mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
136 lines
4.9 KiB
Python
136 lines
4.9 KiB
Python
## @package conv
|
|
# Module caffe2.python.layers.conv
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
)
|
|
import numpy as np
|
|
|
|
|
|
class Conv(ModelLayer):
|
|
"""
|
|
Convolutional layer
|
|
Input:
|
|
- input_record: at least has the shape info of C (num_channels)
|
|
- output_dim: number of convolutional filters
|
|
- kernel_h, kernel_w: kernel size for h and w
|
|
- stride_h, stride_w: stride for h and w
|
|
- pad_b, pad_l, pad_r, pad_t: padding sizes, if stride == 1,
|
|
'None' value will do auto padding
|
|
- order: either 'NHWC' or 'NCHW'
|
|
"""
|
|
|
|
def __init__(self, model, input_record, output_dim, kernel_h, kernel_w,
|
|
stride_h, stride_w, pad_b=None, pad_l=None, pad_r=None,
|
|
pad_t=None, order='NHWC', kernel_init=None, bias_init=None,
|
|
kernel_optim=None, bias_optim=None,
|
|
name='conv', **kwargs):
|
|
|
|
super(Conv, self).__init__(model, name, input_record, **kwargs)
|
|
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
|
|
# input num_channels (C) is needed
|
|
input_dims = input_record.field_type().shape
|
|
|
|
assert (kernel_h > 0 and isinstance(kernel_h, int)), (
|
|
"kernel_h should be positive integer")
|
|
assert (kernel_w > 0 and isinstance(kernel_w, int)), (
|
|
"kernel_w should be positive integer")
|
|
self.kernel_h = kernel_h
|
|
self.kernel_w = kernel_w
|
|
|
|
assert (stride_h > 0 and isinstance(stride_h, int)), (
|
|
"stride_h should be positive integer")
|
|
assert (stride_w > 0 and isinstance(stride_w, int)), (
|
|
"stride_w should be positive integer")
|
|
self.stride_h = stride_h
|
|
self.stride_w = stride_w
|
|
|
|
# output_dim calculation (http://cs231n.github.io/convolutional-networks/)
|
|
# output_dim_w = (input_dim_w - kernel_w + pad_r + pad_l) / stride_w + 1
|
|
# so, do auto_padding requires
|
|
# pad_r, pad_l = [(input_dim_w - 1) * stride_w - input_dim_w + kernel_w] / 2
|
|
# similair for pad_t and pad_b to auto pad kernel_h
|
|
# here we only do auto padding for stride = 1 case
|
|
if stride_h == 1:
|
|
pad_t = int((kernel_h - 1) / 2) if pad_t is None else pad_t
|
|
pad_b = int((kernel_h - 1) / 2) if pad_b is None else pad_b
|
|
else:
|
|
pad_t = 0 if pad_t is None else pad_t
|
|
pad_b = 0 if pad_b is None else pad_b
|
|
|
|
if stride_w == 1:
|
|
pad_r = int((kernel_w - 1) / 2) if pad_r is None else pad_r
|
|
pad_l = int((kernel_w - 1) / 2) if pad_l is None else pad_l
|
|
else:
|
|
pad_r = 0 if pad_r is None else pad_r
|
|
pad_l = 0 if pad_l is None else pad_l
|
|
|
|
assert (pad_t >= 0 and isinstance(pad_t, int)), "pad_t should be int >= 0"
|
|
assert (pad_b >= 0 and isinstance(pad_b, int)), "pad_b should be int >= 0"
|
|
assert (pad_r >= 0 and isinstance(pad_r, int)), "pad_r should be int >= 0"
|
|
assert (pad_l >= 0 and isinstance(pad_l, int)), "pad_l should be int >= 0"
|
|
self.pad_t = pad_t
|
|
self.pad_b = pad_b
|
|
self.pad_r = pad_r
|
|
self.pad_l = pad_l
|
|
|
|
assert order in ['NHWC', 'NCHW'], "order should either 'NHWC' or 'NCHW'"
|
|
self.order = order
|
|
|
|
if order == 'NHWC':
|
|
input_c = input_dims[-1]
|
|
kernel_shape = [output_dim, kernel_h, kernel_w, input_c]
|
|
elif order == 'NCHW':
|
|
input_c = input_dims[0]
|
|
kernel_shape = [output_dim, input_c, kernel_h, kernel_w]
|
|
assert input_c > 0, (
|
|
"Number of input channels in conv parameters should be positive")
|
|
|
|
kernel_init = kernel_init if kernel_init else (
|
|
'XavierFill', {}
|
|
)
|
|
bias_init = bias_init if bias_init else (
|
|
'ConstantFill', {'value': 0.0}
|
|
)
|
|
|
|
self.kernel = self.create_param(
|
|
param_name='conv_kernel',
|
|
shape=kernel_shape,
|
|
initializer=kernel_init,
|
|
optimizer=kernel_optim,
|
|
)
|
|
|
|
self.bias = self.create_param(
|
|
param_name='conv_bias',
|
|
shape=[output_dim],
|
|
initializer=bias_init,
|
|
optimizer=bias_optim,
|
|
)
|
|
|
|
# the output_schema only has the num of output channels
|
|
# output_h and output_w would be inferred internally
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, (output_dim,)),
|
|
self.get_next_blob_reference('output')
|
|
)
|
|
|
|
def add_ops(self, net):
|
|
net.Conv(
|
|
self.input_record.field_blobs() + [self.kernel, self.bias],
|
|
self.output_schema.field_blobs(),
|
|
kernel_h=self.kernel_h,
|
|
kernel_w=self.kernel_w,
|
|
stride_h=self.stride_h,
|
|
stride_w=self.stride_w,
|
|
pad_t=self.pad_t,
|
|
pad_l=self.pad_l,
|
|
pad_b=self.pad_b,
|
|
pad_r=self.pad_r,
|
|
order=self.order
|
|
)
|