mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030 Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible Fixes https://github.com/pytorch/pytorch/issues/47442 * **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today. * There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate. * As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes. * `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments. * It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor. * It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling. * The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall. To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization. Original pull request: https://github.com/pytorch/pytorch/pull/59671 Reviewed By: soulitzer, ngimel Differential Revision: D29466819 Pulled By: ezyang fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
648 lines
23 KiB
C++
648 lines
23 KiB
C++
#include <TH/TH.h>
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <ATen/CUDAGeneratorImpl.h>
|
|
#include <c10/cuda/CUDAFunctions.h>
|
|
#include <c10/cuda/CUDACachingAllocator.h>
|
|
#include <ATen/cuda/CachingHostAllocator.h>
|
|
#include <ATen/cuda/detail/CUDAHooks.h>
|
|
#ifdef USE_NCCL
|
|
#include <torch/csrc/cuda/python_nccl.h>
|
|
#endif
|
|
#include <c10/util/irange.h>
|
|
|
|
#include <torch/csrc/cuda/THCP.h>
|
|
#include <torch/csrc/CudaIPCTypes.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/cuda/python_comm.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <array>
|
|
#include <unordered_map>
|
|
#include <thread>
|
|
#include <chrono>
|
|
#include <sstream>
|
|
|
|
#ifndef WIN32
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
using namespace torch;
|
|
|
|
THCState *state = nullptr;
|
|
static bool in_bad_fork = false; // True for children forked after cuda init
|
|
|
|
#ifndef WIN32
|
|
// Called in the forked child if cuda has already been initialized
|
|
static void forked_child() {
|
|
in_bad_fork = true;
|
|
torch::utils::set_run_yet_variable_to_false();
|
|
state = nullptr;
|
|
}
|
|
#endif
|
|
|
|
// Should be called before the first cuda call.
|
|
// Note: This is distinct from initExtension because a stub cuda implementation
|
|
// has some working functions (e.g. device_count) but cannot fully initialize.
|
|
static void poison_fork() {
|
|
#ifndef WIN32
|
|
static std::once_flag flag;
|
|
std::call_once(flag, []{ pthread_atfork(nullptr, nullptr, forked_child); });
|
|
#endif
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// CUDA management methods
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void THCPModule_setDevice(int device)
|
|
{
|
|
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
|
|
}
|
|
|
|
PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
|
|
int64_t device = THPUtils_unpackLong(arg);
|
|
|
|
torch::utils::cuda_lazy_init();
|
|
THCPModule_setDevice(device);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getDevice_wrap(PyObject *self, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
torch::utils::cuda_lazy_init();
|
|
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
|
|
auto device = static_cast<int>(c10::cuda::current_device());
|
|
return THPUtils_packInt32(device);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_canDeviceAccessPeer_wrap(PyObject *self, PyObject *args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
PyObject* arg1 = nullptr;
|
|
PyObject* arg2 = nullptr;
|
|
if(!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"can_device_peer_access",
|
|
1,
|
|
"(int device, int peer_device);");
|
|
return nullptr;
|
|
}
|
|
THPUtils_assert(THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer");
|
|
THPUtils_assert(THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer");
|
|
int64_t device = THPUtils_unpackLong(arg1);
|
|
int64_t peer_device = THPUtils_unpackLong(arg2);
|
|
|
|
torch::utils::cuda_lazy_init();
|
|
auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device);
|
|
return PyBool_FromLong(can_access);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getDeviceCount_wrap(PyObject *self, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
poison_fork();
|
|
return THPUtils_packUInt64(at::cuda::device_count());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getArchFlags(PyObject *self, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
poison_fork();
|
|
#ifdef CUDA_ARCH_FLAGS
|
|
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
|
|
return THPUtils_packString(flags);
|
|
#else
|
|
Py_RETURN_NONE;
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THCPModule_isInBadFork(PyObject *self, PyObject *noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(in_bad_fork);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getCurrentStream_wrap(
|
|
PyObject * /* unused */, PyObject *device_index) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
|
|
int64_t device = THPUtils_unpackLong(device_index);
|
|
return PyLong_FromUnsignedLongLong(
|
|
at::cuda::getCurrentCUDAStream(device).pack());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getDefaultStream_wrap(
|
|
PyObject * /* unused */, PyObject *device_index) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
|
|
int64_t device = THPUtils_unpackLong(device_index);
|
|
return PyLong_FromUnsignedLongLong(
|
|
at::cuda::getDefaultCUDAStream(device).pack());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *obj)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(PyLong_Check(obj), "invalid stream");
|
|
uint64_t bits = PyLong_AsUnsignedLongLong(obj);
|
|
if (bits == static_cast<uint64_t>(-1) && PyErr_Occurred()) {
|
|
throw python_error();
|
|
}
|
|
auto stream = at::cuda::CUDAStream::unpack(bits);
|
|
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
|
|
auto device = static_cast<int>(c10::cuda::current_device());
|
|
if (device != stream.device_index()) {
|
|
THCPModule_setDevice(stream.device_index());
|
|
}
|
|
at::cuda::setCurrentCUDAStream(stream);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getCompiledVersion(PyObject *self, PyObject *noargs)
|
|
{
|
|
#if defined(USE_ROCM)
|
|
return THPUtils_packInt64((int64_t) ROCM_VERSION);
|
|
#else
|
|
return THPUtils_packInt64((int64_t) CUDA_VERSION);
|
|
#endif
|
|
}
|
|
|
|
PyObject * THCPModule_cudaHostAllocator(PyObject *_unused, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
c10::Allocator* allocator = at::cuda::getCachingHostAllocator();
|
|
return PyLong_FromVoidPtr(allocator);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaCachingAllocator_raw_alloc(PyObject *_unused, PyObject *args){
|
|
HANDLE_TH_ERRORS
|
|
PyObject* size_o = nullptr;
|
|
PyObject* stream_o = nullptr;
|
|
if(!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"caching_allocator_alloc",
|
|
1,
|
|
"(ssize_t size, intptr_t stream);");
|
|
return nullptr;
|
|
}
|
|
ssize_t size = PyLong_AsSsize_t(size_o);
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
void* mem = c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
|
|
return PyLong_FromVoidPtr(mem);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaCachingAllocator_raw_delete(PyObject *_unused, PyObject *obj){
|
|
HANDLE_TH_ERRORS
|
|
void* mem_ptr = PyLong_AsVoidPtr(obj);
|
|
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaSynchronize(PyObject *_unused, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
c10::cuda::device_synchronize();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaIPCCollect(PyObject *_unused, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
torch::CudaIPCCollect();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
|
|
THC_sleep(LIBRARY_STATE THPUtils_unpackLong(cycles));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// We need to ensure that as long as a thread will NEVER loose the GIL as long
|
|
// as it holds the CUDA mutex. Otherwise another thread might be scheduled and
|
|
// try to e.g. allocate a new tensor which will cause a deadlock. It's enough to
|
|
// have a single global, because it can be only set once (cudaMutex is not
|
|
// recursive) by the thread that owns the mutex (obviously there can be only one
|
|
// such thread).
|
|
static PyGILState_STATE cudaMutexGILState;
|
|
|
|
PyObject * THCPModule_cudaLockMutex(PyObject *module, PyObject *noargs)
|
|
{
|
|
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
|
|
// This has to be a busy loop because we **absolutely need to** hold the GIL
|
|
// or it's a recipe for a deadlock otherwise (if we let other Python threads
|
|
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
|
|
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
|
|
// because it happens deep within THC).
