mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
72 lines
2.2 KiB
Python
72 lines
2.2 KiB
Python
## @package sampling_train
|
|
# Module caffe2.python.layers.sampling_train
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import ModelLayer, get_layer_class
|
|
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
|
|
|
|
|
|
class SamplingTrain(ModelLayer):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
input_record,
|
|
prediction_layer,
|
|
output_dims,
|
|
subtract_log_odd=True,
|
|
name='sampling_train',
|
|
**kwargs
|
|
):
|
|
super(SamplingTrain, self).__init__(
|
|
model, name, input_record, **kwargs
|
|
)
|
|
|
|
layer_class = get_layer_class(prediction_layer)
|
|
assert issubclass(layer_class, SamplingTrainableMixin)
|
|
|
|
assert 'indices' in input_record
|
|
assert isinstance(input_record.indices, schema.Scalar),\
|
|
"input_record.indices is expected to be a schema.Scalar"
|
|
assert 'input' in input_record
|
|
|
|
self.subtract_log_odd = subtract_log_odd
|
|
if self.subtract_log_odd:
|
|
assert 'sampling_prob' in input_record
|
|
|
|
self._prediction_layer = layer_class(
|
|
model,
|
|
input_record.input,
|
|
output_dims=output_dims,
|
|
**kwargs
|
|
)
|
|
|
|
self._prediction_layer.train_param_blobs = [
|
|
model.net.NextBlob(str(blob) + '_sampled')
|
|
for blob in self._prediction_layer.param_blobs
|
|
]
|
|
|
|
self.params = self._prediction_layer.params
|
|
|
|
self.output_schema = self._prediction_layer.output_schema
|
|
|
|
def add_ops(self, net):
|
|
self._prediction_layer.add_ops(net)
|
|
|
|
def add_train_ops(self, net):
|
|
for full_blob, sampled_blob in zip(
|
|
self._prediction_layer.param_blobs,
|
|
self._prediction_layer.train_param_blobs
|
|
):
|
|
net.Gather([full_blob, self.input_record.indices()], sampled_blob)
|
|
self._prediction_layer.add_train_ops(net)
|
|
if not self.subtract_log_odd:
|
|
return
|
|
log_q = net.Log(self.input_record.sampling_prob(),
|
|
net.NextScopedBlob("log_q"))
|
|
net.Sub([self.output_schema(), log_q], self.output_schema(),
|
|
broadcast=1, use_grad_hack=1)
|