Files
pytorch/benchmarks
IvanKobzarev 894ef8c1e3 [torchbench] Inductor freezing bfloat16 conv folding needs high tolerance (#145623)
Issue:
https://github.com/pytorch/pytorch/issues/144888

Torchbench of timm lcnet_050 model fails on accuracy in case of `--frezing` `--inference` `--bfloat16`
`res_error==0.12`
If to turn off convolution inductor constant folding - `res_error==0.016`

`float16 error ~ 0.00669`
`float16 without conv folding ~ 0.0018`

convolution folding results in increase of error almost at one order of magnitude.

I think we should revisit and try to do something to improve the accuracy for conv folding.
E.g. For example doing conv folding at compilation time with float64?

At the moment I am adding counters to identify if convolution folding happened, and in case of bfloat16 and conv_folding - increase multiplier to the max level (10) to pass accuracy test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145623
Approved by: https://github.com/eellison
2025-01-30 12:46:35 +00:00
..

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite. Links are provided where descriptions exist: