mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR extends our ability to fuse pointwise nodes onto triton templates with the ability to fuse pointwise nodes into triton templates - prologue fusion.
Similar to the store_output api:
`{{store_output(("idx_m", "idx_n"), "acc", "mask")}}`
And the modification api:
```
{{ modification(
subgraph_number=0,
output_name="post_mod_scores",
score="qk",
out="qk"
) | indent_except_first(1) }}
```
We have:
```{{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}}```
Because we are now loading the input with explicit indices and mask, I needed to rewrite the mm kernel to no longer update the [pointers by BLOCK_K](bb03ef7aca/torch/_inductor/kernel/mm.py (L110-L111)
) on every iteration and instead on each iteration compute indices from the the k_idx of each loop. This did not have any perf difference.
There are a couple main use cases for prologue fusion:
- Fusing dequants into a matmul. particularly for more bandwidth bound scenarios.
- Fusing gather into a matmul. This is useful particularly in MOE. See https://github.com/pytorch/pytorch/issues/134535 for more details.
Prologue fusion is generally much less profitable than epilogue fusion, because it must be applied to an element of an input on each loop of the matmul, compared to only once in the epilogue (gather into matmul is a potential exception). Accordingly, we are much less aggressive in attempting to fuse prologue fusion. We only attempt fusion if it does not increase the number of memory bytes read instead the triton template, multipled by a small factor to allow gathers. This restricts reliably unprofitable fusions like fp32->fp16 inside kernel. In future pr we could potentially have api of being more aggressive if we know we are in a bandwidth bound regime. See: https://github.com/pytorch/pytorch/pull/134532/files#diff-d2539c9c8dc6a3d7e457767a880612e96d3c85752a77ead49a9e4e00a3e4c3c7R3060-R3066
Other notes:
By default we will upcast to fp32 inside every kernel. This matches eager numerics. This is fine enough for epilogue because it is only done once (although it is probably unnecessary for say a relu) but tanks perf for prologue. I am currently using the `codegen_upcast_to_fp32` option to avoid it, but that will not work for libdevice calls that require fp32. We will need https://github.com/pytorch/pytorch/pull/136778/ and dtype-aware codegen to upcast fp16 ops into libdevice calls.
With prologue fusion, we now have essentially separate kernels for each input, and for the output. I had to increase the number of fields that are swapped out in `set_subgraph_body` by a large number :/ I also update the fusion logic because the inputs will have a different group than the outputs. Maybe as part of enabling multiple outputs, this could get cleaned up a bit so..
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134532
Approved by: https://github.com/jansel
3254 lines
120 KiB
Python
3254 lines
120 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import copyreg
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import importlib
|
|
import io
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import pkgutil
|
|
import re
|
|
import shlex
|
|
import shutil
|
|
import struct
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
import tempfile
|
|
import textwrap
|
|
import threading
|
|
import warnings
|
|
from bisect import bisect_right
|
|
from copy import copy
|
|
from ctypes import c_void_p, CDLL, cdll
|
|
from datetime import timedelta
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from time import time, time_ns
|
|
from types import ModuleType
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
cast,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
NoReturn,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
TYPE_CHECKING,
|
|
TypeVar,
|
|
Union,
|
|
)
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import SymInt, Tensor
|
|
from torch._dynamo.utils import (
|
|
counters,
|
|
dynamo_timed,
|
|
get_chromium_event_logger,
|
|
get_metrics_context,
|
|
)
|
|
from torch._inductor import config, exc, metrics
|
|
from torch._inductor.codegen.cuda import cuda_env
|
|
from torch._inductor.codegen.rocm.compile_command import (
|
|
rocm_compile_command,
|
|
rocm_compiler,
|
|
)
|
|
from torch._inductor.custom_graph_pass import CustomGraphPass, CustomGraphPassType
|
|
from torch._inductor.output_code import has_frozen_params
|
|
from torch._utils_internal import log_cache_bypass
|
|
from torch.compiler import config as cconfig
|
|
|
|
from .remote_cache import create_cache
|
|
from .runtime import autotune_cache
|
|
from .runtime.autotune_cache import AutotuneCacheBundler
|
|
from .triton_bundler import TritonBundler
|
|
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import KeysView
|
|
|
|
from .compile_fx import _CompileFxKwargs, CompiledFxGraph
|
|
from .output_code import CompiledFxGraphConstants, OutputCode
|
|
from .remote_cache import JsonDataTy, RemoteCache
|
|
from .utils import InputType
|
|
|
|
|
|
"""
|
|
codecache.py, cpp_builder.py and cpu_vec_isa.py import rule:
|
|
https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902
|
|
"""
|
|
from torch._inductor.cpp_builder import (
|
|
_set_gpu_runtime_env,
|
|
_transform_cuda_paths,
|
|
CppBuilder,
|
|
CppOptions,
|
|
CppTorchDeviceOptions,
|
|
get_compiler_version_info,
|
|
get_name_and_dir_from_output_file_path,
|
|
normalize_path_separator,
|
|
)
|
|
from torch._inductor.cpu_vec_isa import pick_vec_isa
|
|
from torch._inductor.runtime.compile_tasks import (
|
|
_module_to_triton_kernel,
|
|
_reload_python_module,
|
|
_reload_python_module_in_subproc,
|
|
)
|
|
from torch._inductor.runtime.runtime_utils import cache_dir, default_cache_dir
|
|
from torch._inductor.utils import (
|
|
ALIGN_BYTES,
|
|
clear_on_fresh_inductor_cache,
|
|
is_linux,
|
|
is_windows,
|
|
)
|
|
from torch._logging import trace_structured
|
|
from torch._subclasses.fake_tensor import (
|
|
extract_tensor_metadata,
|
|
FakeTensor,
|
|
TensorMetadata,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from concurrent.futures import Future
|
|
|
|
from torch._inductor.graph import GraphLowering
|
|
from torch._inductor.ir import ChoiceCaller
|
|
from torch._inductor.runtime.hints import HalideInputSpec, HalideMeta
|
|
|
|
|
|
_HERE = os.path.abspath(__file__)
|
|
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
|
|
_LINKER_SCRIPT = os.path.join(_TORCH_PATH, "_inductor/script.ld")
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
if config.is_fbcode():
|
|
from triton.fb import build_paths
|
|
from triton.fb.build import _run_build_command
|
|
|
|
from torch._inductor.fb.utils import (
|
|
log_global_cache_errors,
|
|
log_global_cache_stats,
|
|
log_global_cache_vals,
|
|
use_global_cache,
|
|
)
|
|
else:
|
|
|
|
def log_global_cache_errors(*args: Any, **kwargs: Any) -> None: # type: ignore[misc]
|
|
pass
|
|
|
|
def log_global_cache_stats(*args: Any, **kwargs: Any) -> None: # type: ignore[misc]
|
|
pass
|
|
|
|
def log_global_cache_vals(*args: Any, **kwargs: Any) -> None: # type: ignore[misc]
|
|
pass
|
|
|
|
def use_global_cache() -> bool: # type: ignore[misc]
|
|
return False
|
|
|
|
|
|
output_code_log = torch._logging.getArtifactLogger(__name__, "output_code")
|
|
|
|
LOCK_TIMEOUT = 600
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def cpp_wrapper_cache_dir(name: str) -> str:
|
|
cu_str = (
|
|
"cpu"
|
|
if torch.version.cuda is None
|
|
else f'cu{torch.version.cuda.replace(".", "")}'
|
|
)
|
|
python_version = f"py{sys.version_info.major}{sys.version_info.minor}"
|
|
build_folder = f"{python_version}_{cu_str}"
|
|
|
|
cpp_wrapper_dir = os.path.join(cache_dir(), build_folder)
|
|
cpp_wrapper_build_directory = os.path.join(cpp_wrapper_dir, name)
|
|
os.makedirs(cpp_wrapper_build_directory, exist_ok=True)
|
|
return cpp_wrapper_build_directory
|
|
|
|
|
|
def get_cpp_wrapper_cubin_path_name() -> str:
|
|
return "cubin_path" if torch.version.hip is None else "hsaco_path"
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_global_cache_path_impl(global_cache_dir: str) -> Optional[Path]:
|
|
return (
|
|
Path(os.path.join(global_cache_dir, CacheBase.get_system()["hash"]))
|
|
if global_cache_dir is not None
|
|
else None
|
|
)
|
|
|
|
|
|
class CacheBase:
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def get_system() -> Dict[str, Any]:
|
|
try:
|
|
from triton.compiler.compiler import triton_key
|
|
|
|
# Use triton_key instead of triton.__version__ as the version
|
|
# is not updated with each code change
|
|
triton_version = triton_key()
|
|
except ModuleNotFoundError:
|
|
triton_version = None
|
|
|
|
try:
|
|
system: Dict[str, Any] = {
|
|
"device": {"name": None},
|
|
"version": {
|
|
"triton": triton_version,
|
|
},
|
|
}
|
|
device_properties = torch.cuda.get_device_properties(
|
|
torch.cuda.current_device()
|
|
)
|
|
if torch.version.cuda is not None:
|
|
system["device"]["name"] = device_properties.name
|
|
system["version"]["cuda"] = torch.version.cuda
|
|
else:
|
|
system["device"]["name"] = device_properties.gcnArchName
|
|
system["version"]["hip"] = torch.version.hip
|
|
except (AssertionError, RuntimeError):
|
|
# If cuda is not installed, none of the above config is relevant.
|
|
system = {}
|
|
|
|
system["hash"] = hashlib.sha256(
|
|
json.dumps(system, sort_keys=True).encode("utf-8")
|
|
).hexdigest()
|
|
|
|
return system
|
|
|
|
@staticmethod
|
|
@clear_on_fresh_inductor_cache
|
|
@functools.lru_cache(None)
|
|
def get_local_cache_path() -> Path:
|
|
return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))
|
|
|
|
@staticmethod
|
|
def get_global_cache_path() -> Optional[Path]:
|
|
return get_global_cache_path_impl(config.global_cache_dir)
|
|
|
|
def __init__(self) -> None:
|
|
self.system = CacheBase.get_system()
|
|
|
|
def get_local_cache(self) -> Dict[str, Any]:
|
|
local_cache_path = self.get_local_cache_path()
|
|
if not local_cache_path.is_file():
|
|
return {}
|
|
with open(local_cache_path) as local_cache_fp:
|
|
local_cache = json.load(local_cache_fp)
|
|
return local_cache["cache"]
|
|
|
|
def update_local_cache(self, local_cache: Dict[str, Any]) -> None:
|
|
local_cache_path = self.get_local_cache_path()
|
|
write_atomic(
|
|
str(local_cache_path),
|
|
json.dumps({"system": self.system, "cache": local_cache}, indent=4),
|
|
make_dirs=True,
|
|
)
|
|
|
|
|
|
class LocalCache(CacheBase):
|
|
def lookup(self, *keys: str) -> Optional[Dict[str, Any]]:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys:
|
|
if key in cache:
|
|
sub_cache = cache[key]
|
|
else:
|
|
return None
|
|
|
|
return sub_cache
|
|
|
|
def set_value(self, *keys: str, value: Any) -> None:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys[0:-1]:
|
|
sub_cache.setdefault(key, {})
|
|
sub_cache = sub_cache[key]
|
|
sub_cache[keys[-1]] = value
|
|
|
|
self.update_local_cache(cache)
|
|
|
|
|
|
class PersistentCache(CacheBase):
|
|
@functools.lru_cache(None) # noqa: B019
|
|
def get_global_cache(self) -> Dict[str, Any]:
|
|
global_cache_path = self.get_global_cache_path()
|
|
if global_cache_path is None or not global_cache_path.is_file():
|
|
return {}
|
|
with open(global_cache_path) as global_cache_fp:
|
|
global_cache = json.load(global_cache_fp)
|
|
return global_cache["cache"]
|
|
|
|
def lookup(
|
|
self,
|
|
choices: List[ChoiceCaller],
|
|
op: str,
|
|
inputs: str,
|
|
benchmark: Optional[Callable[[Any], Dict[ChoiceCaller, float]]],
|
|
) -> Dict[ChoiceCaller, float]:
|
|
"""
|
|
Check to see if we have benchmarked the given choice callers. For each
|
|
choice caller:
|
|
|
|
1. Check global_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
2. Check local_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
3. If benchmark is not None:
|
|
a. `max_autotune_gemm=True`: benchmark the choice, update
|
|
local_cache[op][inputs][choice], and return the benchmark.
|
|
b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
|
|
"""
|
|
precision = torch.get_float32_matmul_precision()
|
|
|
|
log_stats = partial(log_global_cache_stats, self.system, op, inputs, precision)
|
|
log_vals = partial(log_global_cache_vals, self.system, op, inputs, precision)
|
|
log_errors = partial(
|
|
log_global_cache_errors, self.system, op, inputs, precision
|
|
)
|
|
timings = {}
|
|
|
|
def check_cache(cache: Dict[str, Any], callback: Any = None) -> bool:
|
|
"""Check if `cache` contains data for all the choices"""
|
|
hit = True
|
|
for choice in choices:
|
|
choice_hash = choice.hash_key()
|
|
if choice_hash in cache.get(op, {}).get(inputs, {}).get(precision, {}):
|
|
# cache hit
|
|
timings[choice] = cache[op][inputs][precision][choice_hash]
|
|
else:
|
|
# cache miss
|
|
hit = False
|
|
break
|
|
if callback:
|
|
callback(cached=hit)
|
|
return hit
|
|
|
|
if config.max_autotune or config.max_autotune_gemm:
|
|
local_cache = self.get_local_cache() if config.autotune_local_cache else {}
|
|
# check local cache first since it is data specific to the current machine
|
|
if (
|
|
not check_cache(local_cache)
|
|
and not (
|
|
use_global_cache()
|
|
and check_cache(self.get_global_cache(), callback=log_stats)
|
|
)
|
|
and benchmark is not None
|
|
):
|
|
try:
|
|
# re-benchmark everything to try to get consistent numbers from the same machine
|
|
timings = benchmark(choices)
|
|
assert all(choice in timings for choice in choices)
|
|
local_cache.setdefault(op, {})
|
|
local_cache[op].setdefault(inputs, {}).setdefault(precision, {})
|
|
for choice, timing in timings.items():
|
|
local_cache[op][inputs][precision][choice.hash_key()] = timing
|
|
except RuntimeError as e:
|
|
# catch and log autotuning failures
|
|
log_errors(e)
|
|
raise e
|
|
|
|
self.update_local_cache(local_cache)
|
|
|
|
timings_to_log = {
|
|
choice.hash_key(): timings[choice] for choice in choices
|
|
}
|
|
log_vals(timings_to_log)
|
|
elif use_global_cache():
|
|
# only check global cache, not local one
|
|
check_cache(self.get_global_cache(), callback=log_stats)
|
|
# may have a partial cache hit, where not everything is benchmarked
|
|
|
|
return timings
|
|
|
|
|
|
def get_lock_dir() -> str:
|
|
lock_dir = os.path.join(cache_dir(), "locks")
|
|
if not os.path.exists(lock_dir):
|
|
os.makedirs(lock_dir, exist_ok=True)
|
|
return lock_dir
|
|
|
|
|
|
def sha256_hash(data: bytes) -> str:
|
|
# [:51] to strip off the "Q====" suffix common to every hash value.
|
|
return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()
|
|
|
|
|
|
def code_hash(code: Union[str, bytes], extra: str = "") -> str:
|
|
hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
|
|
if extra != "":
|
|
hashing_str = hashing_str + b"||" + extra.encode("utf-8")
|
|
return "c" + sha256_hash(hashing_str)
|
|
|
|
|
|
def get_path(
|
|
basename: str, extension: str, specified_dir: str = ""
|
|
) -> Tuple[str, str, str]:
|
|
if specified_dir:
|
|
if os.path.isabs(specified_dir):
|
|
subdir = specified_dir
|
|
else:
|
|
subdir = os.path.join(cache_dir(), specified_dir)
|
|
else:
|
|
subdir = os.path.join(cache_dir(), basename[1:3])
|
|
path = os.path.join(subdir, f"{basename}.{extension}")
|
|
return basename, subdir, path
|
|
|
|
|
|
def get_hash(
|
|
content: Union[str, bytes], extra: str = "", hash_type: str = "code"
|
|
) -> str:
|
|
if hash_type == "code":
|
|
return code_hash(content, extra)
|
|
if hash_type in ["cubin", "hsaco", "spv"]:
|
|
return code_hash(repr(content))
|
|
raise AssertionError(f"Unknown hash type {hash_type}")
|
|
|
|
|
|
def write(
|
|
content: Union[str, bytes],
|
|
extension: str,
|
|
extra: str = "",
|
|
hash_type: str = "code",
|
|
specified_dir: str = "",
|
|
) -> Tuple[str, str]:
|
|
# use striped content to compute hash so we don't end up with different
|
|
# hashes just because the content begins/ends with different number of
|
|
# spaces.
|
|
key: str = get_hash(content.strip(), extra, hash_type)
|
|
basename, subdir, path = get_path(key, extension, specified_dir)
|
|
encode_utf_8: bool = hash_type == "code"
|
|
if not os.path.exists(path):
|
|
write_atomic(path, content, make_dirs=True)
|
|
return basename, path
|
|
|
|
|
|
def write_text(text: str) -> str:
|
|
"""
|
|
Write the `text` to a file and return the path computed based on the hash.
|
|
"""
|
|
return write(text, "txt")[1]
|
|
|
|
|
|
def write_atomic(
|
|
path_: str,
|
|
content: Union[str, bytes],
|
|
make_dirs: bool = False,
|
|
encode_utf_8: bool = False,
|
|
) -> None:
|
|
# Write into temporary file first to avoid conflicts between threads
|
|
# Avoid using a named temporary file, as those have restricted permissions
|
|
assert isinstance(
|
|
content, (str, bytes)
|
|
), "Only strings and byte arrays can be saved in the cache"
|
|
path = Path(path_)
|
|
if make_dirs:
|
|
path.parent.mkdir(parents=True, exist_ok=True)
|
|
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
|
|
write_mode = "w" if isinstance(content, str) else "wb"
|
|
with tmp_path.open(write_mode, encoding="utf-8" if encode_utf_8 else None) as f:
|
|
f.write(content)
|
|
try:
|
|
tmp_path.rename(target=path)
|
|
except FileExistsError as e_file_exist:
|
|
if not _IS_WINDOWS:
|
|
raise
|
|
# On Windows file exist is expected: https://docs.python.org/3/library/pathlib.html#pathlib.Path.rename
|
|
# Below two lines code is equal to `tmp_path.rename(path)` on non-Windows OS.
|
|
# 1. Copy tmp_file to Target(Dst) file.
|
|
shutil.copy2(src=tmp_path, dst=path)
|
|
# 2. Delete tmp_file.
|
|
os.remove(tmp_path)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorMetadataAndValues:
|
|
"""
|
|
TensorMetadata plus the elements as a list of raw values.
|
|
Used for hashing inlined constants.
|
|
"""
|
|
|
|
tensor_metadata: TensorMetadata
|
|
values: List[Any]
|
|
|
|
|
|
def _ident(x: T) -> T:
|
|
return x
|
|
|
|
|
|
def extract_tensor_metadata_for_cache_key(t: Tensor) -> TensorMetadata:
|
|
"""
|
|
Extracts the tensor metadata and removes fields of the TensorMetadata
|
|
that are not needed for caching
|
|
"""
|
|
meta = extract_tensor_metadata(t)
|
|
if not hasattr(t, "_is_inductor_static"):
|
|
meta = dataclasses.replace(meta, storage_offset=0, storage_bytes=None)
|
|
|
|
return meta
|
|
|
|
|
|
class FxGraphCachePickler(pickle.Pickler):
|
|
"""
|
|
Custom pickler to customize the pickling of some objects (Tensors), only for the
|
|
purpose of computing a hash for keying into the FxGraphCache. Tensors contain
|
|
objects that don't pickle and/or vary between runs, and we want to capture the
|
|
data that allow us to compute a stable, but safe hash.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
include_non_inlined: bool = True,
|
|
has_user_defined_triton_kernels: bool = False,
|
|
) -> None:
|
|
"""
|
|
Create an FX graph pickler. If include_non_inlined=True, then pickling will
|
|
include the _values_ for all Tensors. (Note that any tensors are constants
|
|
attached as attributes to the GraphModule). Otherwise, pickling will include
|
|
only the metadata for these tensors.
|
|
"""
|
|
self._stream = io.BytesIO()
|
|
super().__init__(self._stream)
|
|
|
|
self.include_non_inlined = include_non_inlined
|
|
|
|
self.dispatch_table = copyreg.dispatch_table.copy()
|
|
self.dispatch_table.update(
|
|
{
|
|
FakeTensor: functools.partial(self._reduce_fake_tensor),
|
|
torch.Tensor: functools.partial(self._reduce_tensor),
|
|
torch.SymInt: functools.partial(self._reduce_symint),
|
|
torch.fx.experimental._backward_state.BackwardState: functools.partial(
|
|
self._reduce_unsupported
|
|
),
|
|
}
|
|
)
|
|
if has_user_defined_triton_kernels:
|
|
# Need to use runtime type as GraphModule generates a singleton in __new__ function
|
|
self.dispatch_table[gm.__class__] = functools.partial(
|
|
self._reduce_graph_module
|
|
)
|
|
|
|
# Run with pickler.fast so it doesn't intern strings, making the hash result more predictable
|
|
# TODO: pickler.fast is technically deprecated. Will this work on new python versions?
|
|
self.fast = True
|
|
|
|
def _reduce_fake_tensor(
|
|
self, t: Tensor
|
|
) -> Tuple[Callable[[T], T], Tuple[TensorMetadata]]:
|
|
"""
|
|
Custom reducer to pickle FakeTensors.
|
|
"""
|
|
metadata = extract_tensor_metadata_for_cache_key(t)
|
|
return (_ident, (metadata,))
|
|
|
|
def _reduce_tensor(
|
|
self,
|
|
t: Tensor,
|
|
) -> Tuple[Callable[[T], T], Tuple[Union[TensorMetadata, TensorMetadataAndValues]]]:
|
|
"""
|
|
Custom reducer to pickle Tensors. If we see tensors, we know they're constants
|
|
stored as attributes on the GraphModule.
|
|
"""
|
|
from .graph import GraphLowering
|
|
|
|
if t.is_mkldnn:
|
|
# TODO: These tensors don't currently pickle, so we can't cache a compiled
|
|
# graph containing them. Just fail now. If mkldnn tensors get pickling
|
|
# support, we can remove this.
|
|
raise BypassFxGraphCache("mkldnn tensors unpickleable")
|
|
|
|
# If this is an inlined constant or include_non_inlined=True, then we include
|
|
# the metadata and the values.
|
|
metadata = extract_tensor_metadata_for_cache_key(t)
|
|
if GraphLowering.can_inline_constant(t) or self.include_non_inlined:
|
|
# Very large tensors will be expensive to copy to cpu and hash. Let's at
|
|
# least report any slowness.
|
|
start = time()
|
|
values = t.tolist()
|
|
elapsed = time() - start
|
|
if elapsed > 1.0:
|
|
warnings.warn(
|
|
f"FX graph cache copying of a large constant took {elapsed:.1}s. "
|
|
"Please file an issue."
|
|
)
|
|
|
|
return (_ident, (TensorMetadataAndValues(metadata, values),))
|
|
|
|
# Otherwise, we just include the metadata.
|
|
return (_ident, (metadata,))
|
|
|
|
def _reduce_symint(self, s: SymInt) -> Tuple[Callable[[T], T], Tuple[str]]:
|
|
"""
|
|
Custom reducer to pickle SymInts.
|
|
"""
|
|
# For hashing purposes, we only care about the name of the symbol and not the
|
|
# backed value. We evaluate guards stored with a cached graph to ensure a cached
|
|
# entity with SymInt args is safe to reuse.
|
|
return (_ident, (str(s),))
|
|
|
|
def _reduce_unsupported(self, s: Any) -> NoReturn:
|
|
"""
|
|
Custom reducer to handle any objects that we don't support and therefore
|
|
raise to bypass caching.
|
|
"""
|
|
raise BypassFxGraphCache("Reduce unsupported")
|
|
|
|
def _reduce_graph_module(
|
|
self, gm: torch.fx.GraphModule
|
|
) -> Tuple[Any, Tuple[Dict[str, Any], str]]:
|
|
"""
|
|
Custom reducer for graph module to handle irrelevant data for user
|
|
defined triton kernels
|
|
Essentially what we are doing here is a huge hack where user defined
|
|
triton kernel contain a dynamo time side table and the arguments to the
|
|
call_function are indicies into this side table. These arguments are not
|
|
for hashing purposes since we included the source code into the cache
|
|
key and the numbers are prone to give false negatives due to ordering.
|
|
"""
|
|
fn, (data, imports) = gm.__reduce__()
|
|
code = data["_code"]
|
|
code = re.sub(r"kernel_idx = \d+", "", code)
|
|
code = re.sub(r"constant_args_idx = \d+", "", code)
|
|
data["_code"] = code
|
|
return fn, (data, imports)
|
|
|
|
def dumps(self, obj: Any) -> bytes:
|
|
"""
|
|
Pickle an object and return a byte string.
|
|
"""
|
|
try:
|
|
self.dump(obj)
|
|
return self._stream.getvalue()
|
|
except (TypeError, AttributeError) as e:
|
|
# Some configs options may not pickle.
|
|
log.warning("Failed to pickle cache key", exc_info=True)
|
|
raise BypassFxGraphCache("Failed to pickle cache key") from e
|
|
finally:
|
|
# Reset our stream for the next dump.
|
|
self._stream.seek(0)
|
|
self._stream.truncate(0)
|
|
|
|
def get_hash(self, obj: Any) -> str:
|
|
"""
|
|
Serialize an object and return a hash of the bytes.
|
|
"""
|
|
serialized_data = self.dumps(obj)
|
|
return sha256_hash(serialized_data)
|
|
|
|
def debug_lines(self, inp: FxGraphHashDetails) -> List[str]:
|
|
"""
|
|
Get a printable string describing in more detail all the attributes
|
|
comprising an object. Useful for debugging when one graph hashes
|
|
to a different value than another.
|
|
"""
|
|
|
|
def get_str(obj: Any) -> str:
|
|
if isinstance(obj, torch.Tensor):
|
|
return str(extract_tensor_metadata_for_cache_key(obj))
|
|
elif isinstance(obj, bytes):
|
|
return "<bytes>"
|
|
elif type(obj) in self.dispatch_table:
|
|
# Run the reducer on the object
|
|
return str(self.dispatch_table[type(obj)](obj)[1])
|
|
else:
|
|
return str(obj)
|
|
|
|
lines = []
|
|
for attr, obj in vars(inp).items():
|
|
if isinstance(obj, list):
|
|
for ii in range(len(obj)):
|
|
h = self.get_hash(obj[ii])
|
|
lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
|
|
elif isinstance(obj, dict):
|
|
for k, v in obj.items():
|
|
h = self.get_hash(v)
|
|
lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
|
|
else:
|
|
h = self.get_hash(obj)
|
|
lines.append(f"[{h}] {attr}: {get_str(obj)}")
|
|
return lines
|
|
|
|
|
|
def build_code_hash(
|
|
roots: List[str] | None, prefix: str, hasher: hashlib._Hash
|
|
) -> None:
|
|
for lib in sorted(pkgutil.iter_modules(roots, prefix), key=lambda x: x.name):
|
|
spec = lib.module_finder.find_spec(lib.name, None)
|
|
assert spec is not None
|
|
module = spec.origin
|
|
assert module is not None
|
|
with open(module, "rb") as f:
|
|
hasher.update(spec.name.encode("utf-8"))
|
|
hasher.update(f.read())
|
|
if lib.ispkg:
|
|
# need to also hash submodules
|
|
build_code_hash(spec.submodule_search_locations, f"{spec.name}.", hasher)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def torch_key() -> bytes:
|
|
"""
|
|
Compute a key that contains relevant information about torch source files
|
|
"""
|
|
with dynamo_timed("inductor_codecache_torch_key", log_pt2_compile_event=True):
|
|
if not config.is_fbcode():
|
|
|
|
def get_code_hash(root: str) -> bytes:
|
|
# This function isn't meant to be used outside of torch_key, just a
|
|
# helper for clarity. Instead, use torch_key() directly when you need
|
|
# a hash representing the state of the source code.
|
|
extra_files = (
|
|
"codegen/aoti_runtime/interface.cpp",
|
|
"codegen/aoti_runtime/implementation.cpp",
|
|
"codegen/cpp_prefix.h",
|
|
"script.ld",
|
|
)
|
|
inductor_root = os.path.dirname(__file__)
|
|
extra_files = [os.path.join(inductor_root, x) for x in extra_files]
|
|
hasher = hashlib.sha256()
|
|
hasher.update(torch.__version__.encode("utf-8"))
|
|
build_code_hash([root], "", hasher)
|
|
for path in extra_files:
|
|
if os.path.exists(path):
|
|
with open(path, "rb") as f:
|
|
hasher.update(f.read())
|
|
return hasher.digest()
|
|
|
|
return get_code_hash(_TORCH_PATH)
|
|
|
|
from libfb.py import parutil
|
|
|
|
return parutil.get_file_contents("torch/src_hash.txt").rstrip().encode("ascii")
|
|
|
|
|
|
def get_inductor_root() -> str:
|
|
return os.path.dirname(__file__)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class OrderedSetHolder:
|
|
"""
|
|
See FxGraphHashDetails. Holds a sorted list to support stable hashing
|
|
of set kwargs.
|
|
"""
|
|
|
|
items: List[Any]
|
|
|
|
|
|
class BypassFxGraphCache(Exception):
|
|
"""
|
|
Exception to indicate that the FxGraphCache should be bypassed.
|
|
"""
|
|
|
|
|
|
class FxGraphHashDetails:
|
|
"""
|
|
Object to capture all the details for a compiled FX graph relevant to computing
|
|
a safe and stable cache key.
