mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
114 lines
3.8 KiB
Python
114 lines
3.8 KiB
Python
## @package layer_model_instantiator
|
|
# Module caffe2.python.layer_model_instantiator
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import InstantiationContext
|
|
from caffe2.python.layers.tags import Tags
|
|
|
|
|
|
def _filter_layers(layers, include_tags):
|
|
if include_tags is None:
|
|
return layers
|
|
include_tags = set(include_tags)
|
|
return [l for l in layers if not include_tags.isdisjoint(l.tags)]
|
|
|
|
|
|
def shrink_output_schema(net, out_schema):
|
|
if len(out_schema.field_names()) <= 1:
|
|
return out_schema
|
|
exists = [net.BlobIsDefined(blob) for blob in out_schema.field_blobs()]
|
|
return schema.from_column_list(
|
|
[
|
|
col_name for ok, col_name in
|
|
zip(exists, out_schema.field_names()) if ok
|
|
],
|
|
[
|
|
col_type for ok, col_type in
|
|
zip(exists, out_schema.field_types()) if ok
|
|
],
|
|
[
|
|
col_blob for ok, col_blob in
|
|
zip(exists, out_schema.field_blobs()) if ok
|
|
],
|
|
[
|
|
col_meta for ok, col_meta in
|
|
zip(exists, out_schema.field_metadata()) if ok
|
|
]
|
|
)
|
|
|
|
|
|
def generate_predict_net(model, include_tags=None):
|
|
predict_net = core.Net('predict_net')
|
|
|
|
for layer in _filter_layers(model.layers, include_tags):
|
|
if Tags.EXCLUDE_FROM_PREDICTION not in layer.tags:
|
|
layer.add_operators(
|
|
predict_net, context=InstantiationContext.PREDICTION)
|
|
|
|
predict_net.set_input_record(model.input_feature_schema.clone())
|
|
output_schema = shrink_output_schema(
|
|
predict_net, model.output_schema.clone()
|
|
)
|
|
predict_net.set_output_record(output_schema)
|
|
return predict_net
|
|
|
|
|
|
def generate_eval_net(model, include_tags=None):
|
|
eval_net = core.Net('eval_net')
|
|
|
|
for layer in _filter_layers(model.layers, include_tags):
|
|
if Tags.EXCLUDE_FROM_EVAL not in layer.tags:
|
|
layer.add_operators(eval_net, context=InstantiationContext.EVAL)
|
|
|
|
input_schema = model.input_feature_schema + model.trainer_extra_schema
|
|
eval_net.set_input_record(input_schema)
|
|
output_schema = shrink_output_schema(
|
|
eval_net, model.output_schema + model.metrics_schema
|
|
)
|
|
eval_net.set_output_record(output_schema)
|
|
return eval_net
|
|
|
|
|
|
def _generate_training_net_only(model, include_tags=None):
|
|
train_net = core.Net('train_net')
|
|
train_init_net = model.create_init_net('train_init_net')
|
|
|
|
for layer in _filter_layers(model.layers, include_tags):
|
|
if Tags.EXCLUDE_FROM_TRAIN not in layer.tags:
|
|
layer.add_operators(train_net, train_init_net)
|
|
|
|
input_schema = model.input_feature_schema + model.trainer_extra_schema
|
|
train_net.set_input_record(input_schema)
|
|
output_schema = shrink_output_schema(
|
|
train_net, model.output_schema + model.metrics_schema
|
|
)
|
|
train_net.set_output_record(output_schema)
|
|
return train_init_net, train_net
|
|
|
|
|
|
def generate_training_nets_forward_only(model, include_tags=None):
|
|
train_init_net, train_net = _generate_training_net_only(model, include_tags)
|
|
return train_init_net, train_net
|
|
|
|
|
|
def generate_training_nets(model, include_tags=None):
|
|
train_init_net, train_net = _generate_training_net_only(model, include_tags)
|
|
|
|
model.apply_regularizers_on_loss(train_net, train_init_net)
|
|
if not model.has_loss():
|
|
return train_init_net, train_net
|
|
loss = model.loss
|
|
grad_map = train_net.AddGradientOperators(loss.field_blobs())
|
|
model.apply_post_grad_net_modifiers(train_net, train_init_net, grad_map,
|
|
modify_output_record=True)
|
|
model.apply_optimizers(train_net, train_init_net, grad_map)
|
|
model.apply_regularizers_after_optimizer(train_net, train_init_net, grad_map)
|
|
model.apply_final_net_modifiers(train_net, train_init_net, grad_map,
|
|
modify_output_record=True)
|
|
|
|
return train_init_net, train_net
|