|
|
blob_size,
|
|
min_blob_size_4bits,
|
|
embedding_dim
|
|
)
|
|
)
|
|
return version
|
|
|
|
|
|
def get_sparse_lookup_trainer_version(version):
|
|
assert version in {'fp32', 'fp16'},\
|
|
"Unexpected version of sparse_lookup layer {0}".format(version)
|
|
return version
|
|
|
|
def _is_id_list(input_record):
|
|
return almost_equal_schemas(input_record, IdList)
|
|
|
|
|
|
def _is_id_score_list(input_record):
|
|
return almost_equal_schemas(input_record,
|
|
IdScoreList,
|
|
check_field_types=False)
|
|
|
|
|
|
class SparseLookup(ModelLayer):
|
|
_id_list_supported_reducers = [
|
|
'LogMeanExp', 'LogSumExp', 'Max', 'Mean', 'Sum',
|
|
'WeightedSum', 'WeightedMean', 'Sqrt', 'None']
|
|
|
|
_id_score_list_supported_reducers = [
|
|
'PositionWeighted', 'RecencyWeighted', 'Mean', 'Sum', 'WeightedSum',
|
|
'WeightedMean', 'None'
|
|
]
|
|
|
|
_fp16_compatible_init_op_types = [
|
|
'Float16UniformFill'
|
|
]
|
|
|
|
_fp16_compatible_reducers = [
|
|
'Sum', 'Mean', 'Sqrt', 'PositionWeighted', 'RecencyWeighted',
|
|
]
|
|
|
|
def __init__(self, model, input_record, inner_shape, reducer,
|
|
weight_init=None, weight_optim=None,
|
|
name='sparse_lookup', regularizer=None, use_external_weights=False,
|
|
uniform_weight_init_scale_numerator=1.0, **kwargs):
|
|
|
|
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
|
|
|
|
self.sparse_key = get_key(self.input_record)()
|
|
logger.info("Setup the sparse lookup layer for " + self.sparse_key)
|
|
|
|
# TODO Add some asserts about input type
|
|
if isinstance(inner_shape, int):
|
|
inner_shape = [inner_shape]
|
|
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
|
|
"Unexpected type for inner_shape, expected list or tuple, got {0} for {1}".\
|
|
format(type(inner_shape), self.sparse_key)
|
|
|
|
if reducer == "PositionWeighted":
|
|
assert _is_id_score_list(self.input_record), (
|
|
"PositionWeighted only support IdScoreList, but got {} for {}"
|
|
+ "please use PositionWeighted layer to convert IdList "
|
|
+ "to IdScoreList"
|
|
).format(repr(self.input_record), self.sparse_key)
|
|
self.external_weights = self.input_record.values()
|
|
|
|
elif reducer == "RecencyWeighted":
|
|
assert _is_id_score_list(self.input_record), (
|
|
"RecencyWeighted only supports IdScoreList, "
|
|
"while the sparse feature {} is not.".format(self.sparse_key)
|
|
)
|
|
self.external_weights = self.input_record.values()