|
|
"""
|
|
|
|
# Excluded kwargs param that are not stable between runs
|
|
EXCLUDED_KWARGS = ["graph_id"]
|
|
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: Sequence[InputType],
|
|
fx_kwargs: _CompileFxKwargs,
|
|
inputs_to_check: Sequence[int],
|
|
) -> None:
|
|
self.gm = gm
|
|
self.example_inputs = example_inputs
|
|
self.cache_key_tag = cconfig.cache_key_tag
|
|
|
|
# Order kwargs so hashing is stable to changes in kwarg order. Although
|
|
# it's technically a _CompileFxKwargs we don't actually need it typed as
|
|
# such since we're just using it to generate a hash.
|
|
self.fx_kwargs: Dict[str, object] = {}
|
|
for k, v in sorted(fx_kwargs.items()):
|
|
if k not in self.EXCLUDED_KWARGS:
|
|
if type(v) is set:
|
|
# Special case to handle set params. Python sets can't be
|
|
# ordered, so sort the elements and store them in a proxy.
|
|
self.fx_kwargs[k] = OrderedSetHolder(sorted(v))
|
|
else:
|
|
self.fx_kwargs[k] = v
|
|
|
|
from torch._higher_order_ops.triton_kernel_wrap import (
|
|
kernel_side_table,
|
|
triton_kernel_wrapper_functional,
|
|
triton_kernel_wrapper_mutation,
|
|
)
|
|
from torch._inductor.codegen.wrapper import (
|
|
user_defined_triton_kernel_transitive_closure_source_code,
|
|
)
|
|
|
|
# Node meta will not be part of gm's reduce function, so lets remember
|
|
# the kernel source code separately
|
|
self.user_defined_triton_source: List[Any] = []
|
|
if gm is not None:
|
|
for module in gm.modules():
|
|
if not isinstance(module, torch.fx.GraphModule):
|
|
continue
|
|
for node in itertools.chain(
|
|
module.graph.find_nodes(
|
|
op="call_function", target=triton_kernel_wrapper_functional
|
|
),
|
|
module.graph.find_nodes(
|
|
op="call_function", target=triton_kernel_wrapper_mutation
|
|
),
|
|
):
|
|
from triton.runtime.autotuner import Autotuner
|
|
|
|
kernel = kernel_side_table.get_kernel(node.kwargs["kernel_idx"])
|
|
if isinstance(kernel, Autotuner):
|
|
kernel = kernel.fn
|
|
|
|
kernel_source = (
|
|
user_defined_triton_kernel_transitive_closure_source_code(
|
|
kernel
|
|
)
|
|
)
|
|
constant_args = kernel_side_table.get_constant_args(
|
|
node.kwargs["constant_args_idx"]
|
|
)
|
|
self.user_defined_triton_source.append(
|
|
(kernel_source, constant_args)
|
|
)
|
|
|
|
# Alignment checks
|
|
self.inputs_to_check = inputs_to_check
|
|
|
|
# 'Deterministic algorithms' can affect codegen via lowering to cuda kernels.
|
|
self.deterministic_algorithms_settings = (
|
|
torch.are_deterministic_algorithms_enabled(),
|
|
torch.is_deterministic_algorithms_warn_only_enabled(),
|
|
torch.utils.deterministic.fill_uninitialized_memory, # type: ignore[attr-defined]
|
|
)
|
|
|
|
# Global settings affecting matmul codegen.
|
|
self.cuda_matmul_settings = (
|
|
torch.backends.cuda.matmul.allow_tf32,
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction,
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction,
|
|
)
|
|
|
|
# Also hash on various system info (including the triton compiler version).
|
|
self.torch_version = torch_key()
|
|
self.system_info = CacheBase.get_system()
|
|
self.inductor_config = config.save_config_portable()
|
|
# Custom post grad passes should provide an ID to hash.
|
|
self.post_grad_custom_pre_pass = self._get_custom_pass_detail(
|
|
config.post_grad_custom_pre_pass
|
|
)
|
|
self.post_grad_custom_post_pass = self._get_custom_pass_detail(
|
|
config.post_grad_custom_post_pass
|
|
)
|
|
|
|
def _get_custom_pass_detail(
|
|
self, custom_pass: CustomGraphPassType
|
|
) -> Optional[Any]:
|
|
if not custom_pass:
|
|
return None
|
|
assert isinstance(custom_pass, CustomGraphPass)
|
|
return custom_pass.uuid()
|
|
|
|
|
|
def compiled_fx_graph_hash(
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: Sequence[InputType],
|
|
fx_kwargs: _CompileFxKwargs,
|
|
inputs_to_check: Sequence[int],
|
|
) -> Tuple[str, List[str]]:
|
|
"""
|
|
Generate a unique hash of the FX graph for caching.
|
|
"""
|
|
# To support caching when the graph has frozen params, we ignore the tensor values
|
|
# of non-inlined constants since they won't be included in the cache entry. Without
|
|
# freezing, we want to include the values of any constant attribute.
|
|
include_non_inlined = not has_frozen_params(gm)
|
|
|
|
details = FxGraphHashDetails(gm, example_inputs, fx_kwargs, inputs_to_check)
|
|
has_user_defined_triton_kernels = len(details.user_defined_triton_source) != 0
|
|
pickler = FxGraphCachePickler(
|
|
gm, include_non_inlined, has_user_defined_triton_kernels
|
|
)
|
|
# The prefix distinguishes among the other kinds of objects we
|
|
# cache in this module.
|
|
key = "f" + pickler.get_hash(details)
|
|
debug_lines = pickler.debug_lines(details)
|
|
debug_str = "\n".join(debug_lines)
|
|
log.debug(f"FX graph cache hash details for key {key}:\n{debug_str}") # noqa: G004
|
|
return key, debug_lines
|
|
|
|
|
|
def add_ephemeral_timeout_increase_for_distributed(time_saved_ns: int) -> int:
|
|
"""
|
|
Ephemerally increases the NCCL timeout when compiling for a distributed job
|
|
Returns amount of seconds increased
|
|
"""
|
|
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
|
|
return 0
|
|
|
|
increased_timeout_sec = int(time_saved_ns // 1e9) # convert to seconds
|
|
|
|
if config.is_fbcode():
|
|
fudge_factor = torch._utils_internal.justknobs_getval_int(
|
|
"pytorch/remote_cache:ephemeral_timeout_fudge_factor_percentage"
|
|
)
|
|
log.info(
|
|
"Ephemeral NCCL timeout increase fudge factor %d and original increase value %d",
|
|
fudge_factor,
|
|
increased_timeout_sec,
|
|
)
|
|
increased_timeout_sec += int(increased_timeout_sec * fudge_factor / 100)
|
|
|
|
log.info("Increasing NCCL timeout by %d", increased_timeout_sec)
|
|
dist.distributed_c10d._add_ephemeral_timeout_for_all_pgs(
|
|
timedelta(seconds=increased_timeout_sec)
|
|
)
|
|
return increased_timeout_sec
|
|
|
|
|
|
class FxGraphCache:
|
|
"""
|
|
Supports caching and reusing compiled Fx graphs.
|
|
|
|
The overall strategy is as follows:
|
|
- This cache stores entries on disk. When saving an entry, we can't
|
|
serialize callables (that could be C++, Triton, etc.), so we serialize
|
|
their own disk cache location. We then recreate the compiled artifact
|
|
after fetching from disk.
|
|
- For indexing the cache, we gather the fields relevant to identifying an
|
|
FxGraph (the graph module, graph inputs, system settings etc.) into an
|
|
FxGraphCacheDetails object, pickle it, and compute a hash for the key.
|
|
See FxGraphCachePickler.
|
|
- Among the metadata we store, we also include a guards expression that's
|
|
appropriate for validating any symbols for Tensor arguments that have
|
|
symbolic bounds. On cache lookup then, we evaluate those guards in the
|
|
current context to validate that a cached entry can be served.
|
|
- A given graph could have multiple compiled versions, corresponding to
|
|
different sets of guards. Therefore, we store cache entries in the form:
|
|
<temp dir>/<fx graph hash>/<serialized metatdata>
|
|
- On lookup, we compute the key from the graph details, iterate over all
|
|
leaf files in the corresponding subdirectory, deserialize the entry, and
|
|
evaluate its guards expression. If the evaluation succeeds, we have a
|
|
cache hit. If it fails, we compile the graph and store a new entry.
|
|
- Finally, on a cache hit, we need to make sure any guards that would
|
|
have been created during compilation are added to the current context.
|
|
"""
|
|
|
|
# TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
|
|
# in an in-memory cache after loading from disk.
|
|
@staticmethod
|
|
def _get_tmp_dir() -> str:
|
|
"""
|
|
Get the toplevel temporary directory for storing compiled graphs.
|
|
"""
|
|
return os.path.join(cache_dir(), "fxgraph")
|
|
|
|
@staticmethod
|
|
def _get_tmp_dir_for_key(key: str) -> str:
|
|
"""
|
|
Return the disk location for a given cache key.
|
|
"""
|
|
return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)
|
|
|
|
@staticmethod
|
|
def _filter_backed_symints(inputs: Sequence[InputType]) -> List[torch.SymInt]:
|
|
"""
|
|
Get the backed SymInt objects from the input list. Note that we can never
|
|
have guards that depend on unbacked symint.
|
|
"""
|
|
return [s for s in inputs if isinstance(s, torch.SymInt) and has_hint(s)]
|
|
|
|
@staticmethod
|
|
def _get_shape_env() -> Optional[ShapeEnv]:
|
|
"""
|
|
Helper to get the shape env from the tracing context.
|
|
"""
|
|
ctx = torch._guards.TracingContext.try_get()
|
|
if not ctx:
|
|
return None
|
|
return ctx.fake_mode.shape_env
|
|
|
|
@staticmethod
|
|
def _lookup_graph(
|
|
key: str,
|
|
example_inputs: Sequence[InputType],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
constants: CompiledFxGraphConstants,
|
|
) -> Tuple[Optional[CompiledFxGraph], Dict[str, Any]]:
|
|
"""
|
|
Lookup a compiled graph in the cache by key. On a hit, return the
|
|
deserialized CompiledFxGraph object. On a miss, return None.
|
|
"""
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
|
|
symints = FxGraphCache._filter_backed_symints(example_inputs)
|
|
hints = [hint_int(s) for s in symints]
|
|
|
|
def iterate_over_candidates() -> Generator[CompiledFxGraph, None, None]:
|
|
if local:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if os.path.exists(subdir):
|
|
for path in sorted(os.listdir(subdir)):
|
|
try:
|
|
with open(os.path.join(subdir, path), "rb") as f:
|
|
yield pickle.load(f)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to load compiled graph",
|
|
exc_info=True,
|
|
)
|
|
|
|
if remote_cache:
|
|
try:
|
|
if (cache_data := remote_cache.get(key)) is not None:
|
|
assert isinstance(cache_data, dict)
|
|
data = cache_data["data"]
|
|
assert isinstance(data, (str, bytes))
|
|
content = base64.b64decode(data)
|
|
yield pickle.loads(content)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to load compiled graph", exc_info=True
|
|
)
|
|
|
|
# Iterate over any entries in the subdir for this key and evaluate
|
|
# their guards to determine whether there's a hit.
|
|
graph = None
|
|
cache_info: Dict[str, Any] = dict()
|
|
|
|
for candidate in iterate_over_candidates():
|
|
if not candidate.guards_expr:
|
|
# No guards to evaluate, so this is a hit.
|
|
graph = candidate
|
|
break
|
|
|
|
# Evaluate the guard expression in the current context.
|
|
# If there's not a cache hit, we don't want the evaluation to
|
|
# affect the current env, e.g., cause the creation of new guards,
|
|
# so we evaluate with the hints instead of the symbols.
|
|
hit = bool(
|
|
shape_env.evaluate_guards_expression(candidate.guards_expr, hints)
|
|
)
|
|
log.debug(
|
|
"fx graph cache key %s evaluating guards [%s] with values %s => hit=%s",
|
|
key,
|
|
candidate.guards_expr,
|
|
hints,
|
|
hit,
|
|
)
|
|
if hit:
|
|
graph = candidate
|
|
break
|
|
|
|
if graph is None:
|
|
return None, cache_info
|
|
|
|
if bundle := graph._triton_bundle:
|
|
triton_bundler_meta = TritonBundler.read_and_emit(bundle)
|
|
if (meta := triton_bundler_meta) is not None:
|
|
cache_info["triton_bundler_meta"] = str(meta)
|
|
logger = get_chromium_event_logger()
|
|
if "inductor_compile" in logger.get_stack():
|
|
# TODO: Clean up autograd cache integration
|
|
logger.add_event_data(
|
|
"inductor_compile", cached_kernel_names=meta.cached_kernel_names
|
|
)
|
|
if len(meta.cached_kernel_names) > 0:
|
|
get_metrics_context().increment("num_triton_bundles", 1)
|
|
|
|
try:
|
|
artifact_path = graph.after_deserialization(constants)
|
|
except OSError:
|
|
# Not expected, but in case the PyCodeCache entry is removed from
|
|
# underneath us, treat it as a cache miss and recompile.
|
|
return None, cache_info
|
|
|
|
inductor_meta = autotune_cache.inductor_meta_from_config()
|
|
code = graph.source_code
|
|
AutotuneCacheBundler.begin_compile(inductor_meta, code=code)
|
|
|
|
# Now re-evaluate with the symints to add any guards to the current env.
|
|
if graph.guards_expr:
|
|
check = bool(
|
|
shape_env.evaluate_guards_expression(graph.guards_expr, symints)
|
|
)
|
|
assert check is True
|
|
log.debug(
|
|
"fx graph cache key %s post-load guards: %s", key, shape_env.guards
|
|
)
|
|
|
|
# Increment the cached metrics/counters by the amounts recorded when the FX
|
|
# graph was compiled for this cache entry. Pretending these counters
|
|
# were incremented normally is useful for testing with the cache enabled.
|
|
metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas)
|
|
counters["inductor"] += graph.counter_deltas
|
|
|
|
output_code_log.debug("Output code: \n%s", code)
|
|
output_code_log.debug("Output code written to: %s", artifact_path)
|
|
# On cache hit, use artifact path as filename
|
|
trace_structured(
|
|
"inductor_output_code",
|
|
lambda: {"filename": artifact_path},
|
|
payload_fn=lambda: code,
|
|
)
|
|
return graph, cache_info
|
|
|
|
@staticmethod
|
|
def _save_graph(
|
|
key: str,
|
|
compiled_graph: OutputCode,
|
|
example_inputs: Sequence[InputType],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
) -> None:
|
|
"""
|
|
Store a serialized CompiledFxGraph on disk.
