mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
198 lines
6.3 KiB
Python
198 lines
6.3 KiB
Python
## @package fc
|
|
# Module caffe2.python.helpers.fc
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core
|
|
from caffe2.python.modeling import initializers
|
|
from caffe2.python.modeling.parameter_info import ParameterTags
|
|
|
|
|
|
def _FC_or_packed_FC(
|
|
model, op_call, blob_in, blob_out, dim_in, dim_out, weight_init=None,
|
|
bias_init=None, WeightInitializer=None, BiasInitializer=None,
|
|
enable_tensor_core=False, float16_compute=False, **kwargs
|
|
):
|
|
WeightInitializer = initializers.update_initializer(
|
|
WeightInitializer, weight_init, ("XavierFill", {})
|
|
)
|
|
BiasInitializer = initializers.update_initializer(
|
|
BiasInitializer, bias_init, ("ConstantFill", {})
|
|
)
|
|
if not model.init_params:
|
|
WeightInitializer = initializers.ExternalInitializer()
|
|
BiasInitializer = initializers.ExternalInitializer()
|
|
|
|
blob_out = blob_out or model.net.NextName()
|
|
bias_tags = [ParameterTags.BIAS]
|
|
if 'freeze_bias' in kwargs:
|
|
bias_tags.append(ParameterTags.COMPUTED_PARAM)
|
|
|
|
weight = model.create_param(
|
|
param_name=blob_out + '_w',
|
|
shape=[dim_out, dim_in],
|
|
initializer=WeightInitializer,
|
|
tags=ParameterTags.WEIGHT
|
|
)
|
|
bias = model.create_param(
|
|
param_name=blob_out + '_b',
|
|
shape=[dim_out, ],
|
|
initializer=BiasInitializer,
|
|
tags=bias_tags
|
|
)
|
|
|
|
# enable TensorCore by setting appropriate engine
|
|
if enable_tensor_core:
|
|
kwargs['engine'] = 'TENSORCORE'
|
|
|
|
# Enable float 16 compute kernel (relevant for CUDA)
|
|
if float16_compute:
|
|
kwargs['float16_compute'] = True
|
|
|
|
return op_call([blob_in, weight, bias], blob_out, **kwargs)
|
|
|
|
|
|
def fc(model, *args, **kwargs):
|
|
return _FC_or_packed_FC(model, model.net.FC, *args, **kwargs)
|
|
|
|
|
|
def packed_fc(model, *args, **kwargs):
|
|
return _FC_or_packed_FC(model, model.net.PackedFC, *args, **kwargs)
|
|
|
|
|
|
def fc_decomp(
|
|
model, blob_in, blob_out, dim_in, dim_out,
|
|
rank_approx=5, weight_init=None, bias_init=None,
|
|
WeightInitializer=None, BiasInitializer=None, **kwargs
|
|
):
|
|
"""FC_Decomp version
|
|
Here we assume that the rank of original input is bigger than 5.