|
|
# TODO: create a new type of reducer with external weights to wrap
|
|
# this and the above two cases since essentially their input formats
|
|
# are the same.
|
|
elif use_external_weights:
|
|
assert _is_id_score_list(self.input_record), (
|
|
"Use_external_weights only supports IdScoreList, "
|
|
"while the sparse feature {} is not.".format(self.sparse_key)
|
|
)
|
|
assert reducer in ["Sum", "WeightedSum"], (
|
|
"Use_external_weights only supports Sum reducer, "
|
|
"while the reducer is {}.".format(reducer)
|
|
)
|
|
self.external_weights = self.input_record.values()
|
|
self.reducer = reducer
|
|
self.use_external_weights = use_external_weights
|
|
|
|
input_dim = get_categorical_limit(self.input_record)
|
|
assert input_dim > 0, "{} should have categorical limit > 0, but got {}".format(
|
|
self.sparse_key, input_dim
|
|
)
|
|
|
|
self.input_dim = input_dim
|
|
self.shape = [input_dim] + inner_shape
|
|
|
|
self.trainer_version = get_trainer_version_based_on_optim(
|
|
weight_optim
|
|
)
|
|
|
|
self.uniform_weight_init_scale_numerator = uniform_weight_init_scale_numerator
|
|
default_init_op = self._get_default_init_op()
|
|
|
|
self.weight_init = weight_init or default_init_op
|
|
|
|
self.evicted_values = None
|
|
if schema.equal_schemas(
|
|
self.input_record, IdListWithEvicted
|
|
) or schema.equal_schemas(
|
|
self.input_record, IdScoreListWithEvicted, check_field_types=False
|
|
):
|
|
self.evicted_values = self.input_record._evicted_values
|
|
|
|
# If fp16 is used, make sure fp16 init op is used
|
|
if self.trainer_version == "fp16":
|
|
assert self.reducer in self._fp16_compatible_reducers or use_external_weights, (
|
|
"Fp16 training is enabled. The reducer specified is not supported. "
|
|
"Got {}. Supported reducers: {}. Right now, in general, sum, mean, "
|
|
"positional pooling are supported. Attention is not. Please check "
|
|
"if there is fp16 trained sparse features using advanced pooling.".format(
|
|
self.reducer, self._fp16_compatible_reducers)
|
|
)
|
|
|
|
# if init op is UniformFill, we replace it directly
|
|
if self.weight_init[0] == "UniformFill":
|
|
self.weight_init = ("Float16UniformFill", self.weight_init[1])
|
|
assert self.weight_init[0] in self._fp16_compatible_init_op_types, (
|
|
"Fp16 training is enabled. Init op for weight parameter must be fp16 "
|
|
"compatibale. Got {}. Supported ops: {}".format(
|
|
self.weight_init[0],
|
|
self._fp16_compatible_init_op_types)
|
|
)
|
|
|
|
assert regularizer is None, "Regularizer is not compatible with fp16"
|
|
|
|
if self.input_record.lengths.metadata:
|
|
avg_length = self.input_record.lengths.metadata.expected_value
|
|
else:
|
|
avg_length = None
|
|
|
|
self.w = self.create_param(
|
|
param_name='w',
|
|
shape=self.shape,
|
|
initializer=self.weight_init,
|
|
optimizer=weight_optim,
|
|
ps_param=LayerPsParam(
|
|
sparse_key=self.sparse_key,
|
|
average_length=avg_length),
|
|
regularizer=regularizer
|
|
)
|
|
if self.evicted_values:
|
|
self.reinit_vec = self.create_param(
|
|
param_name="reinit_vec",
|
|
shape=inner_shape,
|
|
initializer=self.weight_init,
|
|
optimizer=model.NoOptim,
|
|
regularizer=None,
|
|
)
|
|
|
|
self.scale_bias_init = ('ConstantFill', {'value': 0.0})