|
|
"""
|
|
from .compile_fx import CompiledFxGraph
|
|
|
|
assert isinstance(
|
|
compiled_graph, CompiledFxGraph
|
|
), f"serialization for {type(compiled_graph)} NYI"
|
|
disk_compiled_graph = copy(compiled_graph)
|
|
disk_compiled_graph.prepare_for_serialization()
|
|
|
|
# Before serializing, compute the guard expression that will be used to
|
|
# ensure that a CompiledFxGraph is valid when loaded from the cache. It's
|
|
# sufficient to consider only the SymInt args to the fx graph since the
|
|
# Tensor shapes are already captured in the hash for the cache key. Any
|
|
# Tensor arg with a symbolic shape will have a SymInt arg for the graph.
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
symints = FxGraphCache._filter_backed_symints(example_inputs)
|
|
guards = shape_env.get_pruned_guards(symints)
|
|
disk_compiled_graph.guards_expr = shape_env.produce_guards_expression(
|
|
placeholders=symints, guards=guards
|
|
)
|
|
|
|
try:
|
|
content = pickle.dumps(disk_compiled_graph)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to serialize compiled graph", exc_info=True
|
|
)
|
|
counters["inductor"]["fxgraph_cache_pickle_error"] += 1
|
|
return
|
|
|
|
try:
|
|
if local:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if not os.path.exists(subdir):
|
|
os.makedirs(subdir, exist_ok=True)
|
|
|
|
# Use a hash of the serialized CompiledFxGraph to get a unique file
|
|
# name. The specific name doesn't matter since a lookup involves
|
|
# iterating over all entries in the parent subdir.
|
|
path = os.path.join(subdir, sha256_hash(content))
|
|
write_atomic(path, content, make_dirs=True)
|
|
|
|
if remote_cache:
|
|
time_taken_ms = int((disk_compiled_graph._time_taken_ns or 0) // 1e6)
|
|
cache_data: JsonDataTy = {
|
|
"data": base64.b64encode(content).decode("ascii"),
|
|
"time_taken_ms": time_taken_ms,
|
|
}
|
|
remote_cache.put(key, cache_data)
|
|
except Exception:
|
|
log.warning("fx graph unable to write to cache", exc_info=True)
|
|
counters["inductor"]["fxgraph_cache_write_error"] += 1
|
|
|
|
@staticmethod
|
|
def _check_can_cache(gm: torch.fx.GraphModule) -> None:
|
|
"""
|
|
Check some conditions that would preclude caching and raise BypassFxGraphCache
|
|
to bypass in case caching is not possible.
|
|
"""
|
|
# Post grad custom passes must implement the CustomGraphPass or we don't
|
|
# know how to include them in the cache key calculation.
|
|
for p in (config.post_grad_custom_pre_pass, config.post_grad_custom_post_pass):
|
|
if p and (not isinstance(p, CustomGraphPass) or not p.uuid()):
|
|
raise BypassFxGraphCache("Unsupported post grad custom pass")
|
|
|
|
# Freezing can embed constants that wouldn't be static across runs.
|
|
if has_frozen_params(gm) and not torch._utils_internal.justknobs_check(
|
|
"pytorch/inductor:allow_freezing_with_caching"
|
|
):
|
|
raise BypassFxGraphCache("Skipping graph with frozen constants")
|
|
|
|
if config.aot_inductor.use_runtime_constant_folding:
|
|
raise BypassFxGraphCache(
|
|
"Runtime constant folding can introduce constants that aren't "
|
|
"static across runs"
|
|
)
|
|
|
|
from torch._inductor.compiler_bisector import CompilerBisector
|
|
|
|
if CompilerBisector.bisection_enabled:
|
|
log.debug("dont cache graph when bisect enabled")
|
|
raise BypassFxGraphCache
|
|
|
|
# The treatment of guards in the caching implementation requires that
|
|
# we have a shape env.
|
|
if FxGraphCache._get_shape_env() is None:
|
|
log.debug("fx graph cache no shape env")
|
|
raise BypassFxGraphCache("No shape env")
|
|
|
|
# We skip caching if there are any torchbind objects.
|
|
for module in gm.modules():
|
|
if not isinstance(module, torch.fx.GraphModule):
|
|
continue
|
|
for node in module.graph.nodes:
|
|
if (
|
|
isinstance(node.target, torch._ops.HigherOrderOperator)
|
|
and not node.target.cacheable()
|
|
):
|
|
raise BypassFxGraphCache(
|
|
f"Can't cache HigherOrderOperator: {node.target.name()}"
|
|
)
|
|
if node.op == "getattr" and isinstance(
|
|
getattr(gm, node.target), torch._C.ScriptObject
|
|
):
|
|
raise BypassFxGraphCache("Can't cache torchbind objects")
|
|
|
|
@staticmethod
|
|
def prepare_key(
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: Sequence[InputType],
|
|
fx_kwargs: _CompileFxKwargs,
|
|
inputs_to_check: Sequence[int],
|
|
remote: bool,
|
|
) -> Tuple[Optional[Tuple[str, List[str]]], Dict[str, Any]]:
|
|
"""
|
|
Checks that the inductor input is cacheable, then computes
|
|
and returns the cache key for the input.
|
|
Returns (key_info, cache_info) where:
|
|
- key_info is (hash_key, debug_lines), and
|
|
- cache_info will contain debug info in the event of BypassFxGraphCache.
|
|
|
|
NB: It is possible to have this function return a union instead. But
|
|
I personally believe it is more annoying/difficult to read in that format.
|
|
"""
|
|
try:
|
|
FxGraphCache._check_can_cache(gm)
|
|
key, debug_lines = compiled_fx_graph_hash(
|
|
gm, example_inputs, fx_kwargs, inputs_to_check
|
|
)
|
|
except BypassFxGraphCache as e:
|
|
counters["inductor"]["fxgraph_cache_bypass"] += 1
|
|
log.info("Bypassing FX Graph Cache because '%s'", e)
|
|
if remote:
|
|
log_cache_bypass("bypass_fx_graph", str(e))
|
|
cache_info = {
|
|
"cache_state": "bypass",
|
|
"cache_bypass_reason": str(e),
|
|
"cache_event_time": time_ns(),
|
|
}
|
|
return None, cache_info
|
|
# If key exists, then cache_info will come from load_with_key
|
|
return (key, debug_lines), {}
|
|
|
|
@staticmethod
|
|
def get_remote_cache() -> Optional[RemoteCache[JsonDataTy]]:
|
|
"""
|
|
Attempts to load the remote cache, returns None on error.
|
|
"""
|
|
cache_id = "fx-graph-v1"
|
|
return create_cache(
|
|
cache_id,
|
|
config.is_fbcode(),
|
|
"FbRemoteFxGraphCache",
|
|
"RemoteFxGraphCache",
|
|
)
|
|
|
|
@staticmethod
|
|
def load_with_key(
|
|
key: str,
|
|
debug_lines: List[str],
|
|
example_inputs: Sequence[InputType],
|
|
local: bool,
|
|
remote_cache: Optional[RemoteCache[JsonDataTy]],
|
|
is_backward: bool,
|
|
constants: CompiledFxGraphConstants,
|
|
) -> Tuple[Optional[CompiledFxGraph], Dict[str, Any]]:
|
|
"""
|
|
Lookup the graph with the given key, and return results and metadata.
|
|
Doesn't do any logging on its own, because AOTAutograd handles a cache miss
|
|
differently from FXGraphCache.
|
|
"""
|
|
compiled_graph, cache_info = FxGraphCache._lookup_graph(
|
|
key, example_inputs, local, remote_cache, constants
|
|
)
|
|
cache_info = {
|
|
**cache_info,
|
|
"key": key,
|
|
"components": debug_lines,
|
|
"cache_event_time": time_ns(),
|
|
}
|
|
if compiled_graph is not None:
|
|
log.info("fx graph cache hit for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_hit"] += 1
|
|
cache_info["cache_state"] = "hit"
|
|
if remote_cache:
|
|
# Count remote cache hit stats
|
|
get_metrics_context().increment("inductor_fx_remote_cache_hit_count", 1)
|
|
get_metrics_context().add_to_set(
|
|
"inductor_fx_remote_cache_hit_keys", key
|
|
)
|
|
|
|
if (time_saved_ns := compiled_graph._time_taken_ns) is not None:
|
|
cache_info["time_saved_ns"] = time_saved_ns
|
|
get_metrics_context().increment(
|
|
"distributed_ephemeral_timeout_us", time_saved_ns // 1000
|
|
)
|
|
if (
|
|
ephemeral_increase := add_ephemeral_timeout_increase_for_distributed(
|
|
time_saved_ns
|
|
)
|
|
) != 0:
|
|
cache_info["ephemeral_timeout_increase"] = ephemeral_increase
|
|
else:
|
|
if remote_cache:
|
|
# Count remote cache miss stats
|
|
get_metrics_context().increment(
|
|
"inductor_fx_remote_cache_miss_count", 1
|
|
)
|
|
get_metrics_context().add_to_set(
|
|
"inductor_fx_remote_cache_miss_keys", key
|
|
)
|
|
log.info("fx graph cache miss for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_miss"] += 1
|
|
cache_info["cache_state"] = "miss"
|
|
|
|
return compiled_graph, cache_info
|
|
|
|
@staticmethod
|
|
def clear() -> None:
|
|
"""
|
|
Clear out the on-disk cache.
|
|
"""
|
|
try:
|
|
shutil.rmtree(FxGraphCache._get_tmp_dir())
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
def run_command_and_check(cmd_: str) -> None:
|
|
with dynamo_timed("run_command_and_check", log_pt2_compile_event=True):
|
|
cmd = shlex.split(cmd_)
|
|
try:
|
|
subprocess.check_call(cmd)
|
|
except subprocess.CalledProcessError as e:
|
|
raise exc.CppCompileError(cmd, e.output) from e
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def split_aot_inductor_output_path(path: str) -> Tuple[str, str]:
|
|
"""Returns the path where the AOT Inductor compiled kernels are stored."""
|
|
if path.endswith(".so"):
|
|
return os.path.split(path)
|
|
elif path.endswith(".pt2"):
|
|
return os.path.split(path)
|
|
else:
|
|
return path, ""
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CudaKernelParamCache:
|
|
cache: Dict[str, Dict[str, str]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
|
|
@classmethod
|
|
def set(cls, key: str, params: Dict[str, str], cubin: str, bin_type: str) -> None:
|
|
_, path = write(
|
|
cubin,
|
|
bin_type,
|
|
hash_type=bin_type,
|
|
specified_dir=split_aot_inductor_output_path(
|
|
config.aot_inductor.output_path
|
|
)[0],
|
|
)
|
|
params[get_cpp_wrapper_cubin_path_name()] = path
|
|
|
|
cls.cache[key] = params
|
|
|
|
@classmethod
|
|
def get(cls, key: str) -> Optional[Dict[str, str]]:
|
|
return cls.cache.get(key, None)
|
|
|
|
@classmethod
|
|
def get_keys(cls) -> KeysView[str]:
|
|
return cls.cache.keys()
|
|
|
|
|
|
class AotCodeCompiler:
|
|
@classmethod
|
|
def compile(
|
|
cls,
|
|
graph: GraphLowering,
|
|
source_code: str,
|
|
serialized_extern_kernel_nodes: Optional[str],
|
|
device_type: str,
|
|
additional_files: List[str],
|
|
) -> Union[List[str], str]:
|
|
"""
|
|
Returns the .so path, or returns a list of files that were generated if
|
|
config.aot_inductor.package=True.
|
|
"""
|
|
generated_files = additional_files
|
|
|
|
if sys.platform == "win32":
|
|
raise RuntimeError("AotCodeCompiler not yet supported for inductor")
|
|
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
|
|
picked_vec_isa = pick_vec_isa()
|
|
vec_isa_cmd_gen = CppBuilder(
|
|
name="o",
|
|
sources="i",
|
|
BuildOption=CppTorchDeviceOptions(
|
|
vec_isa=picked_vec_isa,
|
|
device_type=device_type,
|
|
aot_mode=graph.aot_mode,
|
|
),
|
|
)
|
|
# write function will calc source_code hash, the same source code with different
|
|
# ISA level should be generate different hash.
|
|
# So we need get a command_line which contains isa related parameter as a part of hash key.
|
|
# And then pass the command_line to below write function as extra parameter to
|
|
# guarantee the source code hash contains ISA difference.
|
|
cpp_command = repr(vec_isa_cmd_gen.get_command_line())
|
|
|
|
# Meta internal AOTInductor CPU
|
|
fbcode_aot_cpu_re = (
|
|
config.is_fbcode() and device_type == "cpu" and graph.aot_mode
|
|
)
|
|
use_absolute_path = fbcode_aot_cpu_re
|
|
|
|
(
|
|
specified_output_path,
|
|
specified_so_name,
|
|
) = split_aot_inductor_output_path(config.aot_inductor.output_path)
|
|
key, input_path = write(
|
|
source_code,
|
|
"cpp",
|
|
extra=cpp_command,
|
|
specified_dir=specified_output_path,
|
|
)
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(input_path)
|
|
|
|
output_code_log.info("Output code written to: %s", input_path)
|
|
trace_structured(
|
|
"graph_dump",
|
|
lambda: {
|
|
"name": "inductor_aot_code",
|
|
"type": "cpp",
|
|
"filename": input_path,
|
|
},
|
|
payload_fn=lambda: source_code,
|
|
)
|
|
|
|
# We use a file lock below to protect FS operations. The lock file
|
|
# is scoped to the 'key', so make sure the consts_s is protected
|
|
# by the same lock:
|
|
consts_specified_dir = os.path.join(os.path.split(input_path)[0], key)
|
|
|
|
def _compile_consts(consts: bytes, platform: str) -> str:
|
|
if platform == "linux":
|
|
if graph.mutated_buffers & set(graph.constants.keys()):
|
|
# .data section is between .text and .bss. When the size of .data is large,
|
|
# during the linking, the relocation of .text against .bss may overflow.
|
|
# Rename it to .ldata so that it won't be in between the .text and .bss section
|
|
if len(consts) > 2_000_000_000:
|
|
raise ValueError(
|
|
"Models with buffer mutation included doesn't support constants greater than 2GB!"
