Files
pytorch/caffe2/python/helpers/algebra.py
Newsha Ardalani 0fb58d76a1 Support ArgMin in c2_pt_converter
Summary:
+ Add ArgMin support to Caffe2 to PyTorch converter
+ Using hypothesis to parameterize different conditions for test

Test Plan: buck test //caffe2/torch/fb/model_transform/c2_convert:c2_pt_converter_test

Reviewed By: houseroad

Differential Revision: D25016203

fbshipit-source-id: 94489fcf1ed3183ec96f9796a5b4fb348fbde5bc
2020-12-05 16:35:34 -08:00

49 lines
1.3 KiB
Python

## @package algebra
# Module caffe2.python.helpers.algebra
def transpose(model, blob_in, blob_out, use_cudnn=False, **kwargs):
"""Transpose."""
if use_cudnn:
kwargs['engine'] = 'CUDNN'
return model.net.Transpose(blob_in, blob_out, **kwargs)
def sum(model, blob_in, blob_out, **kwargs):
"""Sum"""
return model.net.Sum(blob_in, blob_out, **kwargs)
def reduce_sum(model, blob_in, blob_out, **kwargs):
"""ReduceSum"""
return model.net.ReduceSum(blob_in, blob_out, **kwargs)
def sub(model, blob_in, blob_out, **kwargs):
"""Subtract"""
return model.net.Sub(blob_in, blob_out, **kwargs)
def mat_mul(model, blob_in, blob_out, **kwargs):
"""Matrix multiplication"""
return model.net.MatMul(blob_in, blob_out, **kwargs)
def arg_min(model, blob_in, blob_out, **kwargs):
"""ArgMin"""
return model.net.ArgMin(blob_in, blob_out, **kwargs)
def batch_mat_mul(model, blob_in, blob_out,
enable_tensor_core=False, **kwargs):
if enable_tensor_core:
kwargs['engine'] = 'TENSORCORE'
return model.net.BatchMatMul(blob_in, blob_out, **kwargs)
def sparse_lengths_sum_4bit_rowwise_sparse(model, blob_in, blob_out, **kwargs):
return model.net.SparseLengthsSum4BitRowwiseSparse(blob_in, blob_out, **kwargs)