|
|
|
|
self.scale_bias = self.create_param(
|
|
param_name='scale_bias',
|
|
shape=[],
|
|
initializer=self.scale_bias_init,
|
|
optimizer=model.NoOptim,
|
|
)
|
|
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, inner_shape),
|
|
self.get_next_blob_reference('output'),
|
|
)
|
|
|
|
def get_memory_usage(self):
|
|
return functools.reduce(operator.mul, self.shape) * 4
|
|
|
|
def get_fp16_compatible_parameters(self):
|
|
return [self.w]
|
|
|
|
def support_8bit(self):
|
|
# Rowwise quantization makes sense only if shape it's 2D matrix with
|
|
# second dimension >= 8
|
|
if len(self.shape) != 2 or self.shape[1] < 8:
|
|
return False
|
|
return True
|
|
|
|
def get_8bits_compatible_parameters(self, fused=True):
|
|
if not self.support_8bit():
|
|
return []
|
|
if fused:
|
|
RowwiseQuantized8BitsWeight = collections.namedtuple(
|
|
'RowwiseQuantized8BitsWeight', 'w'
|
|
)
|
|
return [RowwiseQuantized8BitsWeight(self.w)]
|
|
else:
|
|
RowwiseQuantized8BitsWeight = collections.namedtuple(
|
|
'RowwiseQuantized8BitsWeight', 'w, scale_bias'
|
|
)
|
|
return [RowwiseQuantized8BitsWeight(self.w, self.scale_bias)]
|
|
|
|
def _get_default_init_op(self):
|
|
scale = math.sqrt(self.uniform_weight_init_scale_numerator / self.input_dim)
|
|
|
|
if self.trainer_version == 'fp32':
|
|
default_weight_init = ('UniformFill', {'min': -scale, 'max': scale})
|
|
elif self.trainer_version == 'fp16':
|
|
default_weight_init = ("Float16UniformFill", {'min': -scale, 'max': scale})
|
|
else:
|
|
raise NotImplementedError(
|
|
"Train version {} is not currently supported for sparse feature {}".format(
|
|
trainer_version, self.sparse_key
|
|
)
|
|
)
|
|
|
|
return default_weight_init
|
|
|
|
def _gather_wrapper(self, net, version, in_indices, out):
|
|
# Gather can work on all kinds of input data types, and output
|
|
# data with the same type. Convert the output of Gather to float,
|
|
# because the follow-up Ops expect fp32.
|
|
if version == 'fp32':
|
|
return net.Gather([self.w, in_indices], out)
|
|
elif version == 'fp16':
|
|
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
|
|
return net.HalfToFloat(gathered_w, out)
|
|
elif version == 'uint8rowwise':
|
|
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
|
|
gathered_scale_bias = net.Gather(
|
|
[self.scale_bias, in_indices],
|
|
'gathered_scale_bias'
|
|
)
|
|
|
|
return net.Rowwise8BitQuantizedToFloat(
|
|
[gathered_w, gathered_scale_bias], out)
|
|
elif version == 'fused_uint8rowwise':
|
|
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
|
|
return net.Fused8BitRowwiseQuantizedToFloat(gathered_w, out)
|
|
elif version == 'fused_uint4rowwise':
|
|
gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
|
|
return net.Fused4BitRowwiseQuantizedToFloat(gathered_w, out)
|
|
|
|
else:
|
|
raise "Unsupported version of operators in SparseLookup " +\
|
|
"layer: {0} for sparse feature {1}".format(
|
|
version, self.sparse_key
|
|
)
|
|
|
|
def _sparse_lengths_weighted_reducer(
|
|
self,
|
|
in_indices,
|
|
weights,
|
|
reducer,
|
|
net,
|
|
version,
|
|
grad_on_weights=0,
|
|
):
|
|
op_input = [
|
|
self.w,
|
|
weights,
|
|
in_indices,
|
|
self.input_record.lengths(),
|
|
]
|
|
layer_name = 'SparseLengths' + reducer
|
|
|
|
if version in ['fp32', 'fp16']:
|
|
# SparseLengths* Ops will accept either fp16 or fp32 embedding
|
|
# matrix and output fp32 pooled embedding
|
|
# A special case here is that we need FP16 engine for
|
|
# SparseLengthsWeightedSum when FP16 embeedings are used for
|
|
# correct backward updates
|
|
if reducer == "WeightedSum" and version == "fp16":
|
|
net.SparseLengthsWeightedSum(
|
|
op_input,
|
|
self.output_schema.field_blobs(),
|
|
grad_on_weights=grad_on_weights,
|
|
engine='FP16',
|
|
)
|
|
else:
|
|
net.__getattr__(layer_name)(
|
|
op_input,
|
|
self.output_schema.field_blobs(),
|
|
grad_on_weights=grad_on_weights,
|
|
)
|
|
elif version == 'uint8rowwise':
|
|
op_input.insert(len(op_input), self.scale_bias)
|
|
net.__getattr__(layer_name + '8BitsRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
elif version == 'fused_uint8rowwise':
|
|
net.__getattr__(layer_name + 'Fused8BitRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
elif version == 'fused_uint4rowwise':
|
|
net.__getattr__(layer_name + 'Fused4BitRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
else:
|
|
raise "Unsupported version of operator in SparseLookUp " +\
|
|
"layer: {0} for sparse feature {1}".format(
|
|
version, self.sparse_key
|
|
)
|
|
|
|
# deal with sparse features of id_list type
|
|
def _add_ops_id_list(self, net, version):
|
|
assert self.reducer in self._id_list_supported_reducers, (
|
|
"Unsupported reducer: {} for ID_LIST {}".format(
|
|
self.reducer, self.sparse_key
|
|
)
|
|
)
|
|
if self.reducer in ['Sum', 'Mean', 'WeightedSum', 'WeightedMean']:
|
|
op_input = [self.w,
|
|
self.input_record.items(),
|
|
self.input_record.lengths()]
|
|
|
|
# For id list features, the behaviors of 'Sum' and
|
|
# 'WeightedSum' are identical, since we can regard the weight on each
|
|
# id as 1. Similarly, for 'Mean' and 'WeightedMean'.
|
|
if self.reducer == 'WeightedSum':
|
|
self.reducer = 'Sum'
|
|
elif self.reducer == 'WeightedMean':
|
|
self.reducer = 'Mean'
|
|
|
|
layer_name = 'SparseLengths' + self.reducer
|
|
if version in ['fp32', 'fp16']:
|
|
# SparseLengths* Ops will accept either fp16 or fp32 embedding
|
|
# matrix and output fp32 pooled embedding
|
|
net.__getattr__(layer_name)(
|
|
op_input,
|
|
self.output_schema.field_blobs(),
|
|
)
|
|
elif version == 'uint8rowwise':
|
|
op_input.insert(len(op_input), self.scale_bias)
|
|
net.__getattr__(layer_name + '8BitsRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
elif version == 'fused_uint8rowwise':
|
|
net.__getattr__(layer_name + 'Fused8BitRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
elif version == 'fused_uint4rowwise':
|
|
net.__getattr__(layer_name + 'Fused4BitRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
else:
|
|
raise "Unsupported version of operator in SparseLookUp " +\
|
|
"layer: {0} for sparse feature {1}".format(
|
|
version, self.sparse_key
|
|
)
|
|
|
|
elif self.reducer == 'Sqrt':
|
|
sqrt_weight = net.LengthsToWeights(
|
|
[self.input_record.lengths()],
|
|
[net.NextScopedBlob('lengths_sqrt')],
|
|
power=0.5,
|
|
)
|
|
self._sparse_lengths_weighted_reducer(
|
|
self.input_record.items(),
|
|
sqrt_weight,
|
|
'WeightedSum', net, version)
|
|
|
|
elif self.reducer == 'None':
|
|
# Gather operator will gather the embedding for each id of
|
|
# each IdList.
|
|
self._gather_wrapper(net, version, self.input_record.items(),
|
|
self.output_schema.field_blobs())
|
|
|
|
else:
|
|
table_rows = self._gather_wrapper(
|
|
net, version, self.input_record.items(), 'table_rows')
|
|
|
|
segment_ids = net.LengthsToSegmentIds(
|
|
self.input_record.lengths(),
|
|
net.NextScopedBlob(self.input_record.lengths() + '_sid'))
|
|
net.__getattr__('SortedSegmentRange' + self.reducer)(
|
|
[table_rows, segment_ids],
|
|
self.output_schema.field_blobs(),
|
|
)
|
|
|
|
# deal with sparse features of id_score_list type
|
|
def _add_ops_id_score_list(self, net, version):
|
|
assert self.reducer in self._id_score_list_supported_reducers, (
|
|
"Unsupported reducer: {} for ID_SCORE_LIST {}".format(
|
|
self.reducer, self.sparse_key
|
|
)
|
|
)
|
|
if self.reducer in ['WeightedSum', 'WeightedMean']:
|
|
self._sparse_lengths_weighted_reducer(
|
|
self.input_record.keys(),
|
|
self.input_record.values(),
|
|
self.reducer, net, version)
|
|
|
|
elif self.reducer in ['PositionWeighted', 'RecencyWeighted'] or self.use_external_weights:
|
|
self._sparse_lengths_weighted_reducer(
|
|
self.input_record.keys(),
|
|
self.external_weights,
|
|
'WeightedSum', net, version, grad_on_weights=1)
|
|
|
|
elif self.reducer in ['Sum', 'Mean']:
|
|
op_input = [self.w,
|
|
self.input_record.keys(),
|
|
self.input_record.lengths()]
|
|
|
|
layer_name = 'SparseLengths' + self.reducer
|
|
|
|
if version in ['fp32', 'fp16']:
|
|
net.__getattr__(layer_name)(
|
|
op_input,
|
|
self.output_schema.field_blobs(),
|
|
)
|
|
elif version == 'uint8rowwise':
|
|
net.__getattr__(layer_name + '8BitsRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
elif version == 'fused_uint8rowwise':
|
|
net.__getattr__(layer_name + 'Fused8BitRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
elif version == 'fused_uint4rowwise':
|
|
net.__getattr__(layer_name + 'Fused4BitRowwise')(
|
|
op_input, self.output_schema.field_blobs())
|
|
else:
|
|
raise "Unsupported version of operator in SparseLookUp " +\
|
|
"layer: {0} for sparse feature {1}".format(
|
|
version, self.sparse_key
|
|
)
|
|
|
|
elif self.reducer == 'None':
|
|
# Gather operator will gather the embedding for each id of
|
|
# each IdList.
|
|
self._gather_wrapper(net, version, self.input_record.keys(),
|
|
self.output_schema.field_blobs())
|
|
else:
|
|
raise "Only Sum, Mean, None are supported for IdScoreList input." +\
|
|
"Trying to create with {} for sparse feature {}".format(
|
|
self.reducer, self.sparse_key
|
|
)
|
|
|
|
def _add_ops(self, net, version='fp32', is_train=True):
|
|
if self.evicted_values and is_train:
|
|
net.CopyRowsToTensor(
|
|
[self.w, self.evicted_values.get(), self.reinit_vec], [self.w])
|
|
if _is_id_list(self.input_record):
|
|
self._add_ops_id_list(net, version=version)
|
|
elif _is_id_score_list(self.input_record):
|
|
self._add_ops_id_score_list(net, version=version)
|
|
else:
|
|
raise "Unsupported input type {0}".format(self.input_record)
|
|
|
|
def add_train_ops(self, net):
|
|
self._add_ops(net, self.trainer_version, is_train=True)
|
|
|
|
def add_ops(self, net):
|
|
version_info = get_current_scope().get(
|
|
get_sparse_lookup_predictor_version.__name__, {'version': 'fp32'}
|
|
)
|
|
lookup_table_blob_size = self.shape[0] * self.shape[1]
|
|
version = get_sparse_lookup_predictor_version(
|
|
version_info['version'],
|
|
blob_size=lookup_table_blob_size,
|
|
min_blob_size_4bits=(
|
|
version_info['min_blob_size_4bits']
|
|
if 'min_blob_size_4bits' in version_info
|
|
else None
|
|
),
|
|
embedding_dim=self.shape[1],
|
|
sparse_feature_name=self.sparse_key,
|
|
)
|
|
|
|
# TODO(amalevich): Layer should not be responsible for decision about
|
|
# quantization.
|
|
if not self.support_8bit() and version in {'uint8rowwise',
|
|
'fused_uint8rowwise',
|
|
'fused_uint4rowwise'}:
|
|
version = 'fp16'
|
|
|
|
self._add_ops(net, version, is_train=False)
|