|
|
)
|
|
section_attr = '.ldata, "aw"'
|
|
else:
|
|
section_attr = '.lrodata, "a"'
|
|
symbol_prefix = ""
|
|
elif platform == "darwin":
|
|
section_attr = "__DATA,__data"
|
|
symbol_prefix = "_"
|
|
else:
|
|
raise RuntimeError(f"Unsupported platform: {platform}")
|
|
|
|
is_large_consts = len(consts) > 1024
|
|
consts_asm = f"\t.section\t{section_attr}\n"
|
|
consts_asm += f"\t.balign {ALIGN_BYTES}\n"
|
|
consts_asm += f"\t.globl\t{symbol_prefix}_binary_constants_bin_start\n"
|
|
consts_asm += f"{symbol_prefix}_binary_constants_bin_start:\n"
|
|
if not is_large_consts:
|
|
for c in consts:
|
|
consts_asm += f"\t.byte {c}\n"
|
|
# Add one element even if constants are empty
|
|
# Otherwise assembler will not put them in data section
|
|
if not consts:
|
|
consts_asm += "\t.space 1\n"
|
|
else:
|
|
consts_asm += "\t.quad 0x1234567899abcdef\n"
|
|
consts_asm += f"\t.space {len(consts) - 8}\n"
|
|
consts_asm += f".globl\t{symbol_prefix}_binary_constants_bin_end\n"
|
|
consts_asm += f"{symbol_prefix}_binary_constants_bin_end:\n"
|
|
_, consts_s = write(
|
|
consts_asm,
|
|
"S",
|
|
specified_dir=consts_specified_dir,
|
|
)
|
|
(
|
|
object_output_name,
|
|
object_output_dir,
|
|
) = get_name_and_dir_from_output_file_path(consts_s)
|
|
object_build_options = CppTorchDeviceOptions(
|
|
# Intel compiler failed to compile this manully constructed assembly file.
|
|
# it is ok to use gcc to compile the .S to a .o and linked with Intel comiler .
|
|
device_type=device_type if device_type != "xpu" else "cpu",
|
|
aot_mode=graph.aot_mode,
|
|
compile_only=True,
|
|
use_absolute_path=use_absolute_path,
|
|
)
|
|
object_builder = CppBuilder(
|
|
name=object_output_name,
|
|
sources=consts_s,
|
|
output_dir=object_output_dir,
|
|
BuildOption=object_build_options,
|
|
)
|
|
compile_cmd = object_builder.get_command_line()
|
|
consts_o = object_builder.get_target_file_path()
|
|
if fbcode_aot_cpu_re:
|
|
# TODO: refactor fbcode_aot_cpu_re logic into CppBuilder
|
|
consts_o = os.path.splitext(consts_s)[0] + ".o"
|
|
compile_file(consts_s, consts_o, compile_cmd.split())
|
|
os.chmod(consts_o, 0o644)
|
|
else:
|
|
run_command_and_check(compile_cmd)
|
|
|
|
if is_large_consts:
|
|
with open(consts_o, "r+b") as f:
|
|
f.seek(0)
|
|
hdr = f.read(1024)
|
|
# Search for magic number and write the actual data over it
|
|
start_idx = hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12")
|
|
assert start_idx != -1
|
|
f.seek(start_idx)
|
|
pos = 0
|
|
while pos < len(consts):
|
|
rc = f.write(consts[pos:])
|
|
pos += rc
|
|
return consts_o
|
|
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
if serialized_extern_kernel_nodes:
|
|
extern_kernel_nodes_json = os.path.splitext(input_path)[0] + ".json"
|
|
with open(extern_kernel_nodes_json, "w") as f:
|
|
f.write(serialized_extern_kernel_nodes)
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(extern_kernel_nodes_json)
|
|
|
|
metadata = config.aot_inductor.metadata
|
|
metadata["AOTI_DEVICE_KEY"] = device_type
|
|
|
|
# Save user provided metadata
|
|
meta_json = os.path.splitext(input_path)[0] + "_metadata.json"
|
|
for k, v in config.aot_inductor.metadata.items():
|
|
assert isinstance(k, str) and isinstance(
|
|
v, (str)
|
|
), "Metadata must only contain strings"
|
|
|
|
with open(meta_json, "w") as f:
|
|
f.write(json.dumps(config.aot_inductor.metadata))
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(meta_json)
|
|
|
|
output_so = (
|
|
config.aot_inductor.output_path
|
|
if specified_so_name
|
|
else os.path.splitext(input_path)[0] + ".so"
|
|
)
|
|
|
|
output_o = os.path.splitext(input_path)[0] + ".o"
|
|
|
|
all_cuda = all(
|
|
graph.get_original_value_of_constant(name).is_cuda
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
|
|
def _to_bytes(t: torch.Tensor, all_cuda: bool) -> bytes:
|
|
def _pad_to_alignment(raw_bytes: bytes) -> bytes:
|
|
padded_bytes = raw_bytes.ljust(
|
|
(len(raw_bytes) + ALIGN_BYTES - 1) // ALIGN_BYTES * ALIGN_BYTES,
|
|
b"\x00",
|
|
)
|
|
return padded_bytes
|
|
|
|
# This serializes the tensor's untyped_storage to bytes by accessing
|
|
# the raw data of the underlying structure.
|
|
import ctypes
|
|
|
|
if t.numel() == 0:
|
|
return b""
|
|
|
|
if t.is_mkldnn:
|
|
data_ptr = torch.ops.mkldnn.data_ptr(t)
|
|
nbytes = torch.ops.mkldnn._nbytes(t)
|
|
else:
|
|
t_cpu = t.untyped_storage().cpu()
|
|
data_ptr = t_cpu.data_ptr()
|
|
nbytes = t_cpu.nbytes()
|
|
|
|
raw_array = ctypes.cast(
|
|
data_ptr,
|
|
ctypes.POINTER(ctypes.c_ubyte * nbytes),
|
|
)
|
|
raw_bytes = bytes(raw_array.contents)
|
|
return raw_bytes if all_cuda else _pad_to_alignment(raw_bytes)
|
|
|
|
if config.aot_inductor.package_constants_in_so:
|
|
serialized_weights = b"".join(
|
|
_to_bytes(graph.get_original_value_of_constant(name), all_cuda)
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
else:
|
|
serialized_weights = b""
|
|
|
|
consts_size = len(serialized_weights)
|
|
|
|
# TODO: Fix mmap weights with cuda
|
|
use_mmap_weights = not config.is_fbcode() and consts_size > 2_000_000_000
|
|
if config.aot_inductor.force_mmap_weights:
|
|
use_mmap_weights = True
|
|
|
|
(
|
|
object_output_name,
|
|
object_output_dir,
|
|
) = get_name_and_dir_from_output_file_path(input_path)
|
|
object_build_options = CppTorchDeviceOptions(
|
|
vec_isa=picked_vec_isa,
|
|
device_type=device_type,
|
|
aot_mode=graph.aot_mode,
|
|
compile_only=True,
|
|
use_absolute_path=use_absolute_path,
|
|
use_mmap_weights=use_mmap_weights,
|
|
)
|
|
object_builder = CppBuilder(
|
|
name=object_output_name,
|
|
sources=input_path,
|
|
output_dir=object_output_dir,
|
|
BuildOption=object_build_options,
|
|
)
|
|
compile_cmd = object_builder.get_command_line()
|
|
output_o = object_builder.get_target_file_path()
|
|
|
|
log.debug("aot compilation command: %s", compile_cmd)
|
|
if not config.aot_inductor.package_cpp_only:
|
|
if fbcode_aot_cpu_re:
|
|
output_o = os.path.splitext(input_path)[0] + ".o"
|
|
compile_file(input_path, output_o, compile_cmd.split())
|
|
os.chmod(output_o, 0o644)
|
|
else:
|
|
run_command_and_check(compile_cmd)
|
|
|
|
if config.aot_inductor.package_cpp_only:
|
|
compile_flags = os.path.splitext(input_path)[0] + "_compile_flags.json"
|
|
object_build_options.save_flags_to_file(compile_flags)
|
|
generated_files.append(compile_flags)
|
|
|
|
if not use_mmap_weights:
|
|
aot_constants = serialized_weights
|
|
magic_number = 0
|
|
else:
|
|
magic_number = cast(
|
|
int, torch.randint(0, torch.iinfo(torch.int64).max, (1,)).item()
|
|
)
|
|
aot_constants = struct.pack("qq", consts_size + 8, magic_number)
|
|
|
|
consts_o = _compile_consts(aot_constants, sys.platform)
|
|
gpu_codecache: Union[ROCmCodeCache, CUDACodeCache] = (
|
|
ROCmCodeCache() if torch.version.hip else CUDACodeCache()
|
|
)
|
|
kernels_o = [
|
|
entry.output_path
|
|
for entry in gpu_codecache.cache.values()
|
|
if entry.output_path.endswith(".o")
|
|
]
|
|
kernels_o = " ".join(kernels_o)
|
|
|
|
output_name, output_dir = get_name_and_dir_from_output_file_path(output_so)
|
|
so_build_options = CppTorchDeviceOptions(
|
|
vec_isa=picked_vec_isa,
|
|
device_type=device_type,
|
|
aot_mode=graph.aot_mode,
|
|
use_absolute_path=use_absolute_path,
|
|
)
|
|
|
|
so_builder = CppBuilder(
|
|
name=output_name,
|
|
sources=[output_o, consts_o, kernels_o],
|
|
output_dir=output_dir,
|
|
BuildOption=so_build_options,
|
|
)
|
|
link_cmd = so_builder.get_command_line()
|
|
output_so = so_builder.get_target_file_path()
|
|
|
|
log.debug("aot linkage command: %s", link_cmd)
|
|
|
|
# Append cmds to the end of codegen-ed wrapper file
|
|
with open(input_path, "a") as f:
|
|
f.write("\n")
|
|
f.write(f"// Compile cmd\n// {compile_cmd}\n")
|
|
f.write(f"// Link cmd\n// {link_cmd}\n")
|
|
|
|
if config.aot_inductor.package_cpp_only:
|
|
linker_flags = os.path.splitext(input_path)[0] + "_linker_flags.json"
|
|
so_build_options.save_flags_to_file(linker_flags)
|
|
generated_files.append(linker_flags)
|
|
|
|
# If we only want to package the cpp, then we need to save the
|
|
# weights separately into a bin, and we also need to prevent compiling the so
|
|
|
|
if use_mmap_weights:
|
|
weight_file = (
|
|
os.path.splitext(input_path)[0] + "_serialized_weights.bin"
|
|
)
|
|
with open(weight_file, "wb") as f_weights:
|
|
f_weights.write(serialized_weights)
|
|
f_weights.write(struct.pack("q", magic_number))
|
|
|
|
generated_files.append(weight_file)
|
|
|
|
generated_files.append(consts_o)
|
|
generated_files.append(kernels_o)
|
|
|
|
else:
|
|
if fbcode_aot_cpu_re:
|
|
output_so = (
|
|
config.aot_inductor.output_path
|
|
if specified_so_name
|
|
else os.path.splitext(input_path)[0] + ".so"
|
|
)
|
|
compile_file([output_o, consts_o], output_so, link_cmd.split())
|
|
os.chmod(output_so, 0o755)
|
|
else:
|
|
run_command_and_check(link_cmd)
|
|
|
|
for o_file in [
|
|
output_o,
|
|
consts_o,
|
|
os.path.splitext(consts_o)[0] + ".S",
|
|
]:
|
|
# Remove these as they are not needed anymore
|
|
os.remove(o_file)
|
|
|
|
if use_mmap_weights:
|
|
import resource
|
|
|
|
page_size_ = resource.getpagesize()
|
|
page_size = max(16384, page_size_)
|
|
|
|
with open(output_so, "a+b") as f_so:
|
|
so_size = f_so.tell()
|
|
# Page align the weights
|
|
f_so.write(b" " * (page_size - so_size % page_size))
|
|
f_so.write(serialized_weights)
|
|
f_so.write(struct.pack("q", magic_number))
|
|
|
|
if config.aot_inductor.package:
|
|
generated_files.append(output_so)
|
|
|
|
if config.aot_inductor.package:
|
|
# We want to return the directory that contains all the AOTI
|
|
# generated files, not just the so
|
|
# return os.path.split(output_so)[0]
|
|
return generated_files
|
|
|
|
return output_so
|
|
|
|
|
|
# Putting this fn in cpp.py (unfortunately) causes a deadlock, which is why it's in codecache.py.
|
|
# Why? importing from cpp.py invokes codecache.pick_vec_isa(), which takes out a lock.
|
|
# Cycle goes:
|
|
# - CppCodeCache.load()
|
|
# - pick_vec_isa()
|
|
# - valid_vec_isa_list()
|
|
# - VecISA.__bool__() <-- takes out a lock
|
|
# - compile_file() <-- imports cpp_prefix_path from cpp, which causes us to try to take out the same lock.
|
|
@clear_on_fresh_inductor_cache
|
|
@functools.lru_cache
|
|
def cpp_prefix_path() -> str:
|
|
path = Path(__file__).parent / "codegen/cpp_prefix.h"
|
|
with path.open() as f:
|
|
content = f.read()
|
|
_, filename = write(
|
|
content,
|
|
"h",
|
|
)
|
|
return normalize_path_separator(filename)
|
|
|
|
|
|
def cpp_prefix() -> str:
|
|
filename = cpp_prefix_path()
|
|
if config.is_fbcode():
|
|
# We need relative paths, since we bundle up
|
|
# everything that we compile into a folder for remote compilation.
|
|
return f'#include "{os.path.basename(filename)}"'
|
|
else:
|
|
return f'#include "{filename}"'
|
|
|
|
|
|
# Given a path to an input cpp file and an output path,
|
|
# Attempts to compile the file, storing the output in "output_path"
|
|
def compile_file(
|
|
input_path: Union[str, List[str]], output_path: str, cmd: List[str]
|
|
) -> None:
|
|
with dynamo_timed("compile_file"):
|
|
return _compile_file(input_path, output_path, cmd)
|
|
|
|
|
|
def _compile_file(
|
|
input_path: Union[str, List[str]], output_path: str, cmd: List[str]
|
|
) -> None:
|
|
input_paths = [input_path] if isinstance(input_path, str) else input_path
|
|
input_files = [
|
|
os.path.basename(ip) if config.is_fbcode() else ip for ip in input_paths
|
|
]
|
|
try:
|
|
if config.is_fbcode():
|
|
# Need to copy our header into the same folder as the sourcecode.
|
|
header_path = cpp_prefix_path()
|
|
header_name = os.path.basename(header_path)
|
|
output_name = os.path.basename(output_path)
|
|
# When we build remotely, we need to make sure to carefully copy any files
|
|
# that are required during the compilation process into our build directly.
|
|
# This is where all of the ATen/c10/Torch includes come from.
|
|
torch_includes_path = os.path.join(_TORCH_PATH, "include")
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# Copy everything to tmp compilation folder
|
|
shutil.copy(header_path, os.path.join(tmp_dir, header_name))
|
|
shutil.copy(_LINKER_SCRIPT, os.path.join(tmp_dir, "script.ld"))
|
|
for p, f in zip(input_paths, input_files):
|
|
shutil.copy(p, os.path.join(tmp_dir, f))
|
|
dest_include_path = os.path.join(tmp_dir, "include")
|
|
shutil.copytree(torch_includes_path, dest_include_path)
|
|
# Run the build
|
|
output_file_path = _run_build_command(cmd, tmp_dir, output_name)
|
|
# Copy output from the build
|
|
if os.path.exists(output_path):
|
|
os.remove(output_path)
|
|
shutil.copy(output_file_path, output_path)
|
|
else:
|
|
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
|
|
except subprocess.CalledProcessError as e:
|
|
output = e.output.decode("utf-8")
|
|
openmp_problem = "'omp.h' file not found" in output or "libomp" in output
|
|
if openmp_problem and sys.platform == "darwin":
|
|
instruction = (
|
|
"\n\nOpenMP support not found. Please try one of the following solutions:\n"
|
|
"(1) Set the `CXX` environment variable to a compiler other than Apple clang++/g++ "
|
|
"that has builtin OpenMP support;\n"
|
|
"(2) install OpenMP via conda: `conda install llvm-openmp`;\n"
|
|
"(3) install libomp via brew: `brew install libomp`;\n"
|
|
"(4) manually setup OpenMP and set the `OMP_PREFIX` environment variable to point to a path"
|
|
" with `include/omp.h` under it."
|
|
)
|
|
output += instruction
|
|
raise exc.CppCompileError(cmd, output) from e
|
|
|
|
|
|
_libgomp: Optional[CDLL] = None
|
|
|
|
|
|
def custom_op_wrapper(op: str, *args: Any) -> Union[list[c_void_p], c_void_p]:
|
|
# This function will be called from generated cpp wrapper code in the JIT mode.
|
|
# Because tensors will be passed in as AtenTensorHandle, we need to explicitly convert them.
|
|
def convert_arg(arg: Any) -> Any:
|
|
if str(type(arg)) == "<class 'PyCapsule'>":
|
|
# No easy way to do isinstance check on PyCapsule
|
|
return torch._C._aoti.alloc_tensor_by_stealing_from_void_ptr(arg)
|
|
elif isinstance(arg, (list, tuple)):
|
|
return type(arg)(convert_arg(a) for a in arg)
|
|
else:
|
|
return arg
|
|
|
|
converted_args = [convert_arg(arg) for arg in args]
|
|
|
|
assert op.startswith("torch.ops."), (
|
|
op + " can not be called through custom_op_wrapper"
|
|
)
|
|
func = None
|
|
for i, s in enumerate(op.split(".")):
|
|
if i == 0:
|
|
func = importlib.import_module(s)
|
|
func = getattr(func, s)
|
|
|
|
assert callable(func), op + " can not be loaded through custom_op_wrapper"
|
|
|
|
# convert any kwarg-only arguments to kwargs
|
|
kwargs = dict()
|
|
for func_arg, conv_arg in zip(func._schema.arguments, converted_args):
|
|
if func_arg.kwarg_only:
|
|
kwargs[func_arg.name] = conv_arg
|
|
if kwargs:
|
|
del converted_args[-len(kwargs) :]
|
|
|
|
result = func(*converted_args, **kwargs)
|
|
if isinstance(result, (list, tuple)):
|
|
# unsafe_alloc_void_ptrs_from_tensors expects result contains tensor only
|
|
result = [torch.tensor([]) if r is None else r for r in result]
|
|
for i, r in enumerate(result):
|
|
assert isinstance(r, torch.Tensor), op + " returns a list of non-tensors"
|
|
return torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(result) # type: ignore[arg-type]
|
|
else:
|
|
assert isinstance(result, torch.Tensor), op + " returns a non-tensor"
|
|
return torch._C._aoti.unsafe_alloc_void_ptr_from_tensor(result)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CppCodeCache:
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags: Dict[str, Any] = {}
|
|
|
|
@staticmethod
|
|
def _load_library_inner(path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
return cdll.LoadLibrary(path)
|
|
|
|
@classmethod
|
|
def _load_library(cls, path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
try:
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
except (ImportError, OSError) as e:
|
|
if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
|
|
# hacky workaround for fbcode/buck
|
|
global _libgomp
|
|
_libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
if "failed to map segment from shared object" in str(e):
|
|
raise OSError(
|
|
f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder "
|
|
"is mounted with noexec (e.g., by default Docker mounts tmp file systems "
|
|
f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another "
|
|
"temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
|
|
) from e
|
|
raise
|
|
|
|
@classmethod
|
|
def load_async(
|
|
cls,
|
|
source_code: str,
|
|
device_type: str = "cpu",
|
|
submit_fn: Any = None,
|
|
extra_flags: Sequence[str] = (),
|
|
) -> Any:
|
|
compile_command = {
|
|
**cls.cpp_compile_command_flags,
|
|
"device_type": device_type,
|
|
"vec_isa": pick_vec_isa(),
|
|
"extra_flags": extra_flags,
|
|
}
|
|
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
|
|
command_gen = CppBuilder(
|
|
name="o", sources="i", BuildOption=CppTorchDeviceOptions(**compile_command)
|
|
)
|
|
# write function will calc source_code hash, the same source code with different
|
|
# ISA level should be generate different hash.
|
|
# So we need get a command_line which contains isa related parameter as a part of hash key.
|
|
# And then pass the command_line to below write function as extra parameter to
|
|
# guarantee the source code hash contains ISA difference.
|
|
vec_isa_cmd = repr(command_gen.get_command_line())
|
|
key, input_path = write(source_code, "cpp", extra=vec_isa_cmd)
|
|
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_path = os.path.join(get_lock_dir(), key + ".lock")
|
|
output_name, output_dir = get_name_and_dir_from_output_file_path(input_path)
|
|
"""
|
|
If `fb_code` env, it need to be dispatched to original `compile_file` function.
|
|
So, we still need to prepare parameters for the function: `input_path` and `fb_output_path`.
|
|
"""
|
|
fb_output_path = input_path[:-3] + "so"
|
|
future: Optional[Future[Any]] = None
|
|
lib = None
|
|
|
|
cpp_build_option = CppTorchDeviceOptions(**compile_command)
|
|
cpp_builder = CppBuilder(
|
|
name=output_name,
|
|
sources=input_path,
|
|
output_dir=output_dir,
|
|
BuildOption=cpp_build_option,
|
|
)
|
|
|
|
worker_fn = functools.partial(
|
|
_worker_compile_cpp,
|
|
lock_path,
|
|
cpp_builder,
|
|
input_path,
|
|
fb_output_path,
|
|
)
|
|
|
|
binary_path = normalize_path_separator(
|
|
fb_output_path
|
|
if config.is_fbcode()
|
|
else cpp_builder.get_target_file_path()
|
|
)
|
|
|
|
def load_fn() -> Any:
|
|
nonlocal lib
|
|
if lib is None:
|
|
if future is not None:
|
|
future.result()
|
|
result = worker_fn()
|
|
assert result is None
|
|
lib = cls._load_library(binary_path, key)
|
|
assert lib is not None
|
|
return lib
|
|
|
|
if submit_fn is not None:
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
if not os.path.exists(binary_path):
|
|
future = submit_fn(worker_fn)
|
|
|
|
cls.cache[key] = load_fn
|
|
|
|
return cls.cache[key]
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, device_type: str = "cpu") -> Any:
|
|
return cls.load_async(source_code, device_type)()
|
|
|
|
|
|
def _worker_compile_cpp(
|
|
lock_path: str,
|
|
cpp_builder: CppBuilder,
|
|
fb_input_path: str,
|
|
fb_output_path: str,
|
|
) -> None:
|
|
from filelock import FileLock
|
|
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
binary_path = (
|
|
fb_output_path if config.is_fbcode() else cpp_builder.get_target_file_path()
|
|
)
|
|
if not os.path.exists(binary_path):
|
|
if config.is_fbcode():
|
|
compile_file(
|
|
fb_input_path,
|
|
fb_output_path,
|
|
shlex.split(cpp_builder.get_command_line()),
|
|
)
|
|
else:
|
|
cpp_builder.build()
|
|
|
|
|
|
# Customized Python binding for cpp kernels
|
|
@clear_on_fresh_inductor_cache
|
|
class CppPythonBindingsCodeCache(CppCodeCache):
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
# kernels have no dependency on libtorch
|
|
"include_pytorch": False,
|
|
"shared": True,
|
|
}
|
|
entry_function = "kernel"
|
|
call_entry_function = "kernel(%s);Py_RETURN_NONE;"
|
|
extra_parse_arg = ""
|
|
suffix_template = textwrap.dedent(
|
|
"""
|
|
// Python bindings to call %s():
|
|
#define PY_SSIZE_T_CLEAN
|
|
#include <Python.h>
|
|
#include <sstream>
|
|
#include <cstdlib>
|
|
|
|
#ifndef _MSC_VER
|
|
#if __cplusplus < 202002L
|
|
// C++20 (earlier) code
|
|
// https://en.cppreference.com/w/cpp/language/attributes/likely
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#endif
|
|
#else
|
|
#define likely(x) (x)
|
|
#define unlikely(x) (x)
|
|
#endif
|
|
|
|
// This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow.
|
|
// We manually link it below to workaround issues with fbcode build.
|
|
static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj);
|
|
|
|
template <typename T> static inline T parse_arg(PyObject* args, size_t n) {
|
|
static_assert(std::is_pointer_v<T>, "arg type must be pointer or long");
|
|
return static_cast<T>(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n)));
|
|
}
|
|
template <> inline int64_t parse_arg<int64_t>(PyObject* args, size_t n) {
|
|
auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n));
|
|
if(unlikely(result == -1 && PyErr_Occurred()))
|
|
throw std::runtime_error("expected int arg");
|
|
return result;
|
|
}
|
|
template <> inline uintptr_t parse_arg<uintptr_t>(PyObject* args, size_t n) {
|
|
auto result = PyLong_AsVoidPtr(PyTuple_GET_ITEM(args, n));
|
|
if(unlikely(result == reinterpret_cast<void*>(-1) && PyErr_Occurred()))
|
|
throw std::runtime_error("expected int arg");
|
|
return reinterpret_cast<uintptr_t>(result);
|
|
}
|
|
|
|
%s
|
|
|
|
static PyObject* %s_py(PyObject* self, PyObject* args) {
|
|
try {
|
|
if(unlikely(!PyTuple_CheckExact(args)))
|
|
throw std::runtime_error("tuple args required");
|
|
if(unlikely(PyTuple_GET_SIZE(args) != %s))
|
|
throw std::runtime_error("requires %s args");
|
|
%s
|
|
} catch(std::exception const& e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
} catch(...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static PyMethodDef py_methods[] = {
|
|
{"%s", %s_py, METH_VARARGS, ""},
|
|
{NULL, NULL, 0, NULL}};
|
|
|
|
static struct PyModuleDef py_module =
|
|
{PyModuleDef_HEAD_INIT, "%s", NULL, -1, py_methods};
|
|
|
|
PyMODINIT_FUNC PyInit_%s(void) {
|
|
const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR");
|
|
if(!str_addr) {
|
|
PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set");
|
|
return nullptr;
|
|
}
|
|
std::istringstream iss(str_addr);
|
|
uintptr_t addr = 0;
|
|
iss >> addr;
|
|
_torchinductor_pyobject_tensor_data_ptr =
|
|
reinterpret_cast<decltype(_torchinductor_pyobject_tensor_data_ptr)>(addr);
|
|
PyObject* module = PyModule_Create(&py_module);
|
|
if (module == NULL) {
|
|
return NULL;
|
|
}
|
|
#ifdef Py_GIL_DISABLED
|
|
PyUnstable_Module_SetGIL(mod, Py_MOD_GIL_NOT_USED);
|
|
#endif
|
|
return module;
|
|
}
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _load_library_inner(cls, path: str, key: str) -> ModuleType:
|
|
os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str(
|
|
torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr # type: ignore[attr-defined]
|
|
)
|
|
module_name = f"{key}.{cls.entry_function}"
|
|
try:
|
|
return sys.modules[module_name]
|
|
except KeyError:
|
|
pass
|
|
spec = importlib.util.spec_from_file_location(module_name, path)
|
|
assert spec is not None
|
|
module = importlib.util.module_from_spec(spec)
|
|
sys.modules[module_name] = module
|
|
spec.loader.exec_module(module) # type: ignore[union-attr]
|
|
return module
|
|
|
|
@classmethod
|
|
def load_pybinding_async(
|
|
cls,
|
|
argtypes: List[str],
|
|
source_code: str,
|
|
device_type: str = "cpu",
|
|
num_outputs: int = -1,
|
|
submit_fn: Any = None,
|
|
extra_flags: Sequence[str] = (),
|
|
) -> Any:
|
|
"""
|
|
Wrap a C++ function in fast Python bindings.
