Files
pytorch/third_party/nvfuser/csrc/fusion.cpp
jjsjann123 c11b301bcd [NVFUSER] refactor nvfuser build (#89621)
This PR is the first step towards refactors the build for nvfuser in order to have the coegen being a standalone library.

Contents inside this PR:
1. nvfuser code base has been moved to `./nvfuser`, from `./torch/csrc/jit/codegen/cuda/`, except for registration code for integration (interface.h/interface.cpp)
2. splits the build system so nvfuser is generating its own `.so` files. Currently there are:
    - `libnvfuser_codegen.so`, which contains the integration, codegen and runtime system of nvfuser
    - `nvfuser.so`, which is nvfuser's python API via pybind. Python frontend is now exposed via `nvfuser._C.XXX` instead of `torch._C._nvfuser`
3. nvfuser cpp tests is currently being compiled into `nvfuser_tests`
4. cmake is refactored so that:
    - nvfuser now has its own `CMakeLists.txt`, which is under `torch/csrc/jit/codegen/cuda/`.
    - nvfuser backend code is not compiled inside `libtorch_cuda_xxx` any more
    - nvfuser is added as a subdirectory under `./CMakeLists.txt` at the very end after torch is built.
    - since nvfuser has dependency on torch, the registration of nvfuser at runtime is done via dlopen (`at::DynamicLibrary`). This avoids circular dependency in cmake, which will be a nightmare to handle. For details, look at `torch/csrc/jit/codegen/cuda/interface.cpp::LoadingNvfuserLibrary`

Future work that's scoped in following PR:
- Currently since nvfuser codegen has dependency on torch, we need to refactor that out so we can move nvfuser into a submodule and not rely on dlopen to load the library. @malfet
- Since we moved nvfuser into a cmake build, we effectively disabled bazel build for nvfuser. This could impact internal workload at Meta, so we need to put support back. cc'ing @vors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89621
Approved by: https://github.com/davidberard98
2023-01-26 02:50:44 +00:00

724 lines
20 KiB
C++

#include <arith.h>
#include <codegen.h>
#include <disjoint_set.h>
#include <fusion.h>
#include <fusion_segmenter.h>
#include <instrumentation.h>
#include <ir_all_nodes.h>
#include <ir_cloner.h>
#include <ir_printer.h>
#include <ir_utils.h>
#include <iter_visitor.h>
#include <kernel.h>
#include <lower2device.h>
#include <lower_bank_conflict.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
static thread_local Fusion* ACTIVE_FUSION = nullptr; // NOLINT
FusionGuard::FusionGuard(Fusion* fusion) {
prev_fusion = ACTIVE_FUSION;
ACTIVE_FUSION = fusion;
}
FusionGuard::~FusionGuard() {
ACTIVE_FUSION = prev_fusion;
}
Fusion* FusionGuard::getCurFusion() {
return ACTIVE_FUSION;
}
void FusionGuard::setCurFusion(Fusion* fusion) {
ACTIVE_FUSION = fusion;
}
void swap(Fusion& a, Fusion& b) noexcept {
FUSER_PERF_SCOPE("Fusion swap");
using std::swap;
swap(static_cast<IrContainer&>(a), static_cast<IrContainer&>(b));
swap(a.inputs_, b.inputs_);
swap(a.outputs_, b.outputs_);
swap(a.io_alias_, b.io_alias_);
swap(a.permuted_input_map_, b.permuted_input_map_);
swap(a.permuted_output_map_, b.permuted_output_map_);
}
std::unique_ptr<SegmentedFusion> Fusion::segment(
const KernelArgumentHolder& args) {
FUSER_PERF_SCOPE("Segment Fusion");
return SegmentCandidateFinder::segment(this, args);
}
IrCloner Fusion::copy(const Fusion* from, Fusion* to) {
to->clear();
auto ir_cloner = IrContainer::copy(from, to);
for (auto val : from->vals_) {
ir_cloner.clone(val)->setDefinition(ir_cloner.clone(val->definition_));
ir_cloner.clone(val)->setUses(ir_cloner.clone(val->uses_));
}
to->inputs_ = ir_cloner.clone(from->inputs_);
to->outputs_ = ir_cloner.clone(from->outputs_);
for (auto inp : to->inputs_) {
inp->setIsFusionInput(true);
}
for (auto out : to->outputs_) {
out->setIsFusionOutput(true);
}
// TODO: put this into ir_cloner instead
for (const auto& entry : from->io_alias_) {
Val* copied_output = ir_cloner.clone(entry.first);
Val* copied_input = ir_cloner.clone(entry.second);
to->io_alias_[copied_output] = copied_input;
}
to->permuted_input_map_ = from->permuted_input_map_;
to->permuted_output_map_ = from->permuted_output_map_;
to->all_tv_uses_valid_ = from->all_tv_uses_valid_;
// This should never be true on copy, but copying for completeness.