|
|
"""
|
|
WeightInitializer = initializers.update_initializer(
|
|
WeightInitializer, weight_init, ("XavierFill", {})
|
|
)
|
|
BiasInitializer = initializers.update_initializer(
|
|
BiasInitializer, bias_init, ("ConstantFill", {})
|
|
)
|
|
blob_out = blob_out or model.net.NextName()
|
|
u = model.create_param(
|
|
param_name=blob_out + '_u',
|
|
shape=[dim_out, rank_approx],
|
|
initializer=WeightInitializer,
|
|
)
|
|
v = model.create_param(
|
|
param_name=blob_out + '_v',
|
|
shape=[dim_in, rank_approx],
|
|
initializer=WeightInitializer,
|
|
)
|
|
bias = model.create_param(
|
|
param_name=blob_out + '_b',
|
|
shape=[dim_out, ],
|
|
initializer=BiasInitializer,
|
|
)
|
|
return model.net.FC_Decomp([blob_in, u, v, bias], blob_out, **kwargs)
|
|
|
|
|
|
def fc_prune(
|
|
model, blob_in, blob_out, dim_in, dim_out,
|
|
weight_init=None, bias_init=None, mask_init=None,
|
|
threshold=0.00001, need_compress_rate=False,
|
|
comp_lb=0.05,
|
|
**kwargs
|
|
):
|
|
"""FC_Prune version
|
|
Runnable so far. Great!:)
|
|
"""
|
|
weight_init = weight_init if weight_init else ('XavierFill', {})
|
|
bias_init = bias_init if bias_init else ('ConstantFill', {})
|
|
mask_init = mask_init if mask_init else ('ConstantFill', {})
|
|
blob_out = blob_out or model.net.NextName()
|
|
compress_rate = blob_out + '_compress_rate'
|
|
if model.init_params:
|
|
compress_lb = model.param_init_net.ConstantFill(
|
|
[],
|
|
blob_out + '_lb',
|
|
shape=[1],
|
|
value=comp_lb
|
|
)
|
|
weight = model.param_init_net.__getattr__(weight_init[0])(
|
|
[],
|
|
blob_out + '_w',
|
|
shape=[dim_out, dim_in],
|
|
**weight_init[1]
|
|
)
|
|
mask = model.param_init_net.ConstantFill(
|
|
[],
|
|
blob_out + '_m',
|
|
shape=[dim_out, dim_in],
|
|
value=1.0
|
|
)
|
|
ag_dw = model.param_init_net.__getattr__(mask_init[0])(
|
|
[],
|
|
blob_out + '_ag_dw',
|
|
shape=[dim_out, dim_in],
|
|
**mask_init[1]
|
|
)
|
|
bias = model.param_init_net.__getattr__(bias_init[0])(
|
|
[],
|
|
blob_out + '_b',
|
|
shape=[dim_out, ],
|
|
**bias_init[1]
|
|
)
|
|
mask_seq = model.param_init_net.__getattr__(mask_init[0])(
|
|
[],
|
|
blob_out + '_mask_seq',
|
|
shape=[dim_out, dim_in],
|
|
**mask_init[1]
|
|
)
|
|
thres = model.param_init_net.ConstantFill(
|
|
[],
|
|
blob_out + '_thres',
|
|
shape=[1],
|
|
value=threshold
|
|
)
|
|
else:
|
|
compress_lb = core.ScopedBlobReference(
|
|
blob_out + '_lb', model.param_init_net)
|
|
weight = core.ScopedBlobReference(
|
|
blob_out + '_w', model.param_init_net)
|
|
bias = core.ScopedBlobReference(
|
|
blob_out + '_b', model.param_init_net)
|
|
mask = core.ScopedBlobReference(
|
|
blob_out + '_m', model.param_init_net)
|
|
ag_dw = core.ScopedBlobReference(
|
|
blob_out + '_ag_dw', model.param_init_net)
|
|
mask_seq = core.ScopedBlobReference(
|
|
blob_out + '_mask_seq', model.param_init_net)
|
|
thres = core.ScopedBlobReference(
|
|
blob_out + '_thres', model.param_init_net)
|
|
|
|
model.AddParameter(weight)
|
|
model.AddParameter(bias)
|
|
if need_compress_rate:
|
|
return model.net.FC_Prune([blob_in, weight, mask, bias, ag_dw, mask_seq,
|
|
thres, compress_lb],
|
|
[blob_out, compress_rate], **kwargs)
|
|
else:
|
|
return model.net.FC_Prune([blob_in, weight, mask,
|
|
bias, ag_dw, mask_seq,
|
|
thres, compress_lb],
|
|
blob_out, **kwargs)
|
|
|
|
|
|
def fc_sparse(
|
|
model, blob_in, blob_out, w_csr, iw, jw, bias,
|
|
**kwargs
|
|
):
|
|
"""FC_Sparse: Only takes in allocated weights"""
|
|
if not (w_csr and iw and jw and bias):
|
|
print("Warning...")
|
|
model.AddParameter(w_csr)
|
|
model.AddParameter(iw)
|
|
model.AddParameter(jw)
|
|
model.AddParameter(bias)
|
|
return model.net.FC_Sparse([blob_in, w_csr, iw, jw, bias],
|
|
blob_out, **kwargs)
|