|
|
|
|
Args:
|
|
argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"]
|
|
source_code: C++ source code containing a ENTRY_FUNCTION() function
|
|
|
|
Returns:
|
|
A python version of ENTRY_FUNCTION()
|
|
"""
|
|
parseargs = ", ".join(
|
|
f"parse_arg<{argtype.replace('const ', '')}>(args, {n})"
|
|
for n, argtype in enumerate(argtypes)
|
|
)
|
|
suffix = cls.suffix_template % (
|
|
cls.entry_function,
|
|
cls.extra_parse_arg % num_outputs if cls.extra_parse_arg else "",
|
|
cls.entry_function,
|
|
len(argtypes),
|
|
len(argtypes),
|
|
cls.call_entry_function % parseargs,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
)
|
|
get_result = cls.load_async(
|
|
source_code + suffix,
|
|
device_type,
|
|
submit_fn=submit_fn,
|
|
extra_flags=extra_flags,
|
|
)
|
|
result = None
|
|
|
|
def future() -> Any:
|
|
nonlocal result
|
|
if result is None:
|
|
result = get_result()
|
|
assert isinstance(result, ModuleType)
|
|
return getattr(result, cls.entry_function)
|
|
|
|
return future
|
|
|
|
@classmethod
|
|
def load_pybinding(cls, *args: Any, **kwargs: Any) -> Any:
|
|
return cls.load_pybinding_async(*args, **kwargs)()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CppWrapperCodeCache(CppPythonBindingsCodeCache):
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
"include_pytorch": True,
|
|
"shared": True,
|
|
}
|
|
entry_function = "inductor_entry_cpp"
|
|
call_entry_function = "return inductor_entry_cpp(%s);"
|
|
extra_parse_arg = textwrap.dedent(
|
|
"""
|
|
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
|
|
|
static inline std::vector<AtenTensorHandle> unpack_tensor_handle_list(PyObject* pyvec) {
|
|
std::vector<AtenTensorHandle> result;
|
|
size_t result_len = PyList_GET_SIZE(pyvec);
|
|
result.reserve(result_len);
|
|
for (size_t i = 0; i < result_len; i++) {
|
|
// AtenTensorHandle is essentially a pointer
|
|
void* elem = PyCapsule_GetPointer(PyList_GET_ITEM(pyvec, i), NULL);
|
|
result.push_back(reinterpret_cast<AtenTensorHandle>(elem));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline PyObject* pack_tensor_handle_list(const std::vector<AtenTensorHandle>& cppvec) {
|
|
size_t result_len = cppvec.size();
|
|
PyObject* result = PyList_New(static_cast<Py_ssize_t>(result_len));
|
|
for (size_t i = 0; i < result_len; i++) {
|
|
PyObject *elem =
|
|
cppvec[i] == nullptr
|
|
? Py_None
|
|
// Store AtenTensorHandle as PyCapsulate
|
|
: PyCapsule_New(reinterpret_cast<void*>(cppvec[i]), NULL, NULL);
|
|
PyList_SET_ITEM(result, i, elem);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <> inline std::vector<AtenTensorHandle> parse_arg<std::vector<AtenTensorHandle>>(PyObject* args, size_t n) {
|
|
return unpack_tensor_handle_list(PyTuple_GET_ITEM(args, n));
|
|
}
|
|
|
|
PyObject* inductor_entry_cpp(std::vector<AtenTensorHandle>&& input_handles) {
|
|
// For outputs, we only allocate a vector to hold returned tensor handles,
|
|
// not allocating the actual output tensor storage here
|
|
std::vector<AtenTensorHandle> output_handles(%s);
|
|
try {
|
|
inductor_entry_impl(input_handles.data(), output_handles.data());
|
|
if (PyErr_Occurred()) {
|
|
return nullptr;
|
|
}
|
|
return pack_tensor_handle_list(output_handles);
|
|
} catch(std::exception const& e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
} catch(...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return nullptr;
|
|
}
|
|
}
|
|
"""
|
|
)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class HalideCodeCache(CppPythonBindingsCodeCache):
|
|
cache: Dict[str, Callable[[], Union[ModuleType, CDLL]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_standalone_runtime_path: Optional[str] = None
|
|
prefix = textwrap.dedent(
|
|
"""
|
|
#include "{halideruntime_h}"
|
|
#include "{headerfile}"
|
|
#include <stdexcept>
|
|
#include <cmath>
|
|
|
|
namespace c10 {{
|
|
inline long div_floor_integer(long a, long b) {{
|
|
if ((a<0) != (b<0)) {{
|
|
const auto quot = a / b;
|
|
const auto rem = a % b;
|
|
return rem ? quot - 1 : quot;
|
|
}}
|
|
return a / b;
|
|
}}
|
|
}}
|
|
"""
|
|
)
|
|
glue_template_cpp = prefix + textwrap.dedent(
|
|
"""
|
|
void kernel({argdefs}) {{
|
|
{buffers}
|
|
int err = halide_kernel({buffer_names});
|
|
if(err != 0) throw std::runtime_error("halide_kernel failed");
|
|
}}
|
|
"""
|
|
)
|
|
glue_template_cuda = prefix + textwrap.dedent(
|
|
"""
|
|
#include <cuda.h>
|
|
static const halide_device_interface_t* cuda_interface = halide_cuda_device_interface();
|
|
|
|
void kernel({argdefs}, uintptr_t stream) {{
|
|
{buffers}
|
|
int err = halide_kernel(reinterpret_cast<void*>(stream), {buffer_names});
|
|
if(err != 0) throw std::runtime_error("halide_kernel failed");
|
|
}}
|
|
"""
|
|
)
|
|
standalone_runtime_cuda_init = textwrap.dedent(
|
|
"""
|
|
#include "{}"
|
|
#include <cuda.h>
|
|
|
|
static int acquire_context(void* user_context,
|
|
void** cuda_context_out,
|
|
bool create) {{
|
|
return cuCtxGetCurrent(reinterpret_cast<CUcontext*>(cuda_context_out));
|
|
}}
|
|
|
|
static int release_context(void* user_context) {{
|
|
return 0;
|
|
}}
|
|
|
|
static int get_stream(void* user_context,
|
|
void* cuda_context,
|
|
void** stream_out) {{
|
|
*stream_out = user_context;
|
|
return 0;
|
|
}}
|
|
|
|
static int register_halide_hooks() {{
|
|
halide_set_cuda_acquire_context(&acquire_context);
|
|
halide_set_cuda_release_context(&release_context);
|
|
halide_set_cuda_get_stream(&get_stream);
|
|
return 0;
|
|
}}
|
|
|
|
int inductor_register_halide_hooks_result = register_halide_hooks();
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _codegen_buffer(cls, name: str, arg: HalideInputSpec, cuda: bool) -> List[str]:
|
|
assert arg.shape is not None
|
|
assert arg.stride is not None and len(arg.shape) == len(arg.stride)
|
|
assert arg.offset is not None
|
|
data_ptr = f"{arg.alias_of or arg.name} + {arg.offset}"
|
|
if cuda:
|
|
device = f"reinterpret_cast<uint64_t>({data_ptr})"
|
|
device_interface = "cuda_interface"
|
|
host = "nullptr"
|
|
flags = "halide_buffer_flag_device_dirty"
|
|
else:
|
|
device = "0"
|
|
device_interface = "nullptr"
|
|
host = f"reinterpret_cast<uint8_t*>({data_ptr})"
|
|
flags = "halide_buffer_flag_host_dirty"
|
|
|
|
dims = []
|
|
for size, stride in zip(arg.shape, arg.stride):
|
|
dims.append(f"halide_dimension_t(0, {size}, {stride})")
|
|
|
|
return [
|
|
f"halide_buffer_t {name};",
|
|
f"halide_dimension_t {name}_dims[] = {{{', '.join(dims)}}};",
|
|
f"{name}.device = {device};",
|
|
f"{name}.device_interface = {device_interface};",
|
|
f"{name}.host = {host};",
|
|
f"{name}.flags = {flags};",
|
|
f"{name}.type = {arg.halide_type()};",
|
|
f"{name}.dimensions = {len(dims)};",
|
|
f"{name}.dim = {name}_dims;",
|
|
f"{name}.padding = nullptr;",
|
|
]
|
|
|
|
@classmethod
|
|
def _codegen_glue(cls, meta: HalideMeta, headerfile: object) -> str:
|
|
is_cuda = meta.is_cuda()
|
|
assert is_cuda is ("user_context" in meta.target)
|
|
assert "no_runtime" in meta.target
|
|
buffers = []
|
|
buffer_names = []
|
|
for i, arg in enumerate(meta.argtypes):
|
|
if arg.is_buffer():
|
|
buffer_names.append(f"&hl_buf_{i}")
|
|
buffers.extend(cls._codegen_buffer(f"hl_buf_{i}", arg, is_cuda))
|
|
else:
|
|
assert "*" not in arg.ctype
|
|
buffer_names.append(arg.name)
|
|
buffers = "\n".join([f" {line}" for line in buffers]).lstrip()
|
|
|
|
glue_template = cls.glue_template_cuda if is_cuda else cls.glue_template_cpp
|
|
glue_code = glue_template.format(
|
|
halideruntime_h=cls.find_header(
|
|
"HalideRuntimeCuda.h" if is_cuda else "HalideRuntime.h"
|
|
),
|
|
headerfile=headerfile,
|
|
argdefs=", ".join(
|
|
f"{a.bindings_type()} {a.name}"
|
|
for a in meta.argtypes
|
|
if a.alias_of is None
|
|
),
|
|
buffers=buffers,
|
|
buffer_names=", ".join(buffer_names),
|
|
)
|
|
return glue_code
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def config_hash(cls) -> str:
|
|
command_gen = CppBuilder(
|
|
name="O",
|
|
sources="I",
|
|
BuildOption=CppOptions(),
|
|
)
|
|
command_line = command_gen.get_command_line()
|
|
return sha256_hash(
|
|
"\n".join(
|
|
[
|
|
cls.glue_template_cpp,
|
|
cls.glue_template_cuda,
|
|
cls.standalone_runtime_cuda_init,
|
|
command_line,
|
|
]
|
|
).encode("utf-8")
|
|
)
|
|
|
|
@staticmethod
|
|
def _search_for_file(suffix: str, errmsg: str) -> str:
|
|
spec = importlib.machinery.PathFinder.find_spec("halide")
|
|
if spec is None or not spec.submodule_search_locations:
|
|
raise RuntimeError("halide python bindings not installed")
|
|
try:
|
|
search = spec.submodule_search_locations[0]
|
|
for file in os.listdir(search):
|
|
if file.endswith(".so"):
|
|
try:
|
|
out = subprocess.check_output(
|
|
["ldd", os.path.join(search, file)]
|
|
)
|
|
except subprocess.SubprocessError:
|
|
continue
|
|
m = re.search(r"(/.*)/libHalide.so", out.decode("utf-8"))
|
|
if m:
|
|
path = os.path.join(os.path.abspath(m.group(1)), suffix)
|
|
if os.path.exists(path):
|
|
return os.path.abspath(path)
|
|
except Exception as e:
|
|
raise RuntimeError(errmsg) from e
|
|
raise RuntimeError(errmsg)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def find_libautoschedule(name: str) -> str:
|
|
sofile = f"libautoschedule_{name.lower()}.so"
|
|
if "HALIDE_LIB" in os.environ:
|
|
path = os.path.join(os.environ["HALIDE_LIB"], sofile)
|
|
if os.path.exists(path):
|
|
return path
|
|
errmsg = (
|
|
f"Can't find {sofile}, set env HALIDE_LIB to the directory containing it"
|
|
)
|
|
return HalideCodeCache._search_for_file(sofile, errmsg)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def find_header(name: str) -> str:
|
|
if "HALIDE_INCLUDE" in os.environ:
|
|
path = os.path.join(os.environ["HALIDE_INCLUDE"], name)
|
|
if os.path.exists(path):
|
|
return path
|
|
if "HALIDE_LIB" in os.environ:
|
|
path = os.path.abspath(
|
|
os.path.join(os.environ["HALIDE_LIB"], f"../include/{name}")
|
|
)
|
|
if os.path.exists(path):
|
|
return path
|
|
errmsg = (
|
|
f"Can't find {name}, set env HALIDE_INCLUDE to the directory containing it"
|
|
)
|
|
return HalideCodeCache._search_for_file(f"../include/{name}", errmsg)
|
|
|
|
@classmethod
|
|
def generate_halide_async(
|
|
cls, meta: HalideMeta, source_code: str, submit_fn: Any = None
|
|
) -> Callable[[], Any]:
|
|
dirpath = Path(
|
|
get_path(
|
|
code_hash(
|
|
source_code,
|
|
extra=repr((cls.config_hash(), meta)),
|
|
),
|
|
"halide",
|
|
)[2]
|
|
)
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
wait_for_compile = None
|
|
genfile = str(dirpath / "generate_kernel.py")
|
|
libfile = str(dirpath / "halide_kernel.a")
|
|
headerfile = str(dirpath / "halide_kernel.h")
|
|
donefile = str(dirpath / "done")
|
|
lockfile = str(dirpath / "lock")
|
|
need_compile = not os.path.exists(donefile)
|
|
jobs = []
|
|
if need_compile:
|
|
write_atomic(genfile, source_code)
|
|
cmd = [
|
|
sys.executable,
|
|
genfile,
|
|
"-g",
|
|
"kernel",
|
|
"-o",
|
|
f"{dirpath}",
|
|
"-f",
|
|
"halide_kernel",
|
|
"-e",
|
|
"static_library,h,schedule",
|
|
]
|
|
if meta.scheduler:
|
|
cmd.extend(["-p", cls.find_libautoschedule(meta.scheduler)])
|
|
cmd.extend(meta.args())
|
|
jobs.append(functools.partial(subprocess.check_call, cmd))
|
|
|
|
binding_types = [
|
|
arg.bindings_type() for arg in meta.argtypes if arg.alias_of is None
|
|
]
|
|
if meta.is_cuda():
|
|
binding_types.append("uintptr_t") # stream
|
|
bindings_future = cls.load_pybinding_async(
|
|
binding_types,
|
|
cls._codegen_glue(meta, headerfile),
|
|
extra_flags=(libfile, cls.build_standalone_runtime()),
|
|
submit_fn=jobs.append if need_compile else None,
|
|
device_type="cuda" if meta.is_cuda() else "cpu",
|
|
)
|
|
|
|
if need_compile:
|
|
jobs.append(functools.partial(touch, donefile))
|
|
task = functools.partial(_worker_task_halide, lockfile, jobs)
|
|
if submit_fn:
|
|
wait_for_compile = submit_fn(task).result
|
|
else:
|
|
task()
|
|
|
|
def load() -> Callable[[], Any]:
|
|
if wait_for_compile:
|
|
wait_for_compile()
|
|
return bindings_future()
|
|
|
|
return load
|
|
|
|
@classmethod
|
|
def generate_halide(cls, *args: Any, **kwargs: Any) -> Callable[[], Any]:
|
|
return cls.generate_halide_async(*args, **kwargs)()
|
|
|
|
@classmethod
|
|
def build_standalone_runtime(cls) -> str:
|
|
if cls._standalone_runtime_path and os.path.exists(
|
|
cls._standalone_runtime_path
|
|
):
|
|
return cls._standalone_runtime_path
|
|
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
|
libname = "libStandaloneHalideRuntime.so"
|
|
target = "host-cuda" if device_type == "cuda" else "host"
|
|
if cls._standalone_runtime_path:
|
|
assert not os.path.exists(cls._standalone_runtime_path)
|
|
# We hit this case in unittests when we run with fresh_inductor_cache()
|
|
# Generating a fresh runtime over and over causes errors because we initialize
|
|
# cuda hundreds of times in the same process and run out of file descriptors.
|
|
# Workaround by jail breaking the current fresh_inductor_cache().
|
|
base = default_cache_dir()
|
|
else:
|
|
base = cache_dir()
|
|
dirpath = Path(base) / f"halide-runtime-{target}-{cls.config_hash()}"
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
donefile = str(dirpath / "done")
|
|
lockfile = str(dirpath / "lock")
|
|
hookfile = str(dirpath / "hooks.cpp")
|
|
afile = str(dirpath / "standalone_halide_runtime.a")
|
|
sofile = str(dirpath / libname)
|
|
if not os.path.exists(donefile):
|
|
import filelock
|
|
import halide as hl # type: ignore[import-untyped,import-not-found]
|
|
|
|
with filelock.FileLock(lockfile, LOCK_TIMEOUT):
|
|
if not os.path.exists(donefile):
|
|
with open(hookfile, "w") as f:
|
|
if device_type == "cuda":
|
|
f.write(
|
|
cls.standalone_runtime_cuda_init.format(
|
|
cls.find_header("HalideRuntimeCuda.h")
|
|
)
|
|
)
|
|
hl.compile_standalone_runtime(afile, hl.Target(target))
|
|
|
|
name, output_dir = get_name_and_dir_from_output_file_path(sofile)
|
|
halide_cmd_gen = CppBuilder(
|
|
name=name,
|
|
sources=[hookfile, afile],
|
|
output_dir=output_dir,
|
|
BuildOption=CppTorchDeviceOptions(
|
|
device_type=device_type,
|
|
),
|
|
)
|
|
|
|
subprocess.check_call(
|
|
shlex.split(halide_cmd_gen.get_command_line())
|
|
)
|
|
touch(donefile)
|
|
assert os.path.exists(sofile)
|
|
cls._standalone_runtime_path = sofile
|
|
return sofile
|
|
|
|
|
|
def _worker_task_halide(lockfile: str, jobs: List[partial[Any]]) -> None:
|
|
from filelock import FileLock
|
|
|
|
try:
|
|
with FileLock(lockfile, LOCK_TIMEOUT):
|
|
for job in jobs:
|
|
job()
|
|
except subprocess.SubprocessError as e:
|
|
if os.environ.get("HALIDE_REPRO") == "1":
|
|
python, script, *cmd = getattr(e, "cmd", ("", "", ""))
|
|
if os.path.basename(python).startswith("python"):
|
|
code = open(script).read()
|
|
main = " hl.main()"
|
|
assert code.count(main) == 1
|
|
|
|
class Out:
|
|
def __repr__(self) -> str:
|
|
return "out"
|
|
|
|
cmd[cmd.index("-o") + 1] = Out() # type: ignore[call-overload]
|
|
repl = textwrap.indent(
|
|
textwrap.dedent(
|
|
f"""\
|
|
import sys, tempfile
|
|
with tempfile.TemporaryDirectory() as out:
|
|
sys.argv = {["repro.py", *cmd]!r}
|
|
hl.main()
|
|
"""
|
|
),
|
|
" ",
|
|
)
|
|
code = code.replace(main, repl)
|
|
with open("repro.py", "w") as fd:
|
|
fd.write(code.lstrip())
|
|
raise RuntimeError(f"wrote repro.py: {e}") from e
|
|
raise
|
|
|
|
|
|
def touch(filename: str): # type: ignore[no-untyped-def]
|
|
open(filename, "a").close()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class PyCodeCache:
|
|
# Track the loaded modules so we can remove the on-disk artifacts when
|
|
# clearing the cache. Note also that we may load the same path more
|
|
# than once, but attach different attributes, i.e., due to different
|
|
# constant values.
|
|
modules: List[ModuleType] = []
|
|
linemaps: Dict[str, List[Tuple[Any, ...]]] = {}
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, extra: str = "") -> Tuple[str, str]:
|
|
return write(source_code, "py", extra=extra)
|
|
|
|
@classmethod
|
|
def load(
|
|
cls,
|
|
source_code: str,
|
|
extra: str = "",
|
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
|
attrs: Optional[Dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
key, path = write(source_code, "py", extra=extra)
|
|
return cls.load_by_key_path(key, path, linemap, attrs)
|
|
|
|
@classmethod
|
|
def load_by_key_path(
|
|
cls,
|
|
key: str,
|
|
path: str,
|
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
|
attrs: Optional[Dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
if linemap is None:
|
|
linemap = []
|
|
|
|
mod = _reload_python_module(key, path)
|
|
|
|
# unzip into separate lines/nodes lists
|
|
cls.linemaps[path] = list(zip(*linemap))
|
|
|
|
if attrs is not None:
|
|
for k, v in attrs.items():
|
|
setattr(mod, k, v)
|
|
|
|
if not (linemap or attrs):
|
|
mod._reload_in_subproc = functools.partial( # type: ignore[attr-defined]
|
|
_reload_python_module_in_subproc, key, path
|
|
)
|
|
|
|
cls.modules.append(mod)
|
|
return mod
|
|
|
|
@classmethod
|
|
def cache_clear(cls, purge: bool = False) -> None:
|
|
"""
|
|
Clear the in-memory module cache. If purge=True, also delete all the
|
|
corresponding on-disk source files.
|
|
"""
|
|
if purge:
|
|
for mod in cls.modules:
|
|
try:
|
|
assert mod.__file__
|
|
os.remove(mod.__file__)
|
|
except FileNotFoundError:
|
|
pass
|
|
cls.modules.clear()
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def stack_frames_for_code(
|
|
cls, path: str, lineno: int
|
|
) -> Optional[List[Dict[str, Any]]]:
|
|
if path not in cls.linemaps:
|
|
return None
|
|
# [(starting_line, <fx node>), ...]
|
|
lines, nodes = cls.linemaps[path]
|
|
p = bisect_right(lines, lineno)
|
|
if p == 0:
|
|
return None
|
|
entry = nodes[p - 1]
|
|
if not entry:
|
|
return None
|
|
|
|
def parse_stack_trace(stack_trace: str) -> List[Dict[str, Any]]:
|
|
# ideally fx stores stack traces as data rather than a string
|
|
# but this is not along a performance critical path
|
|
regex = r'File "(.+)", line (\d+), in (.+)\n'
|
|
matches = re.findall(regex, stack_trace)
|
|
return [
|
|
{"filename": f, "line": int(l), "name": n}
|
|
for f, l, n in reversed(matches)
|
|
]
|
|
|
|
return parse_stack_trace(entry)
|
|
|
|
|
|
class TritonCodeCache:
|
|
@classmethod
|
|
def load(cls, kernel_name: str, source_code: str) -> ModuleType:
|
|
return _module_to_triton_kernel(PyCodeCache.load(source_code), kernel_name)
|
|
|
|
|
|
def _cuda_compiler() -> Optional[str]:
|
|
if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
|
|
return config.cuda.cuda_cxx
|
|
if config.is_fbcode():
|
|
return os.path.join(build_paths.sdk_home, "bin", "nvcc")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
|
|
return os.getenv("CUDACXX", "")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
|
|
return os.path.realpath(os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc"))
|
|
return "nvcc"
|
|
|
|
|
|
def _cutlass_include_paths() -> List[str]:
|
|
if config.is_fbcode():
|
|
from libfb.py import parutil
|
|
|
|
cutlass_path = parutil.get_dir_path("cutlass-3-headers")
|
|
else:
|
|
cutlass_path = config.cuda.cutlass_dir
|
|
return [
|
|
# Use realpath to get canonical absolute paths, in order not to mess up cache keys
|
|
os.path.realpath(os.path.join(cutlass_path, "include")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/library/include")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/library/src")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/util/include")),
|
|
]
|
|
|
|
|
|
def _cuda_lib_options() -> List[str]:
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
from torch.utils import cpp_extension
|
|
|
|
lpaths = cpp_extension.library_paths(device_type="cuda") + [
|
|
sysconfig.get_config_var("LIBDIR")
|
|
]
|
|
extra_ldflags: List[str] = []
|
|
if is_linux():
|
|
_transform_cuda_paths(lpaths)
|
|
for path in lpaths:
|
|
# -rpath ensures the DLL can find its dependencies when loaded, even
|
|
# if the library path is non-standard.
|
|
extra_ldflags.extend([f"-L{path}", "-Xlinker", f"-rpath={path}"])
|
|
extra_ldflags.append("-lcuda")
|
|
extra_ldflags.append("-lcudart")
|
|
else:
|
|
raise NotImplementedError(
|
|
"Unsupported env, failed to find cuda libs! Currently only Linux is supported."
|
|
)
|
|
return extra_ldflags
|
|
|
|
|
|
def _nvcc_host_compiler_options() -> List[str]:
|
|
return [
|
|
"-fPIC",
|
|
"-fno-strict-aliasing",
|
|
"-fvisibility=hidden",
|
|
"-Wconversion",
|
|
]
|
|
|
|
|
|
def _nvcc_compiler_options() -> List[str]:
|
|
arch = cuda_env.get_cuda_arch()
|
|
if arch == "90":
|
|
# Required by cutlass compilation.
|
|
arch = "90a"
|
|
code = [f"sm_{arch}", f"compute_{arch}"]
|
|
if config.cuda.enable_cuda_lto:
|
|
code += [f"lto_{arch}"]
|
|
options = [
|
|
"-t=0",
|
|
"-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
|
|
"-DCUTLASS_ENABLE_SM90_EXTENDED_MMA_SHAPES=1",
|
|
"-DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED",
|
|
"-w",
|
|
f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
|
|
config.cuda.compile_opt_level,
|
|
"-std=c++17",
|
|
"--expt-relaxed-constexpr",
|
|
"-DNDEBUG",
|
|
]
|
|
if config.is_fbcode():
|
|
options.extend(["-ccbin", os.path.dirname(build_paths.gcc)])
|
|
if config.cuda.enable_debug_info:
|
|
options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
|
|
if config.cuda.enable_ptxas_info:
|
|
options.extend(
|
|
[
|
|
"--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
|
|
"--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels
|
|
"--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels
|
|
"--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.)
|
|
"--source-in-ptx",
|
|
]
|
|
) # Annotate the ptx file with source information
|
|
if config.cuda.use_fast_math:
|
|
options.extend(
|
|
[
|
|
"--use_fast_math",
|
|
"-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
|
|
]
|
|
)
|
|
return options
|
|
|
|
|
|
def cuda_compile_command(
|
|
src_files: List[str],
|
|
dst_file: str,
|
|
dst_file_ext: str,
|
|
extra_args: Optional[List[str]] = None,
|
|
) -> str:
|
|
if extra_args is None:
|
|
extra_args = []
|
|
include_paths = _cutlass_include_paths()
|
|
cuda_lib_options = _cuda_lib_options()
|
|
nvcc_host_compiler_options = _nvcc_host_compiler_options()
|
|
nvcc_compiler_options = _nvcc_compiler_options()
|
|
options = (
|
|
nvcc_compiler_options
|
|
+ extra_args
|
|
+ [
|
|
f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
|
|
for opt in nvcc_host_compiler_options
|
|
]
|
|
+ ["-I" + path for path in include_paths]
|
|
+ cuda_lib_options
|
|
)
|
|
src_file = " ".join(src_files)
|
|
res = ""
|
|
if dst_file_ext == "o":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "so":
|
|
options.append("-shared")
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "exe":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
|
|
log.debug("CUDA command: %s", res)
|
|
return res
|
|
|
|
|
|
class DLLWrapper:
|
|
"""A wrapper for a dynamic library."""
|
|
|
|
def __init__(
|
|
self,
|
|
lib_path: str,
|
|
) -> None:
|
|
self.lib_path = lib_path
|
|
self.is_open = False
|
|
self.DLL = cdll.LoadLibrary(lib_path)
|
|
self.is_open = True
|
|
|
|
def close(self) -> None:
|
|
if self.is_open:
|
|
self._dlclose()
|
|
self.is_open = False
|
|
|
|
def _dlclose(self) -> None:
|
|
f_dlclose = None
|
|
|
|
if is_linux():
|
|
syms = CDLL(None)
|
|
if not hasattr(syms, "dlclose"):
|
|
# Apline Linux
|
|
syms = CDLL("libc.so")
|
|
|
|
if hasattr(syms, "dlclose"):
|
|
f_dlclose = syms.dlclose
|
|
elif is_windows():
|
|
import ctypes
|
|
|
|
kernel32 = ctypes.CDLL("kernel32", use_last_error=True)
|
|
|
|
f_dlclose = kernel32.FreeLibrary
|
|
else:
|
|
raise NotImplementedError("Unsupported env, failed to do dlclose!")
|
|
|
|
if f_dlclose is not None:
|
|
if is_linux():
|
|
f_dlclose.argtypes = [c_void_p]
|
|
f_dlclose(self.DLL._handle)
|
|
elif is_windows():
|
|
import ctypes
|
|
from ctypes import wintypes
|
|
|
|
f_dlclose.argtypes = [wintypes.HMODULE]
|
|
f_dlclose(self.DLL._handle)
|
|
else:
|
|
log.warning(
|
|
"dll unloading function was not found, library may not be unloaded properly!"
|
|
)
|
|
|
|
def __getattr__(self, name: str) -> Callable[..., None]:
|
|
if not self.is_open:
|
|
raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")
|
|
|
|
method = getattr(self.DLL, name)
|
|
|
|
def _wrapped_func(*args: Any) -> None:
|
|
err = method(*args)
|
|
if err:
|
|
raise RuntimeError(f"Error in function: {method.__name__}")
|
|
|
|
return _wrapped_func
|
|
|
|
def __enter__(self) -> DLLWrapper: # noqa: PYI034
|
|
return self
|
|
|
|
def __exit__(self, *args: Any) -> None:
|
|
self.close()
|
|
|
|
def __del__(self) -> None:
|
|
self.close()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CUDACodeCache:
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
|
|
cache: Dict[str, CacheEntry] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_SOURCE_CODE_SUFFIX = "cu"
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, dst_file_ext: str) -> Tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
cuda_command = repr(
|
|
cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
key, input_path = write(
|
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
|
)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code: str, dst_file_ext: str, extra_args: Optional[List[str]] = None
|
|
) -> Tuple[str, str, str]:
|
|
"""
|
|
Compiles CUDA source_code into a file with dst_file_ext extension.
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
if not os.path.exists(output_path):
|
|
cmd = cuda_compile_command(
|
|
[input_path], output_path, dst_file_ext, extra_args
|
|
)
|
|
start_time = time()
|
|
log.debug("CUDA Compilation: %s", cmd)
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
subprocess.check_output(
|
|
cmd_parts, stderr=subprocess.STDOUT, env=os.environ
|
|
)
|
|
except subprocess.CalledProcessError as error:
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
end_time = time()
|
|
log_duration_msg = f"CUDA Compilation took {end_time - start_time} seconds. Compile command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
else:
|
|
log.debug(
|
|
"CUDA Compilation skipped: %s since output already exists",
|
|
input_path,
|
|
)
|
|
cls.cache[key] = CUDACodeCache.CacheEntry(input_path, output_path)
|
|
|
|
return (cls.cache[key].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, dst_file_ext: str) -> Tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class ROCmCodeCache:
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
|
|
cache: Dict[str, CacheEntry] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_SOURCE_CODE_SUFFIX = "cpp"
|
|
_logged_compiler_version = False
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, dst_file_ext: str) -> Tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
cuda_command = repr(
|
|
rocm_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
key, input_path = write(
|
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
|
)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code: str, dst_file_ext: str, extra_args: Optional[List[str]] = None
|
|
) -> Tuple[str, str, str]:
|
|
"""
|
|
Compiles source_code into a file with dst_file_ext extension,
|
|
using the compile command specific for the ROCm platform.
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
if not cls._logged_compiler_version:
|
|
cls._logged_compiler_version = True
|
|
log.debug(get_compiler_version_info(str(rocm_compiler())))
|
|
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
if not os.path.exists(output_path):
|
|
cmd = rocm_compile_command(
|
|
[input_path], output_path, dst_file_ext, extra_args
|
|
)
|
|
start_time = time()
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
output = subprocess.check_output(
|
|
cmd_parts,
|
|
stderr=subprocess.STDOUT,
|
|
text=True,
|
|
env=os.environ,
|
|
)
|
|
log.debug("Compilation output: %s", output)
|
|
except subprocess.CalledProcessError as error:
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
end_time = time()
|
|
log_duration_msg = f"Compilation took {end_time - start_time} seconds. Compile command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
else:
|
|
log.debug(
|
|
"Skip compiling %s: output %s already exists",
|
|
input_path,
|
|
output_path,
|
|
)
|
|
cls.cache[key] = ROCmCodeCache.CacheEntry(input_path, output_path)
|
|
|
|
return (cls.cache[key].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, dst_file_ext: str) -> Tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
|
|
class CodeCacheFuture:
|
|
def result(self) -> None:
|
|
raise NotImplementedError
|
|
|
|
|
|
class TritonFuture(CodeCacheFuture):
|
|
kernel: ModuleType
|
|
|
|
def __init__(
|
|
self,
|
|
kernel: Any,
|
|
future: Optional[Future[Any]],
|
|
) -> None:
|
|
self.kernel = kernel
|
|
self.future = future
|
|
|
|
def result(self) -> ModuleType: # type: ignore[override]
|
|
if self.future is not None:
|
|
# If the worker failed this will throw an exception.
|
|
result = self.future.result()
|
|
assert result is None
|
|
self.future = None
|
|
self.kernel.precompile()
|
|
return self.kernel
|
|
|
|
|
|
class LambdaFuture(CodeCacheFuture):
|
|
def __init__(self, result_fn: Callable[..., Any]) -> None:
|
|
self.result_fn = result_fn
|
|
|
|
def result(self) -> Callable[..., Any]: # type: ignore[override]
|
|
return self.result_fn()
|