to->is_during_update_uses_ = from->is_during_update_uses_;
return ir_cloner;
}
// Clang tidy complains when using default constructor for IrContainer instead
// of copy constructor. Fusion::copy has a call to IrContainer::copy, so it's
// redundant to use the IrContainer copy constructor, but it is harmless since
// Fusion::copy starts by calling clear().
Fusion::Fusion(const Fusion& other) : IrContainer(other) {
FUSER_PERF_SCOPE("Fusion copy");
Fusion::copy(&other, this);
}
Fusion::Fusion(Fusion&& other) noexcept {
FUSER_PERF_SCOPE("Fusion move");
swap(*this, other);
}
Fusion& Fusion::operator=(const Fusion& other) {
FUSER_PERF_SCOPE("Fusion copy assign");
Fusion copy(other);
clear();
swap(*this, copy);
return *this;
}
Fusion& Fusion::operator=(Fusion&& other) noexcept {
FUSER_PERF_SCOPE("Fusion move assign");
clear();
swap(*this, other);
return *this;
}
Fusion::~Fusion() {
clear();
}
void Fusion::clear() noexcept {
FUSER_PERF_SCOPE("Fusion clear");
IrContainer::clear();
inputs_.clear();
outputs_.clear();
io_alias_.clear();
permuted_input_map_.clear();
permuted_output_map_.clear();
all_tv_uses_valid_ = false;
is_during_update_uses_ = false;
}
void Fusion::removeExpr(Expr* expr) {
assertInContainer(expr, "Cannot remove expr ");
// If we hit this error too frequently, we could lighten the restrictions so
// that removing something that doesn't exist simply does nothing. For now,
// we're going with the strictest model which errors.
for (auto out : expr->outputs()) {
out->setDefinition(nullptr);
}
for (auto inp : expr->inputs()) {
auto uses_copy = inp->uses();
auto it = std::find(uses_copy.begin(), uses_copy.end(), expr);
if (it != uses_copy.end()) {
uses_copy.erase(it);
inp->setUses(uses_copy);
}
}
IrContainer::removeExpr(expr);
}
void Fusion::removeVal(Val* val) {
assertInContainer(val, "Cannot remove val ");
TORCH_CHECK(
!val->isFusionInput(),
"Cannot remove val as it is an input of the fusion.");
TORCH_CHECK(
!val->isFusionOutput(),
"Cannot remove val as it is an output of the fusion.");
Expr* orig = val->definition();
if (orig != nullptr)
removeExpr(val->definition());
for (Expr* use : unordered_uses(val)) {
removeExpr(use);
}
IrContainer::removeVal(val);
}
void Fusion::addInput(Val* input) {
assertInContainer(input, "Cannot register input ");
TORCH_INTERNAL_ASSERT(
input->getDataType() != DataType::Index,
"Data type Index is a local compile time data type only, it cannot be used as an input in case it was generated from another kernel.");
if (input->getValType().value() == ValType::TensorView) {
auto tv = input->as<TensorView>();
tv->setMemoryType(MemoryType::Global);
} else if (input->getValType().value() == ValType::Scalar) {
TORCH_CHECK(
!input->isConst(),
"Immediate scalar value cannot be added as an input. It is not necessary to pass it as an input.");
}
inputs_.push_back(input);
input->setIsFusionInput(true);
all_tv_uses_valid_ = false;
}
void Fusion::addOutput(Val* output) {
// We currently don't support explicitly outputing aliased inputs. This is
// because they are already marked as output for in-place update. It's tricky
// to allow marking them explicitly as real output, since that requires us to
// register/identify output not only by `Val*` pointer, but also by indices;
// it also requires us to magically arrange `outputs_` entries in proper order
// ^^^ this doesn't look intuitive on `outputs_` in fusion.
