mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: + Add ArgMin support to Caffe2 to PyTorch converter + Using hypothesis to parameterize different conditions for test Test Plan: buck test //caffe2/torch/fb/model_transform/c2_convert:c2_pt_converter_test Reviewed By: houseroad Differential Revision: D25016203 fbshipit-source-id: 94489fcf1ed3183ec96f9796a5b4fb348fbde5bc
49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
## @package algebra
|
|
# Module caffe2.python.helpers.algebra
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpose(model, blob_in, blob_out, use_cudnn=False, **kwargs):
|
|
"""Transpose."""
|
|
if use_cudnn:
|
|
kwargs['engine'] = 'CUDNN'
|
|
return model.net.Transpose(blob_in, blob_out, **kwargs)
|
|
|
|
|
|
def sum(model, blob_in, blob_out, **kwargs):
|
|
"""Sum"""
|
|
return model.net.Sum(blob_in, blob_out, **kwargs)
|
|
|
|
|
|
def reduce_sum(model, blob_in, blob_out, **kwargs):
|
|
"""ReduceSum"""
|
|
return model.net.ReduceSum(blob_in, blob_out, **kwargs)
|
|
|
|
|
|
def sub(model, blob_in, blob_out, **kwargs):
|
|
"""Subtract"""
|
|
return model.net.Sub(blob_in, blob_out, **kwargs)
|
|
|
|
|
|
def mat_mul(model, blob_in, blob_out, **kwargs):
|
|
"""Matrix multiplication"""
|
|
return model.net.MatMul(blob_in, blob_out, **kwargs)
|
|
|
|
|
|
def arg_min(model, blob_in, blob_out, **kwargs):
|
|
"""ArgMin"""
|
|
return model.net.ArgMin(blob_in, blob_out, **kwargs)
|
|
|
|
def batch_mat_mul(model, blob_in, blob_out,
|
|
enable_tensor_core=False, **kwargs):
|
|
if enable_tensor_core:
|
|
kwargs['engine'] = 'TENSORCORE'
|
|
|
|
return model.net.BatchMatMul(blob_in, blob_out, **kwargs)
|
|
|
|
def sparse_lengths_sum_4bit_rowwise_sparse(model, blob_in, blob_out, **kwargs):
|
|
return model.net.SparseLengthsSum4BitRowwiseSparse(blob_in, blob_out, **kwargs)
|