|
|
while (true) {
|
|
if (mutex->try_lock())
|
|
break;
|
|
{
|
|
pybind11::gil_scoped_release no_gil;
|
|
std::this_thread::sleep_for(std::chrono::microseconds(10));
|
|
}
|
|
}
|
|
|
|
cudaMutexGILState = PyGILState_Ensure();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THCPModule_cudaUnlockMutex(PyObject *module, PyObject *noargs)
|
|
{
|
|
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
|
|
PyGILState_Release(cudaMutexGILState);
|
|
mutex->unlock();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THCPModule_hasPrimaryContext(PyObject *_unused, PyObject *arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to has_primary_context");
|
|
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
|
|
if (at::cuda::detail::hasPrimaryContext(device_index)) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_setMemoryFraction(PyObject *_unused, PyObject *args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
PyObject* fraction_o = nullptr;
|
|
PyObject* device_o = nullptr;
|
|
if(!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"set_memory_fraction",
|
|
1,
|
|
"(double fraction, int device);");
|
|
return nullptr;
|
|
}
|
|
double fraction = PyFloat_AsDouble(fraction_o);
|
|
int64_t device = PyLong_AsLongLong(device_o);
|
|
|
|
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THCPModule_emptyCache(PyObject *_unused, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
c10::cuda::CUDACachingAllocator::emptyCache();
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THCPModule_memoryStats(PyObject *_unused, PyObject *arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_allocated");
|
|
const int device = (int) THPUtils_unpackLong(arg);
|
|
|
|
using c10::cuda::CUDACachingAllocator::StatType;
|
|
using c10::cuda::CUDACachingAllocator::Stat;
|
|
using c10::cuda::CUDACachingAllocator::StatArray;
|
|
using c10::cuda::CUDACachingAllocator::DeviceStats;
|
|
|
|
const auto statToDict = [](const Stat& stat) {
|
|
py::dict dict;
|
|
|
|
dict["current"] = stat.current;
|
|
dict["peak"] = stat.peak;
|
|
dict["allocated"] = stat.allocated;
|
|
dict["freed"] = stat.freed;
|
|
return dict;
|
|
};
|
|
|
|
const auto statArrayToDict = [=](const StatArray& statArray) {
|
|
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)> statTypeNames = {
|
|
"all", "small_pool", "large_pool"
|
|
};
|
|
py::dict dict;
|
|
for (const auto i : c10::irange(statTypeNames.size())) {
|
|
dict[statTypeNames[i]] = statToDict(statArray[i]);
|
|
}
|
|
return dict;
|
|
};
|
|
|
|
const DeviceStats stats = c10::cuda::CUDACachingAllocator::getDeviceStats(device);
|
|
|
|
py::dict result;
|
|
result["num_alloc_retries"] = stats.num_alloc_retries;
|
|
result["num_ooms"] = stats.num_ooms;
|
|
result["max_split_size"] = stats.max_split_size;
|
|
result["allocation"] = statArrayToDict(stats.allocation);
|
|
result["segment"] = statArrayToDict(stats.segment);
|
|
result["active"] = statArrayToDict(stats.active);
|
|
result["inactive_split"] = statArrayToDict(stats.inactive_split);
|
|
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
|
|
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
|
|
result["active_bytes"] = statArrayToDict(stats.active_bytes);
|
|
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
|
|
result["oversize_allocations"] = statToDict(stats.oversize_allocations);
|
|
result["oversize_segments"] = statToDict(stats.oversize_segments);
|
|
|
|
return result.release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_resetAccumulatedMemoryStats(PyObject *_unused, PyObject *arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_accumulated_memory_stats");
|
|
const int device = (int) THPUtils_unpackLong(arg);
|
|
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THCPModule_resetPeakMemoryStats(PyObject *_unused, PyObject *arg)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
|
|
const int device = (int) THPUtils_unpackLong(arg);
|
|
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject * THCPModule_memorySnapshot(PyObject *_unused, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
|
|
using c10::cuda::CUDACachingAllocator::SegmentInfo;
|
|
using c10::cuda::CUDACachingAllocator::BlockInfo;
|
|
|
|
const auto segmentInfoToDict = [](const SegmentInfo& segmentInfo) {
|
|
py::dict segmentDict;
|
|
segmentDict["device"] = segmentInfo.device;
|
|
segmentDict["address"] = segmentInfo.address;
|
|
segmentDict["total_size"] = segmentInfo.total_size;
|
|
segmentDict["allocated_size"] = segmentInfo.allocated_size;
|
|
segmentDict["active_size"] = segmentInfo.active_size;
|
|
segmentDict["segment_type"] = (segmentInfo.is_large ? "large" : "small");
|
|
|
|
py::list blocks;
|
|
for (const auto& blockInfo : segmentInfo.blocks) {
|
|
py::dict blockDict;
|
|
blockDict["size"] = blockInfo.size;
|
|
blockDict["state"] = (blockInfo.allocated ? "active_allocated" : (blockInfo.active ? "active_pending_free" : "inactive"));
|
|