// I think we can solve this by marking addOutput on io_alias_ keys after
// fusion is fully defined. Tracking this in #1488
// Apparently we can't do this neither at the time. I think segmentation
// unfortunately would call addOutput after we marked io_alias_ map.
// TORCH_CHECK(io_alias_.count(output) == 0,
// "can't register aliased output as real output");
assertInContainer(output, "Cannot register output ");
if (output->getValType().value() == ValType::TensorView) {
auto tv = output->as<TensorView>();
tv->setMemoryType(MemoryType::Global);
}
outputs_.push_back(output);
output->setIsFusionOutput(true);
all_tv_uses_valid_ = false;
}
void Fusion::removeInput(Val* input) {
auto find_input = std::find(inputs_.begin(), inputs_.end(), input);
if (find_input != inputs_.end()) {
inputs_.erase(find_input);
}
input->setIsFusionInput(false);
all_tv_uses_valid_ = false;
}
void Fusion::removeOutput(Val* output) {
auto find_output = std::find(outputs_.begin(), outputs_.end(), output);
if (find_output != outputs_.end()) {
outputs_.erase(find_output);
}
output->setIsFusionOutput(false);
all_tv_uses_valid_ = false;
}
void Fusion::replaceOutput(Val* output, Val* replacement) {
auto find_output = std::find(outputs_.begin(), outputs_.end(), output);
TORCH_CHECK(find_output != outputs_.end(), "Unable to find output in Fusion");
if (find_output != outputs_.end()) {
std::replace_if(
outputs_.begin(),
outputs_.end(),
[&output](Val* v) { return v == output; },
replacement);
if (replacement->getValType().value() == ValType::TensorView) {
replacement->setIsFusionOutput(true);
replacement->as<TensorView>()->setMemoryType(MemoryType::Global);
}
if (output->getValType().value() == ValType::TensorView) {
output->setIsFusionOutput(false);
output->as<TensorView>()->setMemoryType(MemoryType::Local);
}
resetTvUses();
}
// Temporary WAR for issue #1112
// (https://github.com/csarofeen/pytorch/issues/1112)
if (io_alias_.count(output) != 0) {
auto input = io_alias_[output];
io_alias_.erase(output);
io_alias_[replacement] = input;
}
}
std::vector<Expr*> Fusion::exprs() {
return StmtSort::getExprs(this);
}
std::vector<Val*> Fusion::inputsOf(Val* val) {
return InputsOf::output(this, val);
}
void Fusion::validateInputs() {
std::unordered_set<Val*> all_inputs;
for (Val* out : outputs()) {
for (Val* input : inputsOf(out)) {
all_inputs.insert(input);
}
}
std::unordered_set<Val*> input_dims;
auto inp_tvs = ir_utils::filterByType<TensorView>(inputs());
for (auto tv : inp_tvs) {
for (auto id : tv->getMaybeRFactorDomain()) {
input_dims.emplace(id->extent());
}
}
for (Val* input : all_inputs) {
if (!input->isConstScalar()) {
TORCH_CHECK(
input->isFusionInput() ||
// TODO: Switch:
inContainer(input),
// to: input_dims.find(input) != input_dims.end(),
// https://github.com/csarofeen/pytorch/issues/1365
"Could not figure out how ",
input->toString(),
" is generated, however it was not specified as an input.");
}
}
}
void Fusion::print() {
FUSER_PERF_SCOPE("Fusion::print");
FusionGuard fg(this);
std::cout << "\n%kernel {\n";
IrMathPrinter op_exprs(std::cout);
op_exprs.handle(this);
