Files
pytorch/torch/_dynamo/package.py
PyTorch MergeBot 5b427c92a8 Revert "[BE][4/16] fix typos in torch/ (torch/_dynamo/) (#156314)"
This reverts commit ead741c5fb0036e0fc95b79d4fe1af3a426e1306.

Reverted https://github.com/pytorch/pytorch/pull/156314 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00

412 lines
15 KiB
Python

"""
This module provides the infrastructure for creating and managing compile package
for torch.compile. We mainly have two abstractions here:
- CompilePackage: Overarching data structure for store and lookup a list of compiled codes.
- CodeCacheEntry: Data structure for a single code being compiled by torch.compile.
The caching behavior is always under user control explicitly so that a stronger guarantee can
be provided about cache hit for a specific compiled model. Users can load the compile package
from a different process or host.
"""
import contextlib
import dataclasses
import functools
import hashlib
import importlib
import logging
import os
import pickle
import platform
import sys
import types
from collections.abc import Generator
from typing import Any, NewType, Optional
import torch
import torch._inductor.package
from torch._dynamo.precompile_context import PrecompileCacheArtifact, PrecompileContext
from torch.compiler._cache import CacheArtifactFactory
from .bytecode_transformation import get_code_keys
logger = logging.getLogger(__name__)
@dataclasses.dataclass(frozen=True)
class SerializedCode:
co_argcount: int
co_posonlyargcount: int
co_kwonlyargcount: int
co_nlocals: int
co_stacksize: int
co_flags: int
co_code: bytes
co_consts: tuple[Any, ...]
co_names: tuple[str, ...]
co_varnames: tuple[str, ...]
co_filename: str
co_name: str
co_firstlineno: int
co_cellvars: tuple[str, ...]
co_freevars: tuple[str, ...]
co_linetable: Optional[bytes] = None
co_qualname: Optional[str] = None
co_exceptiontable: Optional[bytes] = None
co_lnotab: Optional[str] = None
@classmethod
@functools.cache
def from_code_object(cls, code: types.CodeType) -> "SerializedCode":
kwargs = {key: getattr(code, key) for key in get_code_keys()}
kwargs["co_consts"] = tuple(
cls.from_code_object(c) if isinstance(c, types.CodeType) else c
for c in kwargs["co_consts"]
)
return cls(**kwargs)
@classmethod
@functools.cache
def to_code_object(cls, serialized_code: "SerializedCode") -> types.CodeType:
kwargs = {key: getattr(serialized_code, key) for key in get_code_keys()}
kwargs["co_consts"] = tuple(
cls.to_code_object(c) if isinstance(c, SerializedCode) else c
for c in kwargs["co_consts"]
)
return types.CodeType(
*kwargs.values(),
)
@dataclasses.dataclass
class _GuardedCodeCacheEntry:
"""
Contains the serializable information associated with a single compilation in dynamo.
To restore an execution of compiled code, we will need to serialize the following data:
- Dynamo bytecode for mapping Python inputs/outputs.
- Dynamo guards.
"""
guards_state: bytes
dynamo_code: SerializedCode
_BackendId = NewType("_BackendId", str) # __compiled_fn
_FunctionId = NewType("_FunctionId", str) # __resume_at
@dataclasses.dataclass
class _DynamoCodeCacheEntry:
"""
Contains the serializable information associated with a single code object
in dynamo. To restore an execution of compiled code, we will need the following
ingredients:
1. The "original" code object, which serves as the entry point for eager
execution, i.e. the code only executed when there's no cache entry hit.
2. The python module name this code object belongs to, for idenfifying the
enclosing global scope to inject compiled and resume functions.
3. A list of function names that pointing to this code object. There could be
multiple function objects pointing to the same code such as recursive functions.
4. A list of guarded code that eval frame dispatches to.
5. A list of imported module objects unioned from all compiled branches.
6. A list of "backends" (compiled fx graph) unioned from all compield branches.
"""
python_code: SerializedCode
python_module: str
function_names: list[_FunctionId]
guarded_codes: list[_GuardedCodeCacheEntry]
import_sources: dict[str, str]
backend_ids: list[_BackendId]
@dataclasses.dataclass
class _DynamoCacheEntry:
codes: list[_DynamoCodeCacheEntry]
python_version: str = platform.python_version()
torch_version: str = torch.__version__
@property
def backend_ids(self) -> set[_BackendId]:
return {backend_id for code in self.codes for backend_id in code.backend_ids}
@CacheArtifactFactory.register
class _DynamoCacheArtifact(PrecompileCacheArtifact[_DynamoCacheEntry]):
@staticmethod
def type() -> str:
return "precompile_dynamo"
def after_deserialization(self) -> _DynamoCacheEntry:
return pickle.loads(self.content)
class CompilePackage:
"""
CompilePackage is considered a low level component and should not be directly exposed to
end users. It has the following interface:
1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states.
a. when `dynamo` argument is None, it will contruct a brand new CompilePackage object.
b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state.
