mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 08:00:58 +08:00 
			
		
		
		
	Summary: Continuation of https://github.com/pytorch/pytorch/pull/53144 Pull Request resolved: https://github.com/pytorch/pytorch/pull/54508 Reviewed By: malfet Differential Revision: D27909732 Pulled By: jbschlosser fbshipit-source-id: d8684b2403ab7eb336371d118799146a2520bd76
		
			
				
	
	
		
			244 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			244 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import math
 | 
						|
 | 
						|
import torch
 | 
						|
from torch import Tensor
 | 
						|
from torch.nn.parameter import Parameter, UninitializedParameter
 | 
						|
from .. import functional as F
 | 
						|
from .. import init
 | 
						|
from .module import Module
 | 
						|
from .lazy import LazyModuleMixin
 | 
						|
 | 
						|
 | 
						|
class Identity(Module):
 | 
						|
    r"""A placeholder identity operator that is argument-insensitive.
 | 
						|
 | 
						|
    Args:
 | 
						|
        args: any argument (unused)
 | 
						|
        kwargs: any keyword argument (unused)
 | 
						|
 | 
						|
    Examples::
 | 
						|
 | 
						|
        >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
 | 
						|
        >>> input = torch.randn(128, 20)
 | 
						|
        >>> output = m(input)
 | 
						|
        >>> print(output.size())
 | 
						|
        torch.Size([128, 20])
 | 
						|
 | 
						|
    """
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super(Identity, self).__init__()
 | 
						|
 | 
						|
    def forward(self, input: Tensor) -> Tensor:
 | 
						|
        return input
 | 
						|
 | 
						|
 | 
						|
class Linear(Module):
 | 
						|
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
 | 
						|
 | 
						|
    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
 | 
						|
 | 
						|
    Args:
 | 
						|
        in_features: size of each input sample
 | 
						|
        out_features: size of each output sample
 | 
						|
        bias: If set to ``False``, the layer will not learn an additive bias.
 | 
						|
            Default: ``True``
 | 
						|
 | 
						|
    Shape:
 | 
						|
        - Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
 | 
						|
          additional dimensions and :math:`H_{in} = \text{in\_features}`
 | 
						|
        - Output: :math:`(N, *, H_{out})` where all but the last dimension
 | 
						|
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.
 | 
						|
 | 
						|
    Attributes:
 | 
						|
        weight: the learnable weights of the module of shape
 | 
						|
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
 | 
						|
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
 | 
						|
            :math:`k = \frac{1}{\text{in\_features}}`
 | 
						|
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
 | 
						|
                If :attr:`bias` is ``True``, the values are initialized from
 | 
						|
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
 | 
						|
                :math:`k = \frac{1}{\text{in\_features}}`
 | 
						|
 | 
						|
    Examples::
 | 
						|
 | 
						|
        >>> m = nn.Linear(20, 30)
 | 
						|
        >>> input = torch.randn(128, 20)
 | 
						|
        >>> output = m(input)
 | 
						|
        >>> print(output.size())
 | 
						|
        torch.Size([128, 30])
 | 
						|
    """
 | 
						|
    __constants__ = ['in_features', 'out_features']
 | 
						|
    in_features: int
 | 
						|
    out_features: int
 | 
						|
    weight: Tensor
 | 
						|
 | 
						|
    def __init__(self, in_features: int, out_features: int, bias: bool = True,
 | 
						|
                 device=None, dtype=None) -> None:
 | 
						|
        factory_kwargs = {'device': device, 'dtype': dtype}
 | 
						|
        super(Linear, self).__init__()
 | 
						|
        self.in_features = in_features
 | 
						|
        self.out_features = out_features
 | 
						|
        self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
 | 
						|
        if bias:
 | 
						|
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
 | 
						|
        else:
 | 
						|
            self.register_parameter('bias', None)
 | 
						|
        self.reset_parameters()
 | 
						|
 | 
						|
    def reset_parameters(self) -> None:
 | 
						|
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
 | 
						|
        if self.bias is not None:
 | 
						|
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
 | 
						|
            bound = 1 / math.sqrt(fan_in)
 | 
						|
            init.uniform_(self.bias, -bound, bound)
 | 
						|
 | 
						|
    def forward(self, input: Tensor) -> Tensor:
 | 
						|
        return F.linear(input, self.weight, self.bias)
 | 
						|
 | 
						|
    def extra_repr(self) -> str:
 | 
						|
        return 'in_features={}, out_features={}, bias={}'.format(
 | 
						|
            self.in_features, self.out_features, self.bias is not None
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
# This class exists solely for Transformer; it has an annotation stating
 | 
						|
# that bias is never None, which appeases TorchScript
 | 
						|
class _LinearWithBias(Linear):
 | 
						|
    bias: Tensor  # type: ignore[assignment]
 | 
						|
 | 
						|
    def __init__(self, in_features: int, out_features: int) -> None:
 | 
						|
        super().__init__(in_features, out_features, bias=True)
 | 
						|
 | 
						|
 | 
						|
class Bilinear(Module):
 | 
						|
    r"""Applies a bilinear transformation to the incoming data:
 | 
						|
    :math:`y = x_1^T A x_2 + b`
 | 
						|
 | 
						|
    Args:
 | 
						|
        in1_features: size of each first input sample
 | 
						|
        in2_features: size of each second input sample
 | 
						|
        out_features: size of each output sample
 | 
						|
        bias: If set to False, the layer will not learn an additive bias.
 | 
						|
            Default: ``True``
 | 
						|
 | 
						|
    Shape:
 | 
						|
        - Input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and
 | 
						|
          :math:`*` means any number of additional dimensions. All but the last dimension
 | 
						|
          of the inputs should be the same.
 | 
						|
        - Input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.
 | 
						|
        - Output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
 | 
						|
          and all but the last dimension are the same shape as the input.
 | 
						|
 | 
						|
    Attributes:
 | 
						|
        weight: the learnable weights of the module of shape
 | 
						|
            :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
 | 
						|
            The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
 | 
						|
            :math:`k = \frac{1}{\text{in1\_features}}`
 | 
						|
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
 | 
						|
                If :attr:`bias` is ``True``, the values are initialized from
 | 
						|
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
 | 
						|
                :math:`k = \frac{1}{\text{in1\_features}}`
 | 
						|
 | 
						|
    Examples::
 | 
						|
 | 
						|
        >>> m = nn.Bilinear(20, 30, 40)
 | 
						|
        >>> input1 = torch.randn(128, 20)
 | 
						|
        >>> input2 = torch.randn(128, 30)
 | 
						|
        >>> output = m(input1, input2)
 | 
						|
        >>> print(output.size())
 | 
						|
        torch.Size([128, 40])
 | 
						|
    """
 | 
						|
    __constants__ = ['in1_features', 'in2_features', 'out_features']
 | 
						|
    in1_features: int
 | 
						|
    in2_features: int
 | 
						|
    out_features: int
 | 
						|
    weight: Tensor
 | 
						|
 | 
						|
    def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True,
 | 
						|
                 device=None, dtype=None) -> None:
 | 
						|
        factory_kwargs = {'device': device, 'dtype': dtype}
 | 
						|
        super(Bilinear, self).__init__()
 | 
						|
        self.in1_features = in1_features
 | 
						|
        self.in2_features = in2_features
 | 
						|
        self.out_features = out_features
 | 
						|
        self.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs))
 | 
						|
 | 
						|
        if bias:
 | 
						|
            self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
 | 
						|
        else:
 | 
						|
            self.register_parameter('bias', None)
 | 
						|
        self.reset_parameters()
 | 
						|
 | 
						|
    def reset_parameters(self) -> None:
 | 
						|
        bound = 1 / math.sqrt(self.weight.size(1))
 | 
						|
        init.uniform_(self.weight, -bound, bound)
 | 
						|
        if self.bias is not None:
 | 
						|
            init.uniform_(self.bias, -bound, bound)
 | 
						|
 | 
						|
    def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
 | 
						|
        return F.bilinear(input1, input2, self.weight, self.bias)
 | 
						|
 | 
						|
    def extra_repr(self) -> str:
 | 
						|
        return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
 | 
						|
            self.in1_features, self.in2_features, self.out_features, self.bias is not None
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class LazyLinear(LazyModuleMixin, Linear):
 | 
						|
    r"""A :class:`torch.nn.Linear` module where `in_features` is inferred.
 | 
						|
 | 
						|
    In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`
 | 
						|
    class. They will be initialized after the first call to ``forward`` is done and the
 | 
						|
    module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument
 | 
						|
    of the :class:`Linear` is inferred from the ``input.shape[-1]``.
 | 
						|
 | 
						|
    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
 | 
						|
    on lazy modules and their limitations.
 | 
						|
 | 
						|
    Args:
 | 
						|
        out_features: size of each output sample
 | 
						|
        bias: If set to ``False``, the layer will not learn an additive bias.
 | 
						|
            Default: ``True``
 | 
						|
 | 
						|
    Attributes:
 | 
						|
        weight: the learnable weights of the module of shape
 | 
						|
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
 | 
						|
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
 | 
						|
            :math:`k = \frac{1}{\text{in\_features}}`
 | 
						|
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
 | 
						|
                If :attr:`bias` is ``True``, the values are initialized from
 | 
						|
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
 | 
						|
                :math:`k = \frac{1}{\text{in\_features}}`
 | 
						|
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    cls_to_become = Linear  # type: ignore[assignment]
 | 
						|
    weight: UninitializedParameter
 | 
						|
    bias: UninitializedParameter  # type: ignore[assignment]
 | 
						|
 | 
						|
    def __init__(self, out_features: int, bias: bool = True,
 | 
						|
                 device=None, dtype=None) -> None:
 | 
						|
        factory_kwargs = {'device': device, 'dtype': dtype}
 | 
						|
        # bias is hardcoded to False to avoid creating tensor
 | 
						|
        # that will soon be overwritten.
 | 
						|
        super().__init__(0, 0, False)
 | 
						|
        self.weight = UninitializedParameter(**factory_kwargs)
 | 
						|
        self.out_features = out_features
 | 
						|
        if bias:
 | 
						|
            self.bias = UninitializedParameter(**factory_kwargs)
 | 
						|
 | 
						|
    def reset_parameters(self) -> None:
 | 
						|
        if not self.has_uninitialized_params() and self.in_features != 0:
 | 
						|
            super().reset_parameters()
 | 
						|
 | 
						|
    def initialize_parameters(self, input) -> None:  # type: ignore[override]
 | 
						|
        if self.has_uninitialized_params():
 | 
						|
            with torch.no_grad():
 | 
						|
                self.in_features = input.shape[-1]
 | 
						|
                self.weight.materialize((self.out_features, self.in_features))
 | 
						|
                if self.bias is not None:
 | 
						|
                    self.bias.materialize((self.out_features,))
 | 
						|
                self.reset_parameters()
 | 
						|
# TODO: PartialLinear - maybe in sparse?
 |