std::cout << "\nTransformPrinter : \n";
IrTransformPrinter t_exprs(std::cout);
t_exprs.handle(this);
std::cout << "}\n\n";
}
void Fusion::printKernel(DataType index_type) {
FUSER_PERF_SCOPE("Fusion::printKernel");
TORCH_INTERNAL_ASSERT(
!this->isA<kir::Kernel>(),
"Cannot \"print kernel\" of a kernel container. ",
"This would require lowering during lowering.");
std::cout << codegen::generateCudaKernel(GpuLower(this, index_type).kernel());
}
std::unordered_map<std::string, std::pair<int, int>> Fusion::bankConflictInfo(
DataType index_type) {
GpuLower lower(this, index_type);
auto kernel = lower.kernel();
auto info = getBankConflictInfo(kernel);
// The container of exprs goes out of scope, so we return a map of string here
std::unordered_map<std::string, std::pair<int, int>> result;
result.reserve(info.size());
for (auto i : info) {
result[i.first->toString()] = i.second;
}
return result;
}
void Fusion::printMath(bool from_outputs_only) {
FUSER_PERF_SCOPE("Fusion::printMath");
FusionGuard fg(this);
auto exprs_for_print = exprs();
std::cout << "Inputs:" << std::endl;
for (auto inp : inputs()) {
std::cout << " " << inp << ", " << inp->getDataType().value() << std::endl;
}
std::cout << "Outputs:" << std::endl;
for (auto out : outputs()) {
std::cout << " " << out << ", " << out->getDataType().value() << std::endl;
}
// If we want everything in the fusion, grab all values without uses to
// traverse from.
if (!from_outputs_only) {
std::vector<Val*> leaf_vals;
for (auto val : deterministic_vals()) {
if (val->uses().empty()) {
leaf_vals.push_back(val);
}
}
exprs_for_print = StmtSort::getExprs(this, leaf_vals);
}
std::cout << "\n%kernel_math {\n";
for (auto expr : exprs_for_print) {
std::cout << expr;
}
std::cout << "}\n\n";
}
std::vector<Val*> Fusion::inputsAndCreated() {
auto result = inputs_;
for (auto expr : exprs()) {
auto tv_inputs = ir_utils::filterByType<TensorView>(expr->inputs());
if (tv_inputs.empty()) {
for (auto v : expr->outputs()) {
result.emplace_back(v);
}
}
}
return result;
}
void Fusion::printTransforms() {
FUSER_PERF_SCOPE("Fusion::printTransforms");
FusionGuard fg(this);
IrTransformPrinter t_exprs(std::cout);
t_exprs.handle(this);
}
void Fusion::registerVal(Val* val) {
if (inContainer(val)) {
return;
}
if (val->fusion()) {
TORCH_CHECK(
val->fusion() == this, val, " was not found in the active fusion.");
}
IrContainer::registerVal(val);
}
void Fusion::registerExpr(Expr* expr) {
if (inContainer(expr)) {
return;
}
if (expr->fusion()) {
TORCH_CHECK(
expr->fusion() == this, expr, " was not found in the active fusion.");
}
IrContainer::registerExpr(expr);
bool has_tv = false;
for (Val* input : expr->inputs()) {
has_tv = has_tv || input->isA<TensorView>();
assertInContainer(input, "Input to expr is invalid, ");
auto uses_copy = input->uses();
if (std::find(uses_copy.begin(), uses_copy.end(), expr) ==
uses_copy.end()) {
uses_copy.push_back(expr);
input->setUses(uses_copy);
}
}
// Kernel is the only container type that is non-ssa. This is mainly (maybe
// only) because of initialization expressions which would overwrite tensor
// view definitions.