2. `package.save()` which dumps the dynamo and backend states to a DynamoCacheEntry object.
3. `package.install(backends) which will handle all the side-effectful global scope
updates with compiled functions and resume functions.
"""
def __init__(self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None) -> None:
self._innermost_fn = None
self._codes: dict[types.CodeType, _DynamoCodeCacheEntry] = {}
self._current_entry: Optional[_DynamoCodeCacheEntry] = None
self._installed_globals: dict[types.ModuleType, list[str]] = {}
# For debugging/testing purpose only.
self._cached_backends: dict[_BackendId, Any] = {}
self._initialize(fn, dynamo)
# Always go back to a clean state after initialization.
self.uninstall()
self.validate()
def _initialize(self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None) -> None:
from .eval_frame import innermost_fn
self._innermost_fn = innermost_fn(fn)
assert self._innermost_fn is not None
if dynamo is not None:
assert isinstance(dynamo, _DynamoCacheEntry)
if dynamo.python_version != platform.python_version():
raise RuntimeError(
f"Compile package was created with a different Python version: {dynamo.python_version}"
)
if dynamo.torch_version != torch.__version__:
raise RuntimeError(
f"Compile package was created with a different PyTorch version: {dynamo.torch_version}"
)
main, *codes = dynamo.codes
self._codes = {self._innermost_fn.__code__: main}
for code in codes:
self._codes[SerializedCode.to_code_object(code.python_code)] = code
else:
self._add_function(
self._innermost_fn.__code__, self._innermost_fn.__module__
)
def _add_function(
self,
python_code: types.CodeType,
python_module: str,
name: Optional[_FunctionId] = None,
) -> None:
if python_code not in self._codes:
code = _DynamoCodeCacheEntry(
python_code=SerializedCode.from_code_object(python_code),
python_module=python_module,
function_names=[],
guarded_codes=[],
import_sources={},
backend_ids=[],
)
self._codes[python_code] = code
else:
code = self._codes[python_code]
assert code.python_module == python_module
if name is not None:
code.function_names.append(name)
@property
def cached_backends(self) -> dict[_BackendId, Any]:
return self._cached_backends
@functools.cached_property
def source_id(self) -> str:
assert self._innermost_fn is not None
sha256_hash = hashlib.sha256()
sha256_hash.update(self._innermost_fn.__qualname__.encode())
sha256_hash.update(str(self._innermost_fn.__code__.co_firstlineno).encode())
return sha256_hash.hexdigest()
@contextlib.contextmanager
def code_context(self, code: types.CodeType) -> Generator[None, None, None]:
assert self._current_entry is None
entry = self._codes[code]
self._current_entry = entry
try:
yield
finally:
self._current_entry = None
def add_guarded_code(
self,
guards_state: bytes,
dynamo_code: types.CodeType,
) -> None:
assert self._current_entry is not None
guarded_code_entry = _GuardedCodeCacheEntry(
guards_state=guards_state,
dynamo_code=SerializedCode.from_code_object(dynamo_code),
)
self._current_entry.guarded_codes.append(guarded_code_entry)
def add_resume_function(
self,
python_code: types.CodeType,
python_module: str,
name: Optional[str],
) -> None:
self._add_function(
python_code, python_module, _FunctionId(name) if name else None
)
def add_import_source(self, alias: str, module_name: str) -> None:
assert self._current_entry is not None
self._current_entry.import_sources[alias] = module_name
def add_backend_id(self, backend_id: str, backend: Optional[Any] = None) -> None:
assert self._current_entry is not None
assert backend_id.startswith("__compiled_fn_") # sanity check
backend_id = _BackendId(backend_id)
self._current_entry.backend_ids.append(backend_id)
if backend is not None:
self._cached_backends[backend_id] = backend
def validate(self) -> None:
assert self._current_entry is None
assert self._innermost_fn is not None
assert next(iter(self._codes)) is self._innermost_fn.__code__
def _install_global(self, module: types.ModuleType, name: str, value: Any) -> None:
module.__dict__[name] = value
self._installed_globals.setdefault(module, []).append(name)
def uninstall(self) -> None:
from torch._C._dynamo.eval_frame import _reset_precompile_entries
assert self._innermost_fn is not None
for module, names in self._installed_globals.items():
for name in names:
module.__dict__.pop(name)
self._installed_globals = {}
_reset_precompile_entries(self._innermost_fn.__code__)
def install(self, backends: dict[_BackendId, Any]) -> None:
"""
Sync the package states to the compiled function. This includes the following actions:
1. Clean up the previously installed states.
2. Install the compiled functions to global scopes.
3. Install the precompiled cache entries to ExtraStates on the code object.
"""
from torch._C._dynamo.eval_frame import _load_precompile_entry
self.uninstall()
for code, entry in self._codes.items():
module = sys.modules[entry.python_module]
for alias, module_name in entry.import_sources.items():
self._install_global(
module, alias, importlib.import_module(module_name)
)
for function_name in entry.function_names:
fn = types.FunctionType(code, module.__dict__, function_name)
self._install_global(module, function_name, fn)
for backend_id in entry.backend_ids:
if backend_id not in backends:
raise RuntimeError(
f"Backend {backend_id} is not found in the given backends"
)
backend = backends[backend_id]
self._install_global(
module,
backend_id,
torch._dynamo.disable(backend),
)
for code, entry in self._codes.items():
for guarded_code in entry.guarded_codes:
guards_state = pickle.loads(guarded_code.guards_state)
assert isinstance(guards_state, torch._dynamo.guards.GuardsState)
check_fn_manager = torch._dynamo.guards.CheckFunctionManager(
code,
guards_state.output_graph,
guards_serialization_mode="load",
shape_code_parts=guards_state.shape_code_parts,
)
_load_precompile_entry(
code,
check_fn_manager.guard_manager,
SerializedCode.to_code_object(guarded_code.dynamo_code),
)
def cache_entry(self) -> _DynamoCacheEntry:
self.validate()
return _DynamoCacheEntry(codes=list(self._codes.values()))
@CacheArtifactFactory.register
class EagerCacheArtifact(PrecompileCacheArtifact[Any]):
@staticmethod
def type() -> str:
return "precompile_eager"
def after_deserialization(self) -> Any:
return pickle.loads(self.content)
class DynamoStore:
"""
A DynamoStore tracks active CompilePackages, and provides methods to store and retrieve them.
"""
def record_package(self, package: CompilePackage) -> None:
"""Records a package to PrecompileContext, so that it can be serialized later."""
cache_entry = package.cache_entry()
pickled_result = pickle.dumps(cache_entry)
PrecompileContext.record_artifact(
_DynamoCacheArtifact.type(), key=package.source_id, content=pickled_result
)
def record_eager_backend(self, backend_id: _BackendId, backend: Any) -> None:
"""Records eager fx graphs to PrecompileContext for testing purposes."""
pickled_result = pickle.dumps(backend)
PrecompileContext.record_artifact(
EagerCacheArtifact.type(), key=backend_id, content=pickled_result
)
def save_package(self, package: CompilePackage, path: str) -> None:
"""Saves a package to a given path. Grabs backends from PrecompileContext."""
backend_content = {}
cache_entry = package.cache_entry()
for backend_id in cache_entry.backend_ids:
backend_content[backend_id] = PrecompileContext.serialize_artifact_by_key(
backend_id
)
try:
with open(os.path.join(path, "dynamo"), "wb") as dynamo_path:
pickle.dump(cache_entry, dynamo_path)
with open(os.path.join(path, "backends"), "wb") as backend_path:
pickle.dump(backend_content, backend_path)
except Exception as e:
raise RuntimeError(f"Failed to save package to {path}: {e}") from e
def load_package(
self, fn: Any, path: str
) -> tuple[CompilePackage, dict[_BackendId, Any]]:
"""Loads a package from a given path and returns it plus a list of deserialized backends"""
try:
with open(os.path.join(path, "dynamo"), "rb") as dynamo_path:
cache_entry = pickle.load(dynamo_path)
with open(os.path.join(path, "backends"), "rb") as backend_path:
backend_content = pickle.load(backend_path)
except Exception as e:
raise RuntimeError(f"Failed to load package from path {path}: {e}") from e
for backend_id, backend in backend_content.items():
backend_content[backend_id] = backend.after_deserialization()
package = CompilePackage(fn, cache_entry)
return package, backend_content