blocks.append(blockDict);
|
|
}
|
|
segmentDict["blocks"] = blocks;
|
|
|
|
return segmentDict;
|
|
};
|
|
|
|
const std::vector<SegmentInfo>& snapshot = c10::cuda::CUDACachingAllocator::snapshot();
|
|
py::list result;
|
|
|
|
for (const auto& segmentInfo : snapshot) {
|
|
result.append(segmentInfoToDict(segmentInfo));
|
|
}
|
|
|
|
return result.release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaSetSyncDebugMode(PyObject * _unused, PyObject * arg){
|
|
HANDLE_TH_ERRORS
|
|
TORCH_WARN_ONCE("Synchronization debug mode is a prototype feature and does not yet detect all " \
|
|
"synchronizing operations");
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode");
|
|
int64_t debug_mode = THPUtils_unpackLong(arg);
|
|
TORCH_CHECK(debug_mode >=0 && debug_mode <=2, "invalid value of debug_mode, expected one of 0,1,2");
|
|
c10::cuda::SyncDebugMode l;
|
|
switch (debug_mode) {
|
|
case 0: l = c10::cuda::SyncDebugMode::L_DISABLED; break;
|
|
case 1: l = c10::cuda::SyncDebugMode::L_WARN; break;
|
|
case 2: l = c10::cuda::SyncDebugMode::L_ERROR; break;
|
|
default: l = c10::cuda::SyncDebugMode::L_DISABLED; break; // can't happen
|
|
}
|
|
c10::cuda::warning_state().set_sync_debug_mode(l);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_cudaGetSyncDebugMode(PyObject *self, PyObject *noargs){
|
|
HANDLE_TH_ERRORS
|
|
auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode();
|
|
switch (debug_mode){
|
|
case c10::cuda::SyncDebugMode::L_DISABLED: return THPUtils_packInt32(0);
|
|
case c10::cuda::SyncDebugMode::L_WARN: return THPUtils_packInt32(1);
|
|
case c10::cuda::SyncDebugMode::L_ERROR: return THPUtils_packInt32(2);
|
|
default: return THPUtils_packInt32(-1); // can't happen
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Cuda module initialization
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void registerCudaDeviceProperties(PyObject* module) {
|
|
// Add _cudaDevicePropertires class to torch._C
|
|
auto m = py::handle(module).cast<py::module>();
|
|
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
|
|
.def_readonly("name", &cudaDeviceProp::name)
|
|
.def_readonly("major", &cudaDeviceProp::major)
|
|
.def_readonly("minor", &cudaDeviceProp::minor)
|
|
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
|
|
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
|
|
.def_readonly("multi_processor_count", &cudaDeviceProp::multiProcessorCount)
|
|
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
|
|
.def("__repr__", [](const cudaDeviceProp &prop) {
|
|
std::ostringstream stream;
|
|
stream << "_CudaDeviceProperties(name='" << prop.name << "', major=" << prop.major
|
|
<< ", minor=" << prop.minor << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
|
|
<< "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
|
|
return stream.str();
|
|
});
|
|
}
|
|
|
|
static void bindGetDeviceProperties(PyObject* module) {
|
|
// Add method to torch.cuda
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def("_get_device_properties", [](int device) -> cudaDeviceProp * {
|
|
return at::cuda::getDeviceProperties(device);
|
|
}, py::return_value_policy::reference);
|
|
}
|
|
|
|
// Callback for python part. Used for additional initialization of python classes
|
|
static PyObject * THCPModule_initExtension(PyObject *self, PyObject *noargs)
|
|
{
|
|
#if C10_ASAN_ENABLED
|
|
TORCH_WARN(
|
|
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
|
|
"asan is currently not compatible with torch.cuda module, "
|
|
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
|
|
"please rebuild pytorch without asan if you need to use this module");
|
|
#endif
|
|
HANDLE_TH_ERRORS
|
|
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
|
|
poison_fork();
|
|
state = at::globalContext().lazyInitCUDA();
|
|
|
|
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
|
|
if (!m) throw python_error();
|
|
|
|
// Register Storage Python objects with DynamicTypes.cpp
|
|
THCPByteStorage_postInit(m);
|
|
|
|
bool has_half = true;
|
|
|
|
auto set_module_attr = [&](const char* name, PyObject* v) {
|
|
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
|
|
if (PyObject_SetAttrString(m, name, v) < 0) {
|
|
throw python_error();
|
|
}
|
|
};
|
|
|
|
set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False);
|
|
set_module_attr("has_half", has_half ? Py_True : Py_False);
|
|
|
|
auto _state_cdata = THPObjectPtr(PyLong_FromVoidPtr(state));
|
|
if (!_state_cdata) throw python_error();
|
|
set_module_attr("_state_cdata", _state_cdata.get());
|
|
|
|
auto num_gpus = c10::cuda::device_count();
|
|
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
|
|
for(const auto i : c10::irange(num_gpus)) {
|
|
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
|
|
auto gen = at::cuda::detail::getDefaultCUDAGenerator(i);
|
|
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen);
|
|
// This reference is meant to be given away, so no need to incref here.
|
|
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
|
|
}
|
|
set_module_attr("default_generators", default_cuda_generators);
|
|
bindGetDeviceProperties(m);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
|
return PyLong_FromVoidPtr(handle);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// NOLINTNEXTLINE(modernize-avoid-c-arrays, cppcoreguidelines-avoid-non-const-global-variables, cppcoreguidelines-avoid-c-arrays)
|
|
static struct PyMethodDef _THCPModule_methods[] = {
|
|
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
|
|
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
|
|
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
|
|
{"_cuda_getDeviceCount", THCPModule_getDeviceCount_wrap, METH_NOARGS, nullptr},
|
|
{"_cuda_canDeviceAccessPeer", THCPModule_canDeviceAccessPeer_wrap, METH_VARARGS, nullptr},
|
|
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
|
|
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
|
|
{"_cuda_getCurrentStream",
|
|
THCPModule_getCurrentStream_wrap, METH_O, nullptr},
|
|
{"_cuda_getDefaultStream",
|
|
THCPModule_getDefaultStream_wrap, METH_O, nullptr},
|
|
{"_cuda_getCurrentBlasHandle", THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, nullptr},
|
|
{"_cuda_setStream", THCPModule_setStream_wrap, METH_O, nullptr},
|
|
{"_cuda_getCompiledVersion", THCPModule_getCompiledVersion, METH_NOARGS, nullptr},
|
|
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
|
|
{"_cuda_setMemoryFraction", THCPModule_setMemoryFraction, METH_VARARGS, nullptr},
|
|
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
|
|
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
|
|
{"_cuda_resetAccumulatedMemoryStats", THCPModule_resetAccumulatedMemoryStats, METH_O, nullptr},
|
|
{"_cuda_resetPeakMemoryStats", THCPModule_resetPeakMemoryStats, METH_O, nullptr},
|
|
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr},
|
|
{"_cuda_cudaHostAllocator", THCPModule_cudaHostAllocator, METH_NOARGS, nullptr},
|
|
{"_cuda_cudaCachingAllocator_raw_alloc", THCPModule_cudaCachingAllocator_raw_alloc, METH_VARARGS, nullptr},
|
|
{"_cuda_cudaCachingAllocator_raw_delete", THCPModule_cudaCachingAllocator_raw_delete, METH_O, nullptr},
|
|
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
|
|
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
|
|
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
|
|
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
|
|
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
|
|
{"_cuda_set_sync_debug_mode", THCPModule_cudaSetSyncDebugMode, METH_O, nullptr},
|
|
{"_cuda_get_sync_debug_mode", THCPModule_cudaGetSyncDebugMode, METH_NOARGS, nullptr},
|
|
#ifdef USE_NCCL
|
|
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
|
|
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
|
|
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
|
|
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
|
|
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
|
|
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
|
|
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
|
|
{"_nccl_reduce_scatter", THCPModule_nccl_reduce_scatter, METH_VARARGS, nullptr},
|
|
#endif
|
|
{nullptr}
|
|
};
|
|
|
|
PyMethodDef* THCPModule_methods() {
|
|
return _THCPModule_methods;
|
|
}
|
|
|
|
namespace torch { namespace cuda {
|
|
|
|
namespace shared {
|
|
|
|
void initCudartBindings(PyObject* module);
|
|
void initNvtxBindings(PyObject* module);
|
|
#if defined(USE_CUDNN) || defined(USE_ROCM)
|
|
void initCudnnBindings(PyObject* module);
|
|
#endif
|
|
|
|
} // namespace shared
|
|
|
|
void initModule(PyObject *module) {
|
|
python::initCommMethods(module);
|
|
// As weird as it seems, this file is also compiled for ROCm,
|
|
// so this condition might not always be true...
|
|
shared::initCudartBindings(module);
|
|
shared::initNvtxBindings(module);
|
|
#if defined(USE_CUDNN) || defined(USE_ROCM)
|
|
shared::initCudnnBindings(module);
|
|
#endif
|
|
registerCudaDeviceProperties(module);
|
|
}
|
|
|
|
}}
|