bool is_ssa = !this->isA<kir::Kernel>();
for (Val* output : expr->outputs()) {
has_tv = has_tv || output->isA<TensorView>();
assertInContainer(output, "Output to expr is invalid, ");
if (output->definition() != nullptr && is_ssa) {
removeExpr(output->definition());
}
if (is_ssa || (!is_ssa && output->definition() == nullptr)) {
output->setDefinition(expr);
}
}
if (has_tv) {
resetTvUses();
}
}
void Fusion::resetTvUses() {
FUSER_PERF_SCOPE("Fusion::resetTvUses");
is_during_update_uses_ = true;
// getExprs only uses definition, so even if we've modified uses already to
// remove dead exprs, this could reinsert them. getExprs is also boundeds by
// inputs as registered inputs will return nullptr as their definition.
const auto all_tvs = ir_utils::filterByType<TensorView>(vals_);
const auto used_exprs = StmtSort::getExprs(this);
for (auto tv : all_tvs) {
tv->setUses({});
}
// Same as in register expr
for (auto expr : used_exprs) {
for (Val* input : expr->inputs()) {
auto uses_copy = input->uses();
if (std::find(uses_copy.begin(), uses_copy.end(), expr) ==
uses_copy.end()) {
uses_copy.push_back(expr);
input->setUses(uses_copy);
}
}
}
all_tv_uses_valid_ = true;
is_during_update_uses_ = false;
}
std::vector<Val*> Fusion::usedMathVals() {
// Note that using fusion->inputs() as the argument for the first
// parameter of getAllValsBetween does not grab all used vals as
// there can be vals that are created inside a fusion without using
// anything from inputs. See, for example, tv0 in the
// FusionOuterSplit test.
const auto inputs = InputsOf::outputs(this, outputs());
auto used_math_vals = DependencyCheck::getAllValsBetween(
{inputs.begin(), inputs.end()}, outputs());
// When an expre has multiple outputs and only some of them are
// used, the rest aren't included in used_math_vals as they are not
// used. However, we want them to be included as they must show up
// in the fusion.
std::vector<Val*> vals_to_add;
std::unordered_set<Val*> added_vals;
for (auto val : used_math_vals) {
auto def = val->definition();
if (def == nullptr || def->outputs().size() < 2) {
continue;
}
for (auto out : def->outputs()) {
if (std::find(used_math_vals.begin(), used_math_vals.end(), out) ==
used_math_vals.end()) {
if (!added_vals.count(out)) {
vals_to_add.push_back(out);
added_vals.insert(out);
}
}
}
}
used_math_vals.insert(
used_math_vals.end(), vals_to_add.begin(), vals_to_add.end());
return used_math_vals;
}
std::vector<Val*> Fusion::terminatingMathVals() {
VectorOfUniqueEntries<Val*> result;
auto used_vals = usedMathVals();
for (auto v : used_vals) {
// Locate the vals that are not expr outputs but have valid definitions.
if (unordered_uses(v).empty() && v->definition() != nullptr) {
result.pushBack(v);
}
}
return result.vector();
}
std::unordered_set<Expr*> Fusion::unordered_uses(const Val* val) const {
return std::unordered_set<Expr*>(val->uses().begin(), val->uses().end());
}
Expr* Fusion::definition(const Val* val) const {
assertInContainer(val, "Cannot detect the definition of val, ");
return val->definition();
}
// Indicate to kernel to set itself up to generate random numbers
bool Fusion::isStochastic() {
for (auto expr : exprs()) {
if (expr->getExprType() == ExprType::RNGOp) {
return true;
}
}
return false;
}
std::vector<Val*> Fusion::getTerminatingOutputs() const {
FUSER_PERF_SCOPE("getTerminatingOutputs");
auto is_reachable_to_output = [](Val* val) {
// traverse to consumers of val and see if there is an output
std::deque<Val*> consumers;
for (auto use : val->uses()) {
for (auto consumer : use->outputs()) {
consumers.push_back(consumer);
}
}
while (!consumers.empty()) {
auto consumer = consumers.back();
consumers.pop_back();
if (consumer->isFusionOutput()) {
return true;
}
// consumer is not an output; proceed to its consumers
for (auto use : consumer->uses()) {
for (auto consumer_of_consumer : use->outputs()) {
consumers.push_back(consumer_of_consumer);
}
}
}
return false;
};
std::vector<Val*> terminating_outputs;
for (auto out : outputs()) {
// If there is another output reachable from this output, it's not
// terminating.
if (is_reachable_to_output(out)) {
continue;
}
terminating_outputs.push_back(out);
}
return terminating_outputs;
}
bool Fusion::isAliasCompatible(Val* left, Val* right) {
// Nullptr check
if (left == nullptr || right == nullptr) {
return false;
}
// DataType check
if (!left->getDataType().has_value() || !right->getDataType().has_value() ||
left->getDataType().value() != right->getDataType().value()) {
return false;
}
// ValType check
if (!left->getValType().has_value() || !right->getValType().has_value() ||
left->getValType().value() != right->getValType().value()) {
return false;
}
// Check same number of dimensions if both values are TensorViews
if (ir_utils::isTV(left) && ir_utils::isTV(right)) {
return left->as<TensorView>()->nDims() == right->as<TensorView>()->nDims();
}
return false;
}
void Fusion::aliasOutputToInput(Val* output, Val* input) {
// Because we could cast output when input is cast.
TORCH_INTERNAL_ASSERT(
!output->isFusionOutput(),
"Do NOT add aliased output to fusion output outside of `aliasOutputToInput");
if (!input->isFusionInput()) {
auto input_expr = input->definition();
// TORCH_INTERNAL_ASSERT(input_def.etype() == ExprType::UnaryOp, "expected
// unary op for aliased input");
TORCH_INTERNAL_ASSERT(
input_expr->isA<UnaryOp>(), "expected unary op for aliased input");
auto input_uop = input_expr->as<UnaryOp>();
TORCH_INTERNAL_ASSERT(
input_uop->getUnaryOpType() == UnaryOpType::Cast,
"expected aliased input to be output of cast op");
input = input_uop->in();
}
TORCH_INTERNAL_ASSERT(
input->getDataType().has_value() && output->getDataType().has_value(),
"requires DataType to be available for aliased output to input");
if (input->getDataType().value() != output->getDataType().value()) {
output = castOp(input->getDataType().value(), output);
}
// TODO: output should be marked at the end of fusion definition #1488
addOutput(output);
TORCH_INTERNAL_ASSERT(
isAliasCompatible(input, output),
"The input and output values are not alias-compatible.");
io_alias_[output] = input;
}
Val* Fusion::getOutputAlias(Val* output) {
auto search = io_alias_.find(output);
if (search != io_alias_.end()) {
return search->second;
}
return nullptr;
}
std::unordered_set<int> Fusion::getOutputAliasIndices() const {
if (io_alias_.empty()) {
return {};
}
std::unordered_set<int> alias_indices;
for (const auto i : c10::irange(outputs_.size())) {
if (io_alias_.count(outputs_[i]) != 0) {
alias_indices.insert(i);
}
}
return alias_indices;
}
std::vector<std::pair<int, int>> Fusion::getInputAliasIndices() const {
if (io_alias_.empty()) {
return {};
}
std::vector<std::pair<int, int>> alias_indices;
for (const auto i : c10::irange(outputs_.size())) {
if (io_alias_.count(outputs_[i]) != 0) {
bool found = false;
for (const auto j : c10::irange(inputs_.size())) {
if (io_alias_.at(outputs_[i]) == inputs_[j]) {
alias_indices.emplace_back(i, j);
found = true;
break;
}
}
TORCH_INTERNAL_ASSERT(
found,
"io_alias_ mapping failure, alias output is not present in inputs");
}
}
// can't assert here, we could have segmented fusion where not all alias
// outputs are present
return alias_indices;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch