mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9992 Optimize reduce ops for 2d and 3d Reviewed By: houseroad Differential Revision: D9042505 fbshipit-source-id: 62af2125aa6439106293e59bdf6a2b920792fd2d
3259 lines
132 KiB
C++
3259 lines
132 KiB
C++
// Implements the math functions for CPU.
|
|
// The implementation in this file allows us to route the underlying numerical
|
|
// computation library to different backends. Notably:
|
|
// (1) For all BLAS-related functions, one can explicitly request a BLAS backend
|
|
// such as MKL, openblas or Atlas. To see the set of supported backends
|
|
// currently provided, check //third_party/blas/.
|
|
// (2) If one chooses to link against MKL, we utilize MKL's vector math library
|
|
// (VML) for a few functions such as Exp and Log.
|
|
// (3) Fallback implementations are provided in Eigen for cross-platform
|
|
// support. Since Eigen is a header-only library and supports a number of
|
|
// platforms, it allows one to quickly port Caffe2 to different platforms
|
|
// where BLAS may not be present.
|
|
|
|
#include "caffe2/utils/math.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <tuple>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/utils/cpu_neon.h"
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
#include "Eigen/Core"
|
|
#include "Eigen/Dense"
|
|
|
|
#ifdef CAFFE2_USE_MKL
|
|
#include <mkl.h>
|
|
#endif // CAFFE2_USE_MKL
|
|
|
|
#ifdef CAFFE2_USE_HPTT
|
|
#include <hptt.h>
|
|
#endif // CAFFE2_USE_HPTT
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <process.h>
|
|
#endif
|
|
|
|
namespace caffe2 {
|
|
|
|
namespace math {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// BLAS alternatives.
|
|
// Depending on whether we have specified an external BLAS library or not, we
|
|
// will delegate the Caffe math functions that are BLAS-related to either the
|
|
// CBLAS call or the Eigen implementation.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#ifdef CAFFE2_USE_EIGEN_FOR_BLAS
|
|
|
|
// Caffe2 gemm provides a simpler interface to the gemm functions, with the
|
|
// limitation that the data has to be contiguous in memory.
|
|
//
|
|
// The gemm call implements the following operation:
|
|
//
|
|
// C = alpha * op(A) * op(B) + beta * C
|
|
//
|
|
// where op(A) has size M x K, op(B) has size K x N, and C has size M x N. Each
|
|
// of A, B, and C are matrices and alpha and beta are scalars. Note that the
|
|
// most common use case of gemm will involve setting alpha to 1 and beta to 0.
|
|
//
|
|
// op(A) and op(B) represent the transformations that are done to A and B before
|
|
// the matrix multiply; depending on the flags set, op(A) is equal to A or A^T
|
|
// (transpose) if the argument TransA or TransB is set to CblasNoTrans or
|
|
// CblasTrans, respectively, for each of A and B.
|
|
template <>
|
|
void Gemm<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const float* A,
|
|
const float* B,
|
|
const float beta,
|
|
float* C,
|
|
CPUContext* context,
|
|
TensorProto::DataType math_type) {
|
|
auto C_mat = EigenMatrixMap<float>(C, N, M);
|
|
if (beta == 0) {
|
|
C_mat.setZero();
|
|
} else {
|
|
C_mat *= beta;
|
|
}
|
|
switch (trans_A) {
|
|
case CblasNoTrans: {
|
|
switch (trans_B) {
|
|
case CblasNoTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenMatrixMap<float>(B, N, K) *
|
|
ConstEigenMatrixMap<float>(A, K, M));
|
|
return;
|
|
case CblasTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenMatrixMap<float>(B, K, N).transpose() *
|
|
ConstEigenMatrixMap<float>(A, K, M));
|
|
return;
|
|
default:
|
|
LOG(FATAL) << "Unexpected CBLAS_TRANSPOSE for trans_B";
|
|
}
|
|
}
|
|
case CblasTrans: {
|
|
switch (trans_B) {
|
|
case CblasNoTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenMatrixMap<float>(B, N, K) *
|
|
ConstEigenMatrixMap<float>(A, M, K).transpose());
|
|
return;
|
|
case CblasTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenMatrixMap<float>(B, K, N).transpose() *
|
|
ConstEigenMatrixMap<float>(A, M, K).transpose());
|
|
return;
|
|
default:
|
|
LOG(FATAL) << "Unexpected CBLAS_TRANSPOSE for trans_B";
|
|
}
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected CBLAS_TRANSPOSE for trans_A";
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void GemmEx<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const float* A,
|
|
const int lda,
|
|
const float* B,
|
|
const int ldb,
|
|
const float beta,
|
|
float* C,
|
|
const int ldc,
|
|
CPUContext*) {
|
|
EigenOuterStridedMatrixMap<float> C_mat(C, N, M, EigenOuterStride(ldc));
|
|
if (beta == 0) {
|
|
C_mat.setZero();
|
|
} else {
|
|
C_mat *= beta;
|
|
}
|
|
switch (trans_A) {
|
|
case CblasNoTrans: {
|
|
switch (trans_B) {
|
|
case CblasNoTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenOuterStridedMatrixMap<float>(
|
|
B, N, K, EigenOuterStride(ldb)) *
|
|
ConstEigenOuterStridedMatrixMap<float>(
|
|
A, K, M, EigenOuterStride(lda)));
|
|
return;
|
|
case CblasTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenOuterStridedMatrixMap<float>(
|
|
B, K, N, EigenOuterStride(ldb))
|
|
.transpose() *
|
|
ConstEigenOuterStridedMatrixMap<float>(
|
|
A, K, M, EigenOuterStride(lda)));
|
|
return;
|
|
default:
|
|
LOG(FATAL) << "Unexpected CBLAS_TRANSPOSE for trans_B";
|
|
}
|
|
}
|
|
case CblasTrans: {
|
|
switch (trans_B) {
|
|
case CblasNoTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenOuterStridedMatrixMap<float>(
|
|
B, N, K, EigenOuterStride(ldb)) *
|
|
ConstEigenOuterStridedMatrixMap<float>(
|
|
A, M, K, EigenOuterStride(lda))
|
|
.transpose());
|
|
return;
|
|
case CblasTrans:
|
|
C_mat.noalias() += alpha *
|
|
(ConstEigenOuterStridedMatrixMap<float>(
|
|
B, K, N, EigenOuterStride(ldb))
|
|
.transpose() *
|
|
ConstEigenOuterStridedMatrixMap<float>(
|
|
A, M, K, EigenOuterStride(lda))
|
|
.transpose());
|
|
return;
|
|
default:
|
|
LOG(FATAL) << "Unexpected CBLAS_TRANSPOSE for trans_B";
|
|
}
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected CBLAS_TRANSPOSE for trans_A";
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void Gemv<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const int M,
|
|
const int N,
|
|
const float alpha,
|
|
const float* A,
|
|
const float* x,
|
|
const float beta,
|
|
float* y,
|
|
CPUContext* context,
|
|
TensorProto::DataType math_type) {
|
|
EigenVectorMap<float> y_vec(y, trans_A == CblasNoTrans ? M : N);
|
|
if (beta == 0) {
|
|
// In Caffe2 we often do a lazy initialization, which may contain NaNs in
|
|
// the float values. As a result, if beta is 0, we explicitly do a setzero.
|
|
y_vec.setZero();
|
|
} else {
|
|
y_vec *= beta;
|
|
}
|
|
switch (trans_A) {
|
|
case CblasNoTrans: {
|
|
y_vec.noalias() += alpha *
|
|
(ConstEigenMatrixMap<float>(A, N, M).transpose() *
|
|
ConstEigenVectorMap<float>(x, N));
|
|
return;
|
|
}
|
|
case CblasTrans: {
|
|
y_vec.noalias() += alpha *
|
|
(ConstEigenMatrixMap<float>(A, N, M) *
|
|
ConstEigenVectorMap<float>(x, M));
|
|
return;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Gemv float found an unexpected CBLAS_TRANSPOSE input.";
|
|
}
|
|
}
|
|
|
|
#define CAFFE2_SPECIALIZED_DOT(T) \
|
|
template <> \
|
|
void Dot<T, CPUContext>( \
|
|
const int N, const T* a, const T* b, T* y, CPUContext* context) { \
|
|
*y = ConstEigenVectorMap<T>(a, N).dot(ConstEigenVectorMap<T>(b, N)); \
|
|
}
|
|
CAFFE2_SPECIALIZED_DOT(float)
|
|
#undef CAFFE2_SPECIALIZED_DOT
|
|
|
|
#define CAFFE2_SPECIALIZED_AXPY(T) \
|
|
template <> \
|
|
void Axpy<T, CPUContext>( \
|
|
const int N, const T alpha, const T* x, T* Y, CPUContext* context) { \
|
|
EigenVectorMap<T>(Y, N) += ConstEigenVectorMap<T>(x, N) * alpha; \
|
|
} \
|
|
template <> \
|
|
void Axpy<T, CPUContext>( \
|
|
const int N, const T* alpha, const T* x, T* Y, CPUContext* context) { \
|
|
EigenVectorMap<T>(Y, N) += ConstEigenVectorMap<T>(x, N) * (*alpha); \
|
|
}
|
|
CAFFE2_SPECIALIZED_AXPY(float)
|
|
#undef CAFFE2_SPECIALIZED_AXPY
|
|
|
|
#define CAFFE2_SPECIALIZED_AXPBY(T) \
|
|
template <> \
|
|
void Axpby<T, CPUContext>( \
|
|
const int N, \
|
|
const T alpha, \
|
|
const T* x, \
|
|
const T beta, \
|
|
T* y, \
|
|
CPUContext* context) { \
|
|
EigenVectorMap<T> y_vec(y, N); \
|
|
y_vec = y_vec * beta + ConstEigenVectorMap<T>(x, N) * alpha; \
|
|
}
|
|
CAFFE2_SPECIALIZED_AXPBY(float)
|
|
#undef CAFFE2_SPECIALIZED_AXPBY
|
|
|
|
#else // CAFFE2_USE_EIGEN_FOR_BLAS
|
|
|
|
template <>
|
|
void Gemm<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const float* A,
|
|
const float* B,
|
|
const float beta,
|
|
float* C,
|
|
CPUContext* /*context*/,
|
|
TensorProto::DataType /*math_type*/) {
|
|
const int lda = (trans_A == CblasNoTrans) ? K : M;
|
|
const int ldb = (trans_B == CblasNoTrans) ? N : K;
|
|
cblas_sgemm(
|
|
CblasRowMajor,
|
|
trans_A,
|
|
trans_B,
|
|
M,
|
|
N,
|
|
K,
|
|
alpha,
|
|
A,
|
|
lda,
|
|
B,
|
|
ldb,
|
|
beta,
|
|
C,
|
|
N);
|
|
}
|
|
|
|
template <>
|
|
void GemmEx<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const float* A,
|
|
const int lda,
|
|
const float* B,
|
|
const int ldb,
|
|
const float beta,
|
|
float* C,
|
|
const int ldc,
|
|
CPUContext* /*context*/) {
|
|
cblas_sgemm(
|
|
CblasRowMajor,
|
|
trans_A,
|
|
trans_B,
|
|
M,
|
|
N,
|
|
K,
|
|
alpha,
|
|
A,
|
|
lda,
|
|
B,
|
|
ldb,
|
|
beta,
|
|
C,
|
|
ldc);
|
|
}
|
|
|
|
template <>
|
|
void Gemv<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const int M,
|
|
const int N,
|
|
const float alpha,
|
|
const float* A,
|
|
const float* x,
|
|
const float beta,
|
|
float* y,
|
|
CPUContext* /*context*/,
|
|
TensorProto::DataType /*math_type*/) {
|
|
cblas_sgemv(CblasRowMajor, trans_A, M, N, alpha, A, N, x, 1, beta, y, 1);
|
|
}
|
|
|
|
#define CAFFE2_SPECIALIZED_SCALE(TAlpha, TData, prefix) \
|
|
template <> \
|
|
void Scale<TAlpha, TData, CPUContext>( \
|
|
const int n, \
|
|
const TAlpha alpha, \
|
|
const TData* x, \
|
|
TData* y, \
|
|
CPUContext*) { \
|
|
if (y != x) { \
|
|
cblas_##prefix##copy(n, x, 1, y, 1); \
|
|
} \
|
|
if (alpha != TAlpha(1)) { \
|
|
cblas_##prefix##scal(n, static_cast<TData>(alpha), y, 1); \
|
|
} \
|
|
} \
|
|
template <> \
|
|
void Scale<TAlpha, TData, CPUContext>( \
|
|
const int n, \
|
|
const TAlpha* alpha, \
|
|
const TData* x, \
|
|
TData* y, \
|
|
CPUContext*) { \
|
|
if (y != x) { \
|
|
cblas_##prefix##copy(n, x, 1, y, 1); \
|
|
} \
|
|
if (*alpha != TAlpha(1)) { \
|
|
cblas_##prefix##scal(n, static_cast<TData>(*alpha), y, 1); \
|
|
} \
|
|
}
|
|
CAFFE2_SPECIALIZED_SCALE(float, float, s)
|
|
CAFFE2_SPECIALIZED_SCALE(double, double, d)
|
|
CAFFE2_SPECIALIZED_SCALE(float, double, d)
|
|
#undef CAFFE2_SPECIALIZED_SCALE
|
|
|
|
#define CAFFE2_SPECIALIZED_DOT(T, prefix) \
|
|
template <> \
|
|
void Dot<T, CPUContext>( \
|
|
const int N, const T* a, const T* b, T* y, CPUContext*) { \
|
|
*y = cblas_##prefix##dot(N, a, 1, b, 1); \
|
|
}
|
|
CAFFE2_SPECIALIZED_DOT(float, s)
|
|
#undef CAFFE2_SPECIALIZED_DOT
|
|
|
|
#define CAFFE2_SPECIALIZED_AXPY(T, prefix) \
|
|
template <> \
|
|
void Axpy<T, CPUContext>( \
|
|
const int N, const T alpha, const T* x, T* y, CPUContext*) { \
|
|
cblas_##prefix##axpy(N, alpha, x, 1, y, 1); \
|
|
} \
|
|
template <> \
|
|
void Axpy<T, CPUContext>( \
|
|
const int N, const T* alpha, const T* x, T* y, CPUContext*) { \
|
|
cblas_##prefix##axpy(N, *alpha, x, 1, y, 1); \
|
|
}
|
|
CAFFE2_SPECIALIZED_AXPY(float, s)
|
|
#undef CAFFE2_SPECIALIZED_AXPY
|
|
|
|
// cblas_[sd]axpby is not a standard blas function, and if MKL is not present,
|
|
// we will need to implement it.
|
|
#ifdef CAFFE2_USE_MKL
|
|
#define CAFFE2_SPECIALIZED_AXPBY(T, prefix) \
|
|
template <> \
|
|
void Axpby<T, CPUContext>( \
|
|
const int N, \
|
|
const T alpha, \
|
|
const T* x, \
|
|
const T beta, \
|
|
T* y, \
|
|
CPUContext*) { \
|
|
cblas_##prefix##axpby(N, alpha, x, 1, beta, y, 1); \
|
|
}
|
|
#else // CAFFE2_USE_MKL
|
|
#define CAFFE2_SPECIALIZED_AXPBY(T, prefix) \
|
|
template <> \
|
|
void Axpby<T, CPUContext>( \
|
|
const int N, \
|
|
const T alpha, \
|
|
const T* x, \
|
|
const T beta, \
|
|
T* y, \
|
|
CPUContext*) { \
|
|
cblas_##prefix##scal(N, beta, y, 1); \
|
|
cblas_##prefix##axpy(N, alpha, x, 1, y, 1); \
|
|
}
|
|
#endif // CAFFE2_USE_MKL
|
|
CAFFE2_SPECIALIZED_AXPBY(float, s)
|
|
#undef CAFFE2_SPECIALIZED_AXPBY
|
|
|
|
#endif // CAFFE2_USE_EIGEN_FOR_BLAS
|
|
|
|
#define CAFFE2_SPECIALIZED_SCALE(TAlpha, TData) \
|
|
template <> \
|
|
void Scale<TAlpha, TData, CPUContext>( \
|
|
const int n, \
|
|
const TAlpha alpha, \
|
|
const TData* x, \
|
|
TData* y, \
|
|
CPUContext* context) { \
|
|
EigenVectorMap<TData>(y, n) = \
|
|
ConstEigenVectorMap<TData>(x, n) * static_cast<TData>(alpha); \
|
|
} \
|
|
template <> \
|
|
void Scale<TAlpha, TData, CPUContext>( \
|
|
const int n, \
|
|
const TAlpha* alpha, \
|
|
const TData* x, \
|
|
TData* y, \
|
|
CPUContext* context) { \
|
|
EigenVectorMap<TData>(y, n) = \
|
|
ConstEigenVectorMap<TData>(x, n) * static_cast<TData>(*alpha); \
|
|
}
|
|
#ifdef CAFFE2_USE_EIGEN_FOR_BLAS
|
|
CAFFE2_SPECIALIZED_SCALE(float, float)
|
|
CAFFE2_SPECIALIZED_SCALE(double, double)
|
|
CAFFE2_SPECIALIZED_SCALE(float, double)
|
|
#endif // CAFFE2_USE_EIGEN_FOR_BLAS
|
|
CAFFE2_SPECIALIZED_SCALE(std::int32_t, std::int32_t)
|
|
CAFFE2_SPECIALIZED_SCALE(std::int64_t, std::int64_t)
|
|
#undef CAFFE2_SPECIALIZED_SCALE
|
|
|
|
template <>
|
|
void GemmBatched<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int batch_size,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const float** A,
|
|
const float** B,
|
|
const float beta,
|
|
float** C,
|
|
CPUContext* context,
|
|
TensorProto::DataType /* math_type */) {
|
|
#ifdef CAFFE2_USE_MKL
|
|
(void)context;
|
|
const int lda = (trans_A == CblasNoTrans) ? K : M;
|
|
const int ldb = (trans_B == CblasNoTrans) ? N : K;
|
|
const int ldc = N;
|
|
cblas_sgemm_batch(
|
|
CblasRowMajor,
|
|
&trans_A,
|
|
&trans_B,
|
|
&M,
|
|
&N,
|
|
&K,
|
|
&alpha,
|
|
A,
|
|
&lda,
|
|
B,
|
|
&ldb,
|
|
&beta,
|
|
C,
|
|
&ldc,
|
|
1,
|
|
&batch_size);
|
|
#else // CAFFE2_USE_MKL
|
|
// loop over matrices in the batch
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
math::Gemm<float, CPUContext>(
|
|
trans_A, trans_B, M, N, K, alpha, A[i], B[i], beta, C[i], context);
|
|
}
|
|
#endif // CAFFE2_USE_MKL
|
|
}
|
|
|
|
template <>
|
|
void GemmStridedBatched<float, CPUContext>(
|
|
const CBLAS_TRANSPOSE trans_A,
|
|
const CBLAS_TRANSPOSE trans_B,
|
|
const int batch_size,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const float* A,
|
|
const int A_stride,
|
|
const float* B,
|
|
const int B_stride,
|
|
const float beta,
|
|
float* C,
|
|
const int C_stride,
|
|
CPUContext* context,
|
|
TensorProto::DataType /* math_type */) {
|
|
#ifdef CAFFE2_USE_MKL
|
|
(void)context;
|
|
const int lda = (trans_A == CblasNoTrans) ? K : M;
|
|
const int ldb = (trans_B == CblasNoTrans) ? N : K;
|
|
const int ldc = N;
|
|
std::vector<const float*> A_array(batch_size);
|
|
std::vector<const float*> B_array(batch_size);
|
|
std::vector<float*> C_array(batch_size);
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
A_array[i] = A + i * A_stride;
|
|
B_array[i] = B + i * B_stride;
|
|
C_array[i] = C + i * C_stride;
|
|
}
|
|
cblas_sgemm_batch(
|
|
CblasRowMajor,
|
|
&trans_A,
|
|
&trans_B,
|
|
&M,
|
|
&N,
|
|
&K,
|
|
&alpha,
|
|
A_array.data(),
|
|
&lda,
|
|
B_array.data(),
|
|
&ldb,
|
|
&beta,
|
|
C_array.data(),
|
|
&ldc,
|
|
1,
|
|
&batch_size);
|
|
#else // CAFFE2_USE_MKL
|
|
// loop over matrices in the batch
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
math::Gemm<float, CPUContext>(
|
|
trans_A, trans_B, M, N, K, alpha, A, B, beta, C, context);
|
|
A += A_stride;
|
|
B += B_stride;
|
|
C += C_stride;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MKL VML alternatives.
|
|
// Depending on whether we are using MKL, we will delegate the Caffe math
|
|
// functions that are VML-related to either the VML call or the Eigen
|
|
// implementation. If you are setting the flags (such as AVX) right for your CPU
|
|
// architecture, usually Eigen will deliver a throughput as fast as the VML
|
|
// functions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#ifdef CAFFE2_USE_MKL
|
|
|
|
#define DELEGATE_SIMPLE_UNARY_FUNCTION(T, Funcname, OriginalFunc, ...) \
|
|
template <> \
|
|
void Funcname<T, CPUContext>(const int N, const T* x, T* y, CPUContext*) { \
|
|
OriginalFunc(N, x, y, ##__VA_ARGS__); \
|
|
}
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(
|
|
float,
|
|
Exp,
|
|
vmsExp,
|
|
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(
|
|
double,
|
|
Exp,
|
|
vmdExp,
|
|
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Log, vsLn)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Log, vdLn)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Cos, vsCos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Cos, vdCos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Acos, vsAcos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Acos, vdAcos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sin, vsSin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sin, vdSin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Asin, vsAsin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Asin, vdAsin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Tan, vsTan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Tan, vdTan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Atan, vsAtan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Atan, vdAtan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sinh, vsSinh)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sinh, vdSinh)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Cosh, vsCosh)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Cosh, vdCosh)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Tanh, vsTanh)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Tanh, vdTanh)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Abs, vsAbs)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Abs, vdAbs)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sqr, vsSqr)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sqr, vdSqr)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sqrt, vsSqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sqrt, vdSqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Rsqrt, vsInvSqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Rsqrt, vdInvSqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Cbrt, vsCbrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Cbrt, vdCbrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Inv, vsInv)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Inv, vdInv)
|
|
#undef DELEGATE_SIMPLE_UNARY_FUNCTION
|
|
|
|
#define DELEGATE_SINCOS_FUNCTION(T, OriginalFunc) \
|
|
template <> \
|
|
void SinCos<T, CPUContext>( \
|
|
const int N, const T* a, T* ys, T* yc, CPUContext*) { \
|
|
OriginalFunc(N, a, ys, yc); \
|
|
}
|
|
DELEGATE_SINCOS_FUNCTION(float, vsSinCos)
|
|
DELEGATE_SINCOS_FUNCTION(double, vdSinCos)
|
|
#undef DELEGATE_SINCOS_FUNCTION
|
|
|
|
#define DELEGATE_POWX_FUNCTION(T, OriginalFunc) \
|
|
template <> \
|
|
void Powx<T, CPUContext>(const int N, const T* a, T b, T* y, CPUContext*) { \
|
|
OriginalFunc(N, a, b, y); \
|
|
}
|
|
DELEGATE_POWX_FUNCTION(float, vsPowx)
|
|
DELEGATE_POWX_FUNCTION(double, vdPowx)
|
|
#undef DELEGATE_POWX_FUNCTION
|
|
|
|
#define DELEGATE_SIMPLE_BINARY_FUNCTION(T, Func, FuncImpl) \
|
|
template <> \
|
|
void Func<T, CPUContext>( \
|
|
const int N, const T* A, const T* B, T* C, CPUContext*) { \
|
|
FuncImpl(N, A, B, C); \
|
|
}
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(float, Add, vsAdd)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(double, Add, vdAdd)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(float, Sub, vsSub)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(double, Sub, vdSub)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(float, Mul, vsMul)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(double, Mul, vdMul)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(float, Div, vsDiv)
|
|
DELEGATE_SIMPLE_BINARY_FUNCTION(double, Div, vdDiv)
|
|
#undef DELEGATE_SIMPLE_BINARY_FUNCTION
|
|
|
|
#else // CAFFE2_USE_MKL
|
|
|
|
#define DELEGATE_SIMPLE_UNARY_FUNCTION(T, Funcname, expr) \
|
|
template <> \
|
|
void Funcname<T, CPUContext>(const int N, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = ConstEigenVectorArrayMap<T>(x, N).expr(); \
|
|
}
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Exp, exp)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Exp, exp)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Log, log)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Log, log)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Cos, cos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Cos, cos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Acos, acos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Acos, acos)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sin, sin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sin, sin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Asin, asin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Asin, asin)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Tan, tan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Tan, tan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Atan, atan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Atan, atan)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sqr, square)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sqr, square)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Sqrt, sqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Sqrt, sqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(float, Rsqrt, rsqrt)
|
|
DELEGATE_SIMPLE_UNARY_FUNCTION(double, Rsqrt, rsqrt)
|
|
|
|
#undef DELEGATE_SIMPLE_UNARY_FUNCTION
|
|
|
|
#define DELEGATE_SINCOS_FUNCTION(T) \
|
|
template <> \
|
|
void SinCos<T, CPUContext>( \
|
|
const int N, const T* x, T* ys, T* yc, CPUContext*) { \
|
|
EigenVectorMap<T>(ys, N) = ConstEigenVectorArrayMap<T>(x, N).sin(); \
|
|
EigenVectorMap<T>(yc, N) = ConstEigenVectorArrayMap<T>(x, N).cos(); \
|
|
}
|
|
DELEGATE_SINCOS_FUNCTION(float)
|
|
DELEGATE_SINCOS_FUNCTION(double)
|
|
#undef DELEGATE_SINCOS_FUNCTION
|
|
|
|
#define DELEGATE_TANH_FUNCTION(T) \
|
|
template <> \
|
|
void Tanh<T, CPUContext>(const int N, const T* X, T* Y, CPUContext*) { \
|
|
EigenVectorMap<T>(Y, N) = T(1) - \
|
|
((ConstEigenVectorArrayMap<T>(X, N) * T(2)).exp() + T(1)).inverse() * \
|
|
T(2); \
|
|
}
|
|
DELEGATE_TANH_FUNCTION(float)
|
|
DELEGATE_TANH_FUNCTION(double)
|
|
#undef DELEGATE_TANH_FUNCTION
|
|
|
|
#define DELEGATE_CBRT_FUNCTION(T) \
|
|
template <> \
|
|
void Cbrt<T, CPUContext>(const int N, const T* X, T* Y, CPUContext*) { \
|
|
std::transform(X, X + N, Y, [](const T x) { return cbrt(x); }); \
|
|
}
|
|
DELEGATE_CBRT_FUNCTION(float)
|
|
DELEGATE_CBRT_FUNCTION(double)
|
|
#undef DELEGATE_CBRT_FUNCTION
|
|
|
|
#define DELEGATE_POWX_FUNCTION(T) \
|
|
template <> \
|
|
void Powx<T, CPUContext>( \
|
|
const int N, const T* a, const T b, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = ConstEigenVectorArrayMap<T>(a, N).pow(b); \
|
|
}
|
|
DELEGATE_POWX_FUNCTION(float)
|
|
#undef DELEGATE_POWX_FUNCTION
|
|
|
|
#define DELEGATE_SINH_FUNCTION(T) \
|
|
template <> \
|
|
void Sinh<T, CPUContext>(const int N, const T* X, T* Y, CPUContext*) { \
|
|
ConstEigenVectorArrayMap<T> X_arr(X, N); \
|
|
EigenVectorMap<T>(Y, N) = (X_arr.exp() - (-X_arr).exp()) / 2; \
|
|
}
|
|
DELEGATE_SINH_FUNCTION(float)
|
|
DELEGATE_SINH_FUNCTION(double)
|
|
#undef DELEGATE_SINH_FUNCTION
|
|
|
|
#define DELEGATE_COSH_FUNCTION(T) \
|
|
template <> \
|
|
void Cosh<T, CPUContext>(const int N, const T* X, T* Y, CPUContext*) { \
|
|
ConstEigenVectorArrayMap<T> X_arr(X, N); \
|
|
EigenVectorMap<T>(Y, N) = (X_arr.exp() + (-X_arr).exp()) / 2; \
|
|
}
|
|
DELEGATE_COSH_FUNCTION(float)
|
|
DELEGATE_COSH_FUNCTION(double)
|
|
#undef DELEGATE_COSH_FUNCTION
|
|
|
|
#define DELEGATE_INV_FUNCTION(T) \
|
|
template <> \
|
|
void Inv<T, CPUContext>(const int N, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = ConstEigenVectorArrayMap<T>(x, N).inverse(); \
|
|
}
|
|
DELEGATE_INV_FUNCTION(float)
|
|
DELEGATE_INV_FUNCTION(double)
|
|
#undef DELEGATE_INV_FUNCTION
|
|
|
|
#endif // CAFFE2_USE_MKL
|
|
|
|
#define DELEGATE_NEG_FUNCTION(T) \
|
|
template <> \
|
|
void Neg<T, CPUContext>(const int N, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = -ConstEigenVectorMap<T>(x, N); \
|
|
}
|
|
DELEGATE_NEG_FUNCTION(float)
|
|
DELEGATE_NEG_FUNCTION(double)
|
|
DELEGATE_NEG_FUNCTION(std::int32_t)
|
|
DELEGATE_NEG_FUNCTION(std::int64_t)
|
|
#undef DELEGATE_NEG_FUNCTION
|
|
|
|
#define DELEGATE_SIGN_FUNCTION(T) \
|
|
template <> \
|
|
void Sign<T, CPUContext>(const int N, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = ConstEigenVectorArrayMap<T>(x, N).sign(); \
|
|
}
|
|
DELEGATE_SIGN_FUNCTION(float)
|
|
DELEGATE_SIGN_FUNCTION(double)
|
|
DELEGATE_SIGN_FUNCTION(std::int32_t)
|
|
DELEGATE_SIGN_FUNCTION(std::int64_t)
|
|
#undef DELEGATE_SIGN_FUNCTION
|
|
|
|
#define DELEGATE_ABS_FUNCTION(T) \
|
|
template <> \
|
|
void Abs<T, CPUContext>(const int N, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = ConstEigenVectorArrayMap<T>(x, N).abs(); \
|
|
}
|
|
#ifndef CAFFE2_USE_MKL
|
|
DELEGATE_ABS_FUNCTION(float)
|
|
DELEGATE_ABS_FUNCTION(double)
|
|
#endif // CAFFE2_USE_MKL
|
|
DELEGATE_ABS_FUNCTION(std::int32_t)
|
|
DELEGATE_ABS_FUNCTION(std::int64_t)
|
|
#undef DELEGATE_ABS_FUNCTION
|
|
|
|
#define DELEGATE_CUBE_FUNCTION(T) \
|
|
template <> \
|
|
void Cube<T, CPUContext>(const int N, const T* X, T* Y, CPUContext*) { \
|
|
EigenVectorMap<T>(Y, N) = ConstEigenVectorArrayMap<T>(X, N).cube(); \
|
|
}
|
|
DELEGATE_CUBE_FUNCTION(float)
|
|
DELEGATE_CUBE_FUNCTION(double)
|
|
DELEGATE_CUBE_FUNCTION(std::int32_t)
|
|
DELEGATE_CUBE_FUNCTION(std::int64_t)
|
|
#undef DELEGATE_CUBE_FUNCTION
|
|
|
|
#define EIGEN_SIMPLE_BINARY_FUNCTION(T, Func, expr) \
|
|
template <> \
|
|
void Func<T, CPUContext>( \
|
|
const int N, const T* A, const T* B, T* C, CPUContext*) { \
|
|
EigenVectorMap<T>(C, N) = ConstEigenVectorArrayMap<T>(A, N) \
|
|
expr ConstEigenVectorArrayMap<T>(B, N); \
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_MKL
|
|
|
|
#define DEFINE_SIMPLE_BINARY_FUNCTION(Func, expr) \
|
|
EIGEN_SIMPLE_BINARY_FUNCTION(std::int32_t, Func, expr) \
|
|
EIGEN_SIMPLE_BINARY_FUNCTION(std::int64_t, Func, expr)
|
|
|
|
#else
|
|
|
|
#define DEFINE_SIMPLE_BINARY_FUNCTION(Func, expr) \
|
|
EIGEN_SIMPLE_BINARY_FUNCTION(float, Func, expr) \
|
|
EIGEN_SIMPLE_BINARY_FUNCTION(double, Func, expr) \
|
|
EIGEN_SIMPLE_BINARY_FUNCTION(std::int32_t, Func, expr) \
|
|
EIGEN_SIMPLE_BINARY_FUNCTION(std::int64_t, Func, expr)
|
|
|
|
#endif
|
|
|
|
DEFINE_SIMPLE_BINARY_FUNCTION(Add, +)
|
|
DEFINE_SIMPLE_BINARY_FUNCTION(Sub, -)
|
|
DEFINE_SIMPLE_BINARY_FUNCTION(Mul, *)
|
|
DEFINE_SIMPLE_BINARY_FUNCTION(Div, /)
|
|
|
|
#undef DEFINE_SIMPLE_BINARY_FUNCTION
|
|
#undef EIGEN_SIMPLE_BINARY_FUNCTION
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Common math functions being used in Caffe that do not have a BLAS or MKL
|
|
// equivalent. For all these functions, we will simply implement them either via
|
|
// Eigen or via custom code.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#define CAFFE2_SPECIALIZED_SET(T) \
|
|
template <> \
|
|
void Set<T, CPUContext>(const size_t N, const T alpha, T* Y, CPUContext*) { \
|
|
if (alpha == (T)0) { \
|
|
if (Y != nullptr) { \
|
|
memset(Y, 0, N * sizeof(T)); \
|
|
} \
|
|
} else { \
|
|
EigenVectorMap<T>(Y, N).setConstant(alpha); \
|
|
} \
|
|
}
|
|
|
|
CAFFE2_SPECIALIZED_SET(float);
|
|
CAFFE2_SPECIALIZED_SET(double);
|
|
CAFFE2_SPECIALIZED_SET(int8_t);
|
|
CAFFE2_SPECIALIZED_SET(int16_t);
|
|
CAFFE2_SPECIALIZED_SET(int);
|
|
CAFFE2_SPECIALIZED_SET(int64_t);
|
|
CAFFE2_SPECIALIZED_SET(bool);
|
|
CAFFE2_SPECIALIZED_SET(char);
|
|
CAFFE2_SPECIALIZED_SET(uint8_t);
|
|
CAFFE2_SPECIALIZED_SET(uint16_t);
|
|
#undef CAFFE2_SPECIALIZED_SET
|
|
|
|
#define CAFFE2_SPECIALIZED_REDUCEMIN(T) \
|
|
template <> \
|
|
void ReduceMin<T, CPUContext>( \
|
|
const int N, \
|
|
const T* x, \
|
|
T* y, \
|
|
Tensor* /*scratch_ptr*/, \
|
|
CPUContext* /*context*/) { \
|
|
*y = ConstEigenVectorArrayMap<T>(x, N).minCoeff(); \
|
|
}
|
|
CAFFE2_SPECIALIZED_REDUCEMIN(float)
|
|
#undef CAFFE2_SPECIALIZED_REDUCEMIN
|
|
|
|
#define CAFFE2_SPECIALIZED_REDUCEMAX(T) \
|
|
template <> \
|
|
void ReduceMax<T, CPUContext>( \
|
|
const int N, \
|
|
const T* x, \
|
|
T* y, \
|
|
Tensor* /*scratch_ptr*/, \
|
|
CPUContext* /*context*/) { \
|
|
*y = ConstEigenVectorArrayMap<T>(x, N).maxCoeff(); \
|
|
}
|
|
CAFFE2_SPECIALIZED_REDUCEMAX(float)
|
|
CAFFE2_SPECIALIZED_REDUCEMAX(int32_t)
|
|
CAFFE2_SPECIALIZED_REDUCEMAX(int64_t)
|
|
|
|
#undef CAFFE2_SPECIALIZED_REDUCEMAX
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
struct MinFunctor {
|
|
inline T operator()(const T a, const T b) const {
|
|
return std::min(a, b);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct MaxFunctor {
|
|
inline T operator()(const T a, const T b) const {
|
|
return std::max(a, b);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct L1NormFunctor {
|
|
inline T operator()(const T a, const T b) const {
|
|
return a + std::abs(b);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct SquaredL2NormFunctor {
|
|
inline T operator()(const T a, const T b) const {
|
|
return a + b * b;
|
|
}
|
|
};
|
|
|
|
#define DELEGATE_ROWWISE_REDUCE_FUNCTION(Func, EigenOp) \
|
|
template <typename T> \
|
|
void Rowwise##Func( \
|
|
const int rows, const int cols, const T alpha, const T* X, T* Y) { \
|
|
EigenVectorMap<T>(Y, rows) = \
|
|
ConstEigenMatrixMap<T>(X, cols, rows).colwise().EigenOp() * alpha; \
|
|
}
|
|
DELEGATE_ROWWISE_REDUCE_FUNCTION(ReduceMin, minCoeff)
|
|
DELEGATE_ROWWISE_REDUCE_FUNCTION(ReduceMax, maxCoeff)
|
|
DELEGATE_ROWWISE_REDUCE_FUNCTION(ReduceSum, sum)
|
|
DELEGATE_ROWWISE_REDUCE_FUNCTION(ReduceMean, mean)
|
|
DELEGATE_ROWWISE_REDUCE_FUNCTION(ReduceL1, template lpNorm<1>);
|
|
DELEGATE_ROWWISE_REDUCE_FUNCTION(ReduceL2, norm)
|
|
#undef DELEGATE_ROWWISE_REDUCE_FUNCTION
|
|
|
|
#define DELEGATE_COLWISE_REDUCE_FUNCTION(Func, EigenOp) \
|
|
template <typename T> \
|
|
void Colwise##Func( \
|
|
const int rows, const int cols, const T alpha, const T* X, T* Y) { \
|
|
EigenVectorMap<T>(Y, cols) = \
|
|
ConstEigenMatrixMap<T>(X, cols, rows).rowwise().EigenOp() * alpha; \
|
|
}
|
|
DELEGATE_COLWISE_REDUCE_FUNCTION(ReduceMin, minCoeff)
|
|
DELEGATE_COLWISE_REDUCE_FUNCTION(ReduceMax, maxCoeff)
|
|
DELEGATE_COLWISE_REDUCE_FUNCTION(ReduceSum, sum)
|
|
DELEGATE_COLWISE_REDUCE_FUNCTION(ReduceMean, mean)
|
|
DELEGATE_COLWISE_REDUCE_FUNCTION(ReduceL1, template lpNorm<1>);
|
|
DELEGATE_COLWISE_REDUCE_FUNCTION(ReduceL2, norm)
|
|
#undef DELEGATE_COLWISE_REDUCE_FUNCTION
|
|
|
|
template <typename T>
|
|
void BothEndsReduceMin(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y) {
|
|
EigenVectorArrayMap<T> Y_arr(Y, mid);
|
|
Y_arr = ConstEigenArrayMap<T>(X, nxt, mid).colwise().minCoeff();
|
|
const T* X_ptr = X + mid * nxt;
|
|
// It seems there is some bug in eigen array::min so it cannot be implemented
|
|
// as ReduceSum below.
|
|
for (int i = 1; i < pre; ++i) {
|
|
for (int j = 0; j < mid; ++j) {
|
|
Y[j] = std::min(Y[j], ConstEigenVectorArrayMap<T>(X_ptr, nxt).minCoeff());
|
|
X_ptr += nxt;
|
|
}
|
|
}
|
|
if (alpha != T(1)) {
|
|
Y_arr *= alpha;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BothEndsReduceMax(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y) {
|
|
EigenVectorArrayMap<T> Y_arr(Y, mid);
|
|
Y_arr = ConstEigenArrayMap<T>(X, nxt, mid).colwise().maxCoeff();
|
|
const T* X_ptr = X + mid * nxt;
|
|
for (int i = 1; i < pre; ++i) {
|
|
for (int j = 0; j < mid; ++j) {
|
|
Y[j] = std::max(Y[j], ConstEigenVectorArrayMap<T>(X_ptr, nxt).maxCoeff());
|
|
X_ptr += nxt;
|
|
}
|
|
}
|
|
if (alpha != T(1)) {
|
|
Y_arr *= alpha;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BothEndsReduceSum(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y) {
|
|
EigenVectorArrayMap<T> Y_arr(Y, mid);
|
|
Y_arr = ConstEigenArrayMap<T>(X, nxt, mid).colwise().sum();
|
|
const int stride = mid * nxt;
|
|
const T* X_ptr = X + stride;
|
|
for (int i = 1; i < pre; ++i) {
|
|
Y_arr += ConstEigenArrayMap<T>(X_ptr, nxt, mid).colwise().sum();
|
|
X_ptr += stride;
|
|
}
|
|
if (alpha != T(1)) {
|
|
Y_arr *= alpha;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BothEndsReduceMean(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y) {
|
|
EigenVectorArrayMap<T> Y_arr(Y, mid);
|
|
Y_arr = ConstEigenArrayMap<T>(X, nxt, mid).colwise().mean();
|
|
const int stride = mid * nxt;
|
|
const T* X_ptr = X + stride;
|
|
for (int i = 1; i < pre; ++i) {
|
|
Y_arr += ConstEigenArrayMap<T>(X_ptr, nxt, mid).colwise().mean();
|
|
X_ptr += stride;
|
|
}
|
|
if (alpha / static_cast<T>(pre) != 1) {
|
|
Y_arr *= alpha / static_cast<T>(pre);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BothEndsReduceL1(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y) {
|
|
EigenVectorArrayMap<T> Y_arr(Y, mid);
|
|
Y_arr = ConstEigenMatrixMap<T>(X, nxt, mid)
|
|
.colwise()
|
|
.template lpNorm<1>()
|
|
.array();
|
|
const int stride = mid * nxt;
|
|
const T* X_ptr = X + stride;
|
|
for (int i = 1; i < pre; ++i) {
|
|
Y_arr += ConstEigenMatrixMap<T>(X_ptr, nxt, mid)
|
|
.colwise()
|
|
.template lpNorm<1>()
|
|
.array();
|
|
X_ptr += stride;
|
|
}
|
|
if (alpha != T(1)) {
|
|
Y_arr *= alpha;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BothEndsReduceL2(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y) {
|
|
EigenVectorArrayMap<T> Y_arr(Y, mid);
|
|
Y_arr = ConstEigenMatrixMap<T>(X, nxt, mid).colwise().squaredNorm().array();
|
|
const int stride = mid * nxt;
|
|
const T* X_ptr = X + stride;
|
|
for (int i = 1; i < pre; ++i) {
|
|
Y_arr +=
|
|
ConstEigenMatrixMap<T>(X_ptr, nxt, mid).colwise().squaredNorm().array();
|
|
X_ptr += stride;
|
|
}
|
|
Y_arr = Y_arr.sqrt() * alpha;
|
|
}
|
|
|
|
template <typename T, class Reducer>
|
|
void ReduceTensor(
|
|
const int ndim,
|
|
const int* X_dims,
|
|
const int* Y_dims,
|
|
const Reducer& reducer,
|
|
const T init,
|
|
const T alpha,
|
|
const T* X,
|
|
T* Y,
|
|
CPUContext* context) {
|
|
const int X_size =
|
|
std::accumulate(X_dims, X_dims + ndim, 1, std::multiplies<int>());
|
|
const int Y_size =
|
|
std::accumulate(Y_dims, Y_dims + ndim, 1, std::multiplies<int>());
|
|
Set<T, CPUContext>(Y_size, init, Y, context);
|
|
std::vector<int> index(ndim, 0);
|
|
for (int X_index = 0; X_index < X_size; ++X_index) {
|
|
const int Y_index = utils::GetIndexFromDims(ndim, Y_dims, index.data());
|
|
Y[Y_index] = reducer(Y[Y_index], X[X_index]);
|
|
utils::IncreaseIndexInDims(ndim, X_dims, index.data());
|
|
}
|
|
Scale<T, T, CPUContext>(Y_size, alpha, Y, Y, context);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#define DELEGATE_REDUCE_FUNCTION(T, Func, reducer, init, is_norm) \
|
|
template <> \
|
|
void Func<T, CPUContext>( \
|
|
const int num_dims, \
|
|
const int* dims, \
|
|
const int num_axes, \
|
|
const int* axes, \
|
|
const T alpha, \
|
|
const T* X, \
|
|
T* Y, \
|
|
CPUContext* context) { \
|
|
CAFFE_ENFORCE_LE(num_axes, num_dims); \
|
|
std::vector<int> Y_dims_vector(dims, dims + num_dims); \
|
|
for (int i = 0; i < num_axes; ++i) { \
|
|
Y_dims_vector[axes[i]] = 1; \
|
|
} \
|
|
const int* X_dims = dims; \
|
|
const int* Y_dims = Y_dims_vector.data(); \
|
|
const int X_size = \
|
|
std::accumulate(X_dims, X_dims + num_dims, 1, std::multiplies<int>()); \
|
|
const int Y_size = \
|
|
std::accumulate(Y_dims, Y_dims + num_dims, 1, std::multiplies<int>()); \
|
|
if (X_size == 0) { \
|
|
if (Y_size > 0) { \
|
|
Set<T, CPUContext>(Y_size, alpha * init, Y, context); \
|
|
} \
|
|
return; \
|
|
} \
|
|
if (alpha == T(0)) { \
|
|
Set<T, CPUContext>(Y_size, 0, Y, context); \
|
|
return; \
|
|
} \
|
|
if (std::equal(X_dims, X_dims + num_dims, Y_dims)) { \
|
|
if (is_norm) { \
|
|
Abs<T, CPUContext>(X_size, X, Y, context); \
|
|
Scale<T, T, CPUContext>(Y_size, alpha, Y, Y, context); \
|
|
} else { \
|
|
Scale<T, T, CPUContext>(Y_size, alpha, X, Y, context); \
|
|
} \
|
|
return; \
|
|
} \
|
|
int rows; \
|
|
int cols; \
|
|
if (utils::IsRowwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) { \
|
|
Rowwise##Func<T>(rows, cols, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
if (utils::IsColwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) { \
|
|
Colwise##Func<T>(rows, cols, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
int pre; \
|
|
int mid; \
|
|
int nxt; \
|
|
if (utils::IsBothEndsReduce(num_dims, X_dims, Y_dims, &pre, &mid, &nxt)) { \
|
|
BothEnds##Func<T>(pre, mid, nxt, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
ReduceTensor( \
|
|
num_dims, X_dims, Y_dims, reducer, init, alpha, X, Y, context); \
|
|
}
|
|
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
float,
|
|
ReduceMin,
|
|
MinFunctor<float>(),
|
|
std::numeric_limits<float>::max(),
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
double,
|
|
ReduceMin,
|
|
MinFunctor<double>(),
|
|
std::numeric_limits<double>::max(),
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int32_t,
|
|
ReduceMin,
|
|
MinFunctor<std::int32_t>(),
|
|
std::numeric_limits<std::int32_t>::max(),
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int64_t,
|
|
ReduceMin,
|
|
MinFunctor<std::int64_t>(),
|
|
std::numeric_limits<std::int64_t>::max(),
|
|
false)
|
|
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
float,
|
|
ReduceMax,
|
|
MaxFunctor<float>(),
|
|
std::numeric_limits<float>::lowest(),
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
double,
|
|
ReduceMax,
|
|
MaxFunctor<double>(),
|
|
std::numeric_limits<double>::lowest(),
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int32_t,
|
|
ReduceMax,
|
|
MaxFunctor<std::int32_t>(),
|
|
std::numeric_limits<std::int32_t>::lowest(),
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int64_t,
|
|
ReduceMax,
|
|
MaxFunctor<std::int64_t>(),
|
|
std::numeric_limits<std::int64_t>::lowest(),
|
|
false)
|
|
|
|
DELEGATE_REDUCE_FUNCTION(float, ReduceSum, std::plus<float>(), 0.0f, false)
|
|
DELEGATE_REDUCE_FUNCTION(double, ReduceSum, std::plus<double>(), 0.0, false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int32_t,
|
|
ReduceSum,
|
|
std::plus<std::int32_t>(),
|
|
0,
|
|
false)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int64_t,
|
|
ReduceSum,
|
|
std::plus<std::int64_t>(),
|
|
std::int64_t(0),
|
|
false)
|
|
|
|
DELEGATE_REDUCE_FUNCTION(float, ReduceL1, L1NormFunctor<float>(), 0.0f, true)
|
|
DELEGATE_REDUCE_FUNCTION(double, ReduceL1, L1NormFunctor<double>(), 0.0, true)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int32_t,
|
|
ReduceL1,
|
|
L1NormFunctor<std::int32_t>(),
|
|
0,
|
|
true)
|
|
DELEGATE_REDUCE_FUNCTION(
|
|
std::int64_t,
|
|
ReduceL1,
|
|
L1NormFunctor<std::int64_t>(),
|
|
std::int64_t(0),
|
|
true)
|
|
|
|
#undef DELEGATE_REDUCE_FUNCTION
|
|
|
|
#define CAFFE2_SPECIALIZED_REDUCE_MEAN(T) \
|
|
template <> \
|
|
void ReduceMean<T, CPUContext>( \
|
|
const int num_dims, \
|
|
const int* dims, \
|
|
const int num_axes, \
|
|
const int* axes, \
|
|
const T alpha, \
|
|
const T* X, \
|
|
T* Y, \
|
|
CPUContext* context) { \
|
|
CAFFE_ENFORCE_LE(num_axes, num_dims); \
|
|
std::vector<int> Y_dims_vector(dims, dims + num_dims); \
|
|
for (int i = 0; i < num_axes; ++i) { \
|
|
Y_dims_vector[axes[i]] = 1; \
|
|
} \
|
|
const int* X_dims = dims; \
|
|
const int* Y_dims = Y_dims_vector.data(); \
|
|
const int X_size = \
|
|
std::accumulate(X_dims, X_dims + num_dims, 1, std::multiplies<int>()); \
|
|
const int Y_size = \
|
|
std::accumulate(Y_dims, Y_dims + num_dims, 1, std::multiplies<int>()); \
|
|
if (X_size == 0) { \
|
|
if (Y_size > 0) { \
|
|
Set<T, CPUContext>(Y_size, 0, Y, context); \
|
|
} \
|
|
return; \
|
|
} \
|
|
if (alpha == T(0)) { \
|
|
Set<T, CPUContext>(Y_size, 0, Y, context); \
|
|
return; \
|
|
} \
|
|
if (std::equal(X_dims, X_dims + num_dims, Y_dims)) { \
|
|
Scale<T, T, CPUContext>(X_size, alpha, X, Y, context); \
|
|
return; \
|
|
} \
|
|
int rows; \
|
|
int cols; \
|
|
if (utils::IsRowwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) { \
|
|
RowwiseReduceMean<T>(rows, cols, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
if (utils::IsColwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) { \
|
|
ColwiseReduceMean<T>(rows, cols, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
int pre; \
|
|
int mid; \
|
|
int nxt; \
|
|
if (utils::IsBothEndsReduce(num_dims, X_dims, Y_dims, &pre, &mid, &nxt)) { \
|
|
BothEndsReduceMean<T>(pre, mid, nxt, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
const int scale = X_size / Y_size; \
|
|
ReduceTensor( \
|
|
num_dims, \
|
|
X_dims, \
|
|
Y_dims, \
|
|
std::plus<T>(), \
|
|
T(0), \
|
|
alpha / static_cast<T>(scale), \
|
|
X, \
|
|
Y, \
|
|
context); \
|
|
}
|
|
CAFFE2_SPECIALIZED_REDUCE_MEAN(float)
|
|
CAFFE2_SPECIALIZED_REDUCE_MEAN(double)
|
|
#undef CAFFE2_SPECIALIZED_REDUCE_MEAN
|
|
|
|
#define CAFFE2_SPECIALIZED_REDUCE_L2(T) \
|
|
template <> \
|
|
void ReduceL2<T, CPUContext>( \
|
|
const int num_dims, \
|
|
const int* dims, \
|
|
const int num_axes, \
|
|
const int* axes, \
|
|
const T alpha, \
|
|
const T* X, \
|
|
T* Y, \
|
|
CPUContext* context) { \
|
|
CAFFE_ENFORCE_LE(num_axes, num_dims); \
|
|
std::vector<int> Y_dims_vector(dims, dims + num_dims); \
|
|
for (int i = 0; i < num_axes; ++i) { \
|
|
Y_dims_vector[axes[i]] = 1; \
|
|
} \
|
|
const int* X_dims = dims; \
|
|
const int* Y_dims = Y_dims_vector.data(); \
|
|
const int X_size = \
|
|
std::accumulate(X_dims, X_dims + num_dims, 1, std::multiplies<int>()); \
|
|
const int Y_size = \
|
|
std::accumulate(Y_dims, Y_dims + num_dims, 1, std::multiplies<int>()); \
|
|
if (X_size == 0) { \
|
|
if (Y_size > 0) { \
|
|
Set<T, CPUContext>(Y_size, 0, Y, context); \
|
|
} \
|
|
return; \
|
|
} \
|
|
if (alpha == T(0)) { \
|
|
Set<T, CPUContext>(Y_size, 0, Y, context); \
|
|
return; \
|
|
} \
|
|
if (std::equal(X_dims, X_dims + num_dims, Y_dims)) { \
|
|
Abs<T, CPUContext>(X_size, X, Y, context); \
|
|
Scale<T, T, CPUContext>(Y_size, alpha, Y, Y, context); \
|
|
return; \
|
|
} \
|
|
int rows; \
|
|
int cols; \
|
|
if (utils::IsRowwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) { \
|
|
RowwiseReduceL2<T>(rows, cols, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
if (utils::IsColwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) { \
|
|
ColwiseReduceL2<T>(rows, cols, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
int pre; \
|
|
int mid; \
|
|
int nxt; \
|
|
if (utils::IsBothEndsReduce(num_dims, X_dims, Y_dims, &pre, &mid, &nxt)) { \
|
|
BothEndsReduceL2<T>(pre, mid, nxt, alpha, X, Y); \
|
|
return; \
|
|
} \
|
|
ReduceTensor( \
|
|
num_dims, \
|
|
X_dims, \
|
|
Y_dims, \
|
|
SquaredL2NormFunctor<T>(), \
|
|
T(0), \
|
|
T(1), \
|
|
X, \
|
|
Y, \
|
|
context); \
|
|
Sqrt<T, CPUContext>(Y_size, Y, Y, context); \
|
|
Scale<T, T, CPUContext>(Y_size, alpha, Y, Y, context); \
|
|
}
|
|
CAFFE2_SPECIALIZED_REDUCE_L2(float)
|
|
CAFFE2_SPECIALIZED_REDUCE_L2(double)
|
|
#undef CAFFE2_SPECIALIZED_REDUCE_L2
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
void BroadcastImpl(
|
|
const int X_ndim,
|
|
const int* X_dims,
|
|
const int Y_ndim,
|
|
const int* Y_dims,
|
|
const T* X,
|
|
T* Y) {
|
|
CAFFE_ENFORCE_LE(X_ndim, Y_ndim);
|
|
std::vector<int> X_dims_ex(Y_ndim);
|
|
const int d = Y_ndim - X_ndim;
|
|
std::fill(X_dims_ex.begin(), X_dims_ex.begin() + d, 1);
|
|
for (int i = d; i < Y_ndim; ++i) {
|
|
CAFFE_ENFORCE(X_dims[i - d] == 1 || X_dims[i - d] == Y_dims[i]);
|
|
X_dims_ex[i] = X_dims[i - d];
|
|
}
|
|
const int Y_size =
|
|
std::accumulate(Y_dims, Y_dims + Y_ndim, 1, std::multiplies<int>());
|
|
std::vector<int> index(Y_ndim, 0);
|
|
for (int Y_index = 0; Y_index < Y_size; ++Y_index) {
|
|
const int X_index =
|
|
utils::GetIndexFromDims(Y_ndim, X_dims_ex.data(), index.data());
|
|
Y[Y_index] = X[X_index];
|
|
utils::IncreaseIndexInDims(Y_ndim, Y_dims, index.data());
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#define CAFFE2_SPECIALIZED_BROADCAST(T) \
|
|
template <> \
|
|
void Broadcast<T, CPUContext>( \
|
|
const int X_ndim, \
|
|
const int* X_dims, \
|
|
const int Y_ndim, \
|
|
const int* Y_dims, \
|
|
const T* X, \
|
|
T* Y, \
|
|
CPUContext* /* context */) { \
|
|
BroadcastImpl<T>(X_ndim, X_dims, Y_ndim, Y_dims, X, Y); \
|
|
}
|
|
CAFFE2_SPECIALIZED_BROADCAST(std::int32_t)
|
|
CAFFE2_SPECIALIZED_BROADCAST(std::int64_t)
|
|
CAFFE2_SPECIALIZED_BROADCAST(float)
|
|
CAFFE2_SPECIALIZED_BROADCAST(double)
|
|
#undef CAFFE2_SPECIALIZED_BROADCAST
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
void RowwiseMoments(
|
|
const int rows,
|
|
const int cols,
|
|
const T* X,
|
|
T* mean,
|
|
T* variance) {
|
|
ConstEigenArrayMap<T> X_mat(X, cols, rows);
|
|
EigenVectorArrayMap<T> mean_arr(mean, rows);
|
|
EigenVectorArrayMap<T> variance_arr(variance, rows);
|
|
mean_arr = X_mat.colwise().mean();
|
|
variance_arr = X_mat.array().square().colwise().mean();
|
|
variance_arr -= mean_arr.square();
|
|
}
|
|
|
|
template <typename T>
|
|
void ColwiseMoments(
|
|
const int rows,
|
|
const int cols,
|
|
const T* X,
|
|
T* mean,
|
|
T* variance) {
|
|
ConstEigenArrayMap<T> X_mat(X, cols, rows);
|
|
EigenVectorArrayMap<T> mean_arr(mean, cols);
|
|
EigenVectorArrayMap<T> variance_arr(variance, cols);
|
|
mean_arr = X_mat.rowwise().mean();
|
|
variance_arr = X_mat.array().square().rowwise().mean();
|
|
variance_arr -= mean_arr.square();
|
|
}
|
|
|
|
template <typename T>
|
|
void BothEndsMoments(
|
|
const int pre,
|
|
const int mid,
|
|
const int nxt,
|
|
const T* X,
|
|
T* mean,
|
|
T* variance) {
|
|
EigenVectorArrayMap<T> mean_arr(mean, mid);
|
|
EigenVectorArrayMap<T> variance_arr(variance, mid);
|
|
mean_arr = ConstEigenArrayMap<T>(X, nxt, mid).colwise().mean();
|
|
variance_arr = ConstEigenArrayMap<T>(X, nxt, mid).square().colwise().mean();
|
|
const int stride = mid * nxt;
|
|
const T* X_ptr = X + stride;
|
|
for (int i = 1; i < pre; ++i) {
|
|
mean_arr += ConstEigenArrayMap<T>(X_ptr, nxt, mid).colwise().mean();
|
|
variance_arr +=
|
|
ConstEigenArrayMap<T>(X_ptr, nxt, mid).square().colwise().mean();
|
|
X_ptr += stride;
|
|
}
|
|
if (pre > 1) {
|
|
mean_arr /= static_cast<T>(pre);
|
|
variance_arr /= static_cast<T>(pre);
|
|
}
|
|
variance_arr -= mean_arr.square();
|
|
}
|
|
|
|
template <typename T>
|
|
void MomentsImpl(
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T* X,
|
|
T* mean,
|
|
T* variance,
|
|
CPUContext* context) {
|
|
std::vector<int> Y_dims_vector(dims, dims + num_dims);
|
|
for (int i = 0; i < num_axes; ++i) {
|
|
Y_dims_vector[axes[i]] = 1;
|
|
}
|
|
const int* X_dims = dims;
|
|
const int* Y_dims = Y_dims_vector.data();
|
|
const int X_size =
|
|
std::accumulate(X_dims, X_dims + num_dims, 1, std::multiplies<int>());
|
|
const int Y_size =
|
|
std::accumulate(Y_dims, Y_dims + num_dims, 1, std::multiplies<int>());
|
|
if (X_size == 0) {
|
|
if (Y_size > 0) {
|
|
memset(mean, 0, sizeof(T) * Y_size);
|
|
memset(variance, 0, sizeof(T) * Y_size);
|
|
}
|
|
return;
|
|
}
|
|
if (std::equal(X_dims, X_dims + num_dims, Y_dims)) {
|
|
memcpy(mean, X, sizeof(T) * Y_size);
|
|
memset(variance, 0, sizeof(T) * Y_size);
|
|
return;
|
|
}
|
|
int rows;
|
|
int cols;
|
|
if (utils::IsRowwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) {
|
|
RowwiseMoments<T>(rows, cols, X, mean, variance);
|
|
return;
|
|
}
|
|
if (utils::IsColwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) {
|
|
ColwiseMoments<T>(rows, cols, X, mean, variance);
|
|
return;
|
|
}
|
|
int pre;
|
|
int mid;
|
|
int nxt;
|
|
if (utils::IsBothEndsReduce(num_dims, X_dims, Y_dims, &pre, &mid, &nxt)) {
|
|
BothEndsMoments<T>(pre, mid, nxt, X, mean, variance);
|
|
return;
|
|
}
|
|
Set<T, CPUContext>(Y_size, T(0), mean, context);
|
|
Set<T, CPUContext>(Y_size, T(0), variance, context);
|
|
std::vector<int> index(num_dims, 0);
|
|
for (int X_index = 0; X_index < X_size; ++X_index) {
|
|
const int Y_index = utils::GetIndexFromDims(num_dims, Y_dims, index.data());
|
|
mean[Y_index] += X[X_index];
|
|
variance[Y_index] += X[X_index] * X[X_index];
|
|
utils::IncreaseIndexInDims(num_dims, dims, index.data());
|
|
}
|
|
const T scale = static_cast<T>(Y_size) / static_cast<T>(X_size);
|
|
Scale<T, T, CPUContext>(Y_size, scale, mean, mean, context);
|
|
EigenVectorArrayMap<T> variance_arr(variance, Y_size);
|
|
variance_arr =
|
|
variance_arr * scale - ConstEigenVectorArrayMap<T>(mean, Y_size).square();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#define CAFFE2_SPECIALIZED_MOMENTS(T) \
|
|
template <> \
|
|
void Moments<T, CPUContext>( \
|
|
const int num_dims, \
|
|
const int* dims, \
|
|
const int num_axes, \
|
|
const int* axes, \
|
|
const T* X, \
|
|
T* mean, \
|
|
T* variance, \
|
|
CPUContext* context) { \
|
|
MomentsImpl<T>( \
|
|
num_dims, dims, num_axes, axes, X, mean, variance, context); \
|
|
}
|
|
CAFFE2_SPECIALIZED_MOMENTS(float)
|
|
#undef CAFFE2_SPECIALIZED_MOMENTS
|
|
|
|
#define CAFFE2_SPECIALIZED_ROWWISEMAX(T) \
|
|
template <> \
|
|
void RowwiseMax<T, CPUContext>( \
|
|
const int N, const int D, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, N) = \
|
|
ConstEigenMatrixMap<T>(x, D, N).colwise().maxCoeff(); \
|
|
}
|
|
CAFFE2_SPECIALIZED_ROWWISEMAX(float)
|
|
#undef CAFFE2_SPECIALIZED_ROWWISEMAX
|
|
|
|
#define CAFFE2_SPECIALIZED_COLWISEMAX(T) \
|
|
template <> \
|
|
void ColwiseMax<T, CPUContext>( \
|
|
const int N, const int D, const T* x, T* y, CPUContext*) { \
|
|
EigenVectorMap<T>(y, D) = \
|
|
ConstEigenMatrixMap<T>(x, D, N).rowwise().maxCoeff(); \
|
|
}
|
|
CAFFE2_SPECIALIZED_COLWISEMAX(float)
|
|
#undef CAFFE2_SPECIALIZED_COLWISEMAX
|
|
|
|
#define CAFFE2_SPECIALIZED_ELEMWISEMAX(T) \
|
|
template <> \
|
|
void ElemwiseMax<T, CPUContext>( \
|
|
const int N, const T* x, const T* y, T* z, CPUContext* /*context*/) { \
|
|
std::transform(x, x + N, y, z, [](const T& x_i, const T& y_i) { \
|
|
return std::max(x_i, y_i); \
|
|
}); \
|
|
}
|
|
CAFFE2_SPECIALIZED_ELEMWISEMAX(float)
|
|
#undef CAFFE2_SPECIALIZED_ELEMWISEMAX
|
|
|
|
#define CAFFE2_SPECIALIZED_MAXIMUM(T) \
|
|
template <> \
|
|
void Maximum<T, CPUContext>( \
|
|
const int N, const float alpha, const T* x, T* y, CPUContext* context) { \
|
|
std::transform( \
|
|
x, x + N, y, [&alpha](const T& x_i) { return std::max(x_i, alpha); }); \
|
|
}
|
|
CAFFE2_SPECIALIZED_MAXIMUM(float)
|
|
#undef CAFFE2_SPECIALIZED_MAXIMUM
|
|
|
|
// The actual implementation uses eigen which is column major, so notice the
|
|
// row/column swap in the actual implementation.
|
|
|
|
#define DELEGATE_EIGEN_2D_BROADCAST_1ST_BINARY_FUNCTION(T, Func, expr) \
|
|
template <> \
|
|
void Rowwise##Func<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
if (C == B) { \
|
|
EigenArrayMap<T>(C, cols, rows).colwise() expr## = \
|
|
ConstEigenVectorArrayMap<T>(A, cols); \
|
|
} else { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
ConstEigenArrayMap<T>(B, cols, rows) \
|
|
.colwise() expr ConstEigenVectorArrayMap<T>(A, cols); \
|
|
} \
|
|
} \
|
|
template <> \
|
|
void Colwise##Func<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
if (C == B) { \
|
|
EigenArrayMap<T>(C, cols, rows).rowwise() expr## = \
|
|
ConstEigenVectorArrayMap<T>(A, rows).transpose(); \
|
|
} else { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
ConstEigenArrayMap<T>(B, cols, rows) \
|
|
.rowwise() expr ConstEigenVectorArrayMap<T>(A, rows) \
|
|
.transpose(); \
|
|
} \
|
|
}
|
|
|
|
#define DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION(T, Func, expr) \
|
|
template <> \
|
|
void Rowwise##Func<T, CPUContext, false>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
if (C == A) { \
|
|
EigenArrayMap<T>(C, cols, rows).colwise() expr## = \
|
|
ConstEigenVectorArrayMap<T>(B, cols); \
|
|
} else { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
ConstEigenArrayMap<T>(A, cols, rows) \
|
|
.colwise() expr ConstEigenVectorArrayMap<T>(B, cols); \
|
|
} \
|
|
} \
|
|
template <> \
|
|
void Colwise##Func<T, CPUContext, false>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
if (C == A) { \
|
|
EigenArrayMap<T>(C, cols, rows).rowwise() expr## = \
|
|
ConstEigenVectorArrayMap<T>(B, rows).transpose(); \
|
|
} else { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
ConstEigenArrayMap<T>(A, cols, rows) \
|
|
.rowwise() expr ConstEigenVectorArrayMap<T>(B, rows) \
|
|
.transpose(); \
|
|
} \
|
|
}
|
|
|
|
#define DELEGATE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(T, Func, expr) \
|
|
DELEGATE_EIGEN_2D_BROADCAST_1ST_BINARY_FUNCTION(T, Func, expr) \
|
|
DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION(T, Func, expr)
|
|
|
|
#define DEFINE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(Func, expr) \
|
|
DELEGATE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(float, Func, expr) \
|
|
DELEGATE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(double, Func, expr) \
|
|
DELEGATE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(std::int32_t, Func, expr) \
|
|
DELEGATE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(std::int64_t, Func, expr)
|
|
|
|
DEFINE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(Add, +)
|
|
DEFINE_EIGEN_2D_BROADCAST_BINARY_FUNCTION(Mul, *)
|
|
|
|
#undef DEFINE_EIGEN_2D_BROADCAST_BINARY_FUNCTION
|
|
#undef DELEGATE_EIGEN_2D_BROADCAST_BINARY_FUNCTION
|
|
|
|
#define DEFINE_EIGEN_2D_BROADCAST_SUB_FUNCTION(T) \
|
|
template <> \
|
|
void RowwiseSub<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
(-ConstEigenArrayMap<T>(B, cols, rows)).colwise() + \
|
|
ConstEigenVectorArrayMap<T>(A, cols); \
|
|
} \
|
|
template <> \
|
|
void ColwiseSub<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
(-ConstEigenArrayMap<T>(B, cols, rows)).rowwise() + \
|
|
ConstEigenVectorArrayMap<T>(A, rows).transpose(); \
|
|
} \
|
|
DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION(T, Sub, -)
|
|
|
|
DEFINE_EIGEN_2D_BROADCAST_SUB_FUNCTION(float)
|
|
DEFINE_EIGEN_2D_BROADCAST_SUB_FUNCTION(double)
|
|
DEFINE_EIGEN_2D_BROADCAST_SUB_FUNCTION(std::int32_t)
|
|
DEFINE_EIGEN_2D_BROADCAST_SUB_FUNCTION(std::int64_t)
|
|
|
|
#undef DEFINE_EIGEN_2D_BROADCAST_SUB_FUNCTION
|
|
|
|
#define DEFINE_EIGEN_2D_BROADCAST_DIV_FUNCTION(T) \
|
|
template <> \
|
|
void RowwiseDiv<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
ConstEigenArrayMap<T>(B, cols, rows).inverse().colwise() * \
|
|
ConstEigenVectorArrayMap<T>(A, cols); \
|
|
} \
|
|
template <> \
|
|
void ColwiseDiv<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
EigenArrayMap<T>(C, cols, rows) = \
|
|
ConstEigenArrayMap<T>(B, cols, rows).inverse().rowwise() * \
|
|
ConstEigenVectorArrayMap<T>(A, rows).transpose(); \
|
|
} \
|
|
DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION(T, Div, /)
|
|
|
|
DEFINE_EIGEN_2D_BROADCAST_DIV_FUNCTION(float)
|
|
DEFINE_EIGEN_2D_BROADCAST_DIV_FUNCTION(double)
|
|
DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION(std::int32_t, Div, /)
|
|
DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION(std::int64_t, Div, /)
|
|
|
|
#undef DEFINE_EIGEN_2D_BROADCAST_DIV_FUNCTION
|
|
|
|
#undef DELEGATE_EIGEN_2D_BROADCAST_1ST_BINARY_FUNCTION
|
|
#undef DELEGATE_EIGEN_2D_BROADCAST_2ND_BINARY_FUNCTION
|
|
|
|
template <>
|
|
void Not<bool, CPUContext>(
|
|
const int N,
|
|
const bool* x,
|
|
bool* y,
|
|
CPUContext* /*context*/) {
|
|
for (int i = 0; i < N; ++i) {
|
|
y[i] = !x[i];
|
|
}
|
|
}
|
|
|
|
#undef CAFFE2_DEFINE_BINARY_OP
|
|
#undef CAFFE2_INSTANTIATE_BINARY_OP
|
|
|
|
#define CAFFE2_SPECIALIZED_CPU_ADD_STRIPED_BATCH(T) \
|
|
template <> \
|
|
void AddStripedBatch( \
|
|
const int N, \
|
|
const T* first, \
|
|
T* y, \
|
|
const int stripe, \
|
|
const int batch, \
|
|
CPUContext* context) { \
|
|
for (int j = 0; j < batch; j++) { \
|
|
Add<T, CPUContext>(N, first + j * stripe, y, y, context); \
|
|
} \
|
|
}
|
|
|
|
CAFFE2_SPECIALIZED_CPU_ADD_STRIPED_BATCH(float);
|
|
#undef CAFFE2_SPECIALIZED_CPU_ADD_STRIPED_BATCH
|
|
|
|
namespace {
|
|
|
|
template <typename TIn, typename TOut, class BinaryOperator, bool kBroadcast1st>
|
|
void RowwiseBinaryOp(
|
|
const int rows,
|
|
const int cols,
|
|
const BinaryOperator& op,
|
|
const TIn* A,
|
|
const TIn* B,
|
|
TOut* C) {
|
|
for (int i = 0; i < rows; ++i) {
|
|
for (int j = 0; j < cols; ++j) {
|
|
const int C_index = i * cols + j;
|
|
const int A_index = kBroadcast1st ? j : C_index;
|
|
const int B_index = kBroadcast1st ? C_index : j;
|
|
C[C_index] = op(A[A_index], B[B_index]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename TIn, typename TOut, class BinaryOperator, bool kBroadcast1st>
|
|
void ColwiseBinaryOp(
|
|
const int rows,
|
|
const int cols,
|
|
const BinaryOperator& op,
|
|
const TIn* A,
|
|
const TIn* B,
|
|
TOut* C) {
|
|
for (int i = 0; i < rows; ++i) {
|
|
for (int j = 0; j < cols; ++j) {
|
|
const int C_index = i * cols + j;
|
|
const int A_index = kBroadcast1st ? i : C_index;
|
|
const int B_index = kBroadcast1st ? C_index : i;
|
|
C[C_index] = op(A[A_index], B[B_index]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename TIn, typename TOut, class BinaryOperator>
|
|
void BroadcastBinaryOpImpl(
|
|
const int ndim,
|
|
const int* A_dims,
|
|
const int* B_dims,
|
|
const int* C_dims,
|
|
const BinaryOperator& op,
|
|
const TIn* A,
|
|
const TIn* B,
|
|
TOut* C) {
|
|
std::vector<int> index(ndim, 0);
|
|
const int C_size =
|
|
std::accumulate(C_dims, C_dims + ndim, 1, std::multiplies<int>());
|
|
for (int C_index = 0; C_index < C_size; ++C_index) {
|
|
const int A_index = utils::GetIndexFromDims(ndim, A_dims, index.data());
|
|
const int B_index = utils::GetIndexFromDims(ndim, B_dims, index.data());
|
|
C[C_index] = op(A[A_index], B[B_index]);
|
|
utils::IncreaseIndexInDims(ndim, C_dims, index.data());
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#define DELEGATE_1D_BINARY_FUNCTION(TIn, TOut, Func, Op) \
|
|
template <> \
|
|
void Func<TIn, CPUContext>( \
|
|
const int N, const TIn* A, const TIn* B, TOut* C, CPUContext*) { \
|
|
std::transform(A, A + N, B, C, Op<TIn>()); \
|
|
}
|
|
|
|
#define DEFINE_1D_COMPARE_FUNCTION(Func, Op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(float, bool, Func, Op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(double, bool, Func, Op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(std::int32_t, bool, Func, Op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(std::int64_t, bool, Func, Op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(bool, bool, Func, Op)
|
|
|
|
DEFINE_1D_COMPARE_FUNCTION(EQ, std::equal_to)
|
|
DEFINE_1D_COMPARE_FUNCTION(NE, std::not_equal_to)
|
|
DEFINE_1D_COMPARE_FUNCTION(LT, std::less)
|
|
DEFINE_1D_COMPARE_FUNCTION(LE, std::less_equal)
|
|
DEFINE_1D_COMPARE_FUNCTION(GT, std::greater)
|
|
DEFINE_1D_COMPARE_FUNCTION(GE, std::greater_equal)
|
|
|
|
#undef DEFINE_1D_COMPARE_FUNCTION
|
|
|
|
DELEGATE_1D_BINARY_FUNCTION(bool, bool, And, std::logical_and)
|
|
DELEGATE_1D_BINARY_FUNCTION(bool, bool, Or, std::logical_or)
|
|
DELEGATE_1D_BINARY_FUNCTION(bool, bool, Xor, std::bit_xor)
|
|
|
|
#define DEFINE_1D_BITWISE_BINARY_FUNCTION(Func, op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(bool, bool, Func, op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(std::int32_t, std::int32_t, Func, op) \
|
|
DELEGATE_1D_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, op)
|
|
|
|
DEFINE_1D_BITWISE_BINARY_FUNCTION(BitwiseAnd, std::bit_and)
|
|
DEFINE_1D_BITWISE_BINARY_FUNCTION(BitwiseOr, std::bit_or)
|
|
DEFINE_1D_BITWISE_BINARY_FUNCTION(BitwiseXor, std::bit_xor)
|
|
|
|
#undef DEFINE_1D_BITWISE_BINARY_FUNCTION
|
|
|
|
#undef DELEGATE_1D_BINARY_FUNCTION
|
|
|
|
#define DELEGATE_2D_BROADCAST_BINARY_FUNCTION(TIn, TOut, Func, Op) \
|
|
template <> \
|
|
void Rowwise##Func<TIn, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const TIn* A, \
|
|
const TIn* B, \
|
|
TOut* C, \
|
|
CPUContext*) { \
|
|
RowwiseBinaryOp<TIn, TOut, Op<TIn>, true>(rows, cols, Op<TIn>(), A, B, C); \
|
|
} \
|
|
template <> \
|
|
void Rowwise##Func<TIn, CPUContext, false>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const TIn* A, \
|
|
const TIn* B, \
|
|
TOut* C, \
|
|
CPUContext*) { \
|
|
RowwiseBinaryOp<TIn, TOut, Op<TIn>, false>( \
|
|
rows, cols, Op<TIn>(), A, B, C); \
|
|
} \
|
|
template <> \
|
|
void Colwise##Func<TIn, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const TIn* A, \
|
|
const TIn* B, \
|
|
TOut* C, \
|
|
CPUContext*) { \
|
|
ColwiseBinaryOp<TIn, TOut, Op<TIn>, true>(rows, cols, Op<TIn>(), A, B, C); \
|
|
} \
|
|
template <> \
|
|
void Colwise##Func<TIn, CPUContext, false>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const TIn* A, \
|
|
const TIn* B, \
|
|
TOut* C, \
|
|
CPUContext*) { \
|
|
ColwiseBinaryOp<TIn, TOut, Op<TIn>, false>( \
|
|
rows, cols, Op<TIn>(), A, B, C); \
|
|
}
|
|
|
|
#define DEFINE_2D_COMPARE_FUNCTION(Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(float, bool, Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(double, bool, Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(std::int32_t, bool, Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(std::int64_t, bool, Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(bool, bool, Func, Op)
|
|
|
|
DEFINE_2D_COMPARE_FUNCTION(EQ, std::equal_to)
|
|
DEFINE_2D_COMPARE_FUNCTION(NE, std::not_equal_to)
|
|
DEFINE_2D_COMPARE_FUNCTION(LT, std::less)
|
|
DEFINE_2D_COMPARE_FUNCTION(LE, std::less_equal)
|
|
DEFINE_2D_COMPARE_FUNCTION(GT, std::greater)
|
|
DEFINE_2D_COMPARE_FUNCTION(GE, std::greater_equal)
|
|
|
|
#undef DEFINE_2D_COMPARE_FUNCTION
|
|
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(bool, bool, And, std::logical_and)
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(bool, bool, Or, std::logical_or)
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(bool, bool, Xor, std::bit_xor)
|
|
|
|
#define DEFINE_2D_BROADCAST_BITWISE_BINARY_FUNCTION(Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(bool, bool, Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(std::int32_t, std::int32_t, Func, Op) \
|
|
DELEGATE_2D_BROADCAST_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, Op)
|
|
|
|
DEFINE_2D_BROADCAST_BITWISE_BINARY_FUNCTION(BitwiseAnd, std::bit_and)
|
|
DEFINE_2D_BROADCAST_BITWISE_BINARY_FUNCTION(BitwiseOr, std::bit_or)
|
|
DEFINE_2D_BROADCAST_BITWISE_BINARY_FUNCTION(BitwiseXor, std::bit_xor)
|
|
|
|
#undef DEFINE_2D_BROADCAST_BITWISE_BINARY_FUNCTION
|
|
|
|
#undef DELEGATE_2D_BROADCAST_BINARY_FUNCTION
|
|
|
|
#define DEFINE_2D_BROADCAST_1ST_DIV_FUNCTION(T) \
|
|
template <> \
|
|
void RowwiseDiv<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
RowwiseBinaryOp<T, T, std::divides<T>, true>( \
|
|
rows, cols, std::divides<T>(), A, B, C); \
|
|
} \
|
|
template <> \
|
|
void ColwiseDiv<T, CPUContext, true>( \
|
|
const int rows, \
|
|
const int cols, \
|
|
const T* A, \
|
|
const T* B, \
|
|
T* C, \
|
|
CPUContext*) { \
|
|
ColwiseBinaryOp<T, T, std::divides<T>, true>( \
|
|
rows, cols, std::divides<T>(), A, B, C); \
|
|
}
|
|
DEFINE_2D_BROADCAST_1ST_DIV_FUNCTION(std::int32_t)
|
|
DEFINE_2D_BROADCAST_1ST_DIV_FUNCTION(std::int64_t)
|
|
#undef DEFINE_2D_BROADCAST_1ST_DIV_FUNCTION
|
|
|
|
#define DELEGATE_BROADCAST_BINARY_FUNCTION(TIn, TOut, Func, Op) \
|
|
template <> \
|
|
void Func<TIn, CPUContext>( \
|
|
const int A_ndim, \
|
|
const int* A_dims, \
|
|
const int B_ndim, \
|
|
const int* B_dims, \
|
|
const TIn* A, \
|
|
const TIn* B, \
|
|
TOut* C, \
|
|
CPUContext* context) { \
|
|
const int ndim = std::max(A_ndim, B_ndim); \
|
|
std::vector<int> A_dims_array(ndim); \
|
|
std::vector<int> B_dims_array(ndim); \
|
|
std::vector<int> C_dims_array(ndim); \
|
|
utils::ComputeBroadcastBinaryOpDims( \
|
|
A_ndim, \
|
|
A_dims, \
|
|
B_ndim, \
|
|
B_dims, \
|
|
A_dims_array.data(), \
|
|
B_dims_array.data(), \
|
|
C_dims_array.data()); \
|
|
if (A_dims_array == B_dims_array) { \
|
|
const int size = std::accumulate( \
|
|
C_dims_array.cbegin(), \
|
|
C_dims_array.cend(), \
|
|
1, \
|
|
std::multiplies<int>()); \
|
|
Func<TIn, CPUContext>(size, A, B, C, context); \
|
|
return; \
|
|
} \
|
|
int rows; \
|
|
int cols; \
|
|
bool broadcast_1st; \
|
|
if (utils::IsRowwiseBroadcastBinaryOp( \
|
|
ndim, \
|
|
A_dims_array.data(), \
|
|
B_dims_array.data(), \
|
|
&rows, \
|
|
&cols, \
|
|
&broadcast_1st)) { \
|
|
if (broadcast_1st) { \
|
|
Rowwise##Func<TIn, CPUContext, true>(rows, cols, A, B, C, context); \
|
|
} else { \
|
|
Rowwise##Func<TIn, CPUContext, false>(rows, cols, A, B, C, context); \
|
|
} \
|
|
return; \
|
|
} \
|
|
if (utils::IsColwiseBroadcastBinaryOp( \
|
|
ndim, \
|
|
A_dims_array.data(), \
|
|
B_dims_array.data(), \
|
|
&rows, \
|
|
&cols, \
|
|
&broadcast_1st)) { \
|
|
if (broadcast_1st) { \
|
|
Colwise##Func<TIn, CPUContext, true>(rows, cols, A, B, C, context); \
|
|
} else { \
|
|
Colwise##Func<TIn, CPUContext, false>(rows, cols, A, B, C, context); \
|
|
} \
|
|
return; \
|
|
} \
|
|
int pre; \
|
|
int mid; \
|
|
int nxt; \
|
|
if (utils::IsBothEndsBroadcastBinaryOp( \
|
|
ndim, \
|
|
A_dims_array.data(), \
|
|
B_dims_array.data(), \
|
|
&pre, \
|
|
&mid, \
|
|
&nxt, \
|
|
&broadcast_1st)) { \
|
|
const int stride = mid * nxt; \
|
|
for (int i = 0; i < pre; ++i) { \
|
|
if (broadcast_1st) { \
|
|
Colwise##Func<TIn, CPUContext, true>( \
|
|
mid, nxt, A, B + i * stride, C + i * stride, context); \
|
|
} else { \
|
|
Colwise##Func<TIn, CPUContext, false>( \
|
|
mid, nxt, A + i * stride, B, C + i * stride, context); \
|
|
} \
|
|
} \
|
|
return; \
|
|
} \
|
|
BroadcastBinaryOpImpl( \
|
|
ndim, \
|
|
A_dims_array.data(), \
|
|
B_dims_array.data(), \
|
|
C_dims_array.data(), \
|
|
Op<TIn>(), \
|
|
A, \
|
|
B, \
|
|
C); \
|
|
}
|
|
|
|
#define DEFINE_BROADCAST_COMPARE_FUNCTION(Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(float, bool, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(double, bool, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(std::int32_t, bool, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(std::int64_t, bool, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(bool, bool, Func, Op)
|
|
|
|
DEFINE_BROADCAST_COMPARE_FUNCTION(EQ, std::equal_to)
|
|
DEFINE_BROADCAST_COMPARE_FUNCTION(NE, std::not_equal_to)
|
|
DEFINE_BROADCAST_COMPARE_FUNCTION(LT, std::less)
|
|
DEFINE_BROADCAST_COMPARE_FUNCTION(LE, std::less_equal)
|
|
DEFINE_BROADCAST_COMPARE_FUNCTION(GT, std::greater)
|
|
DEFINE_BROADCAST_COMPARE_FUNCTION(GE, std::greater_equal)
|
|
|
|
#undef DEFINE_BROADCAST_COMPARE_FUNCTION
|
|
|
|
#define DEFINE_BROADCAST_BINARY_FUNCTION(Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(float, float, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(double, double, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(std::int32_t, std::int32_t, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, Op)
|
|
|
|
DEFINE_BROADCAST_BINARY_FUNCTION(Add, std::plus)
|
|
DEFINE_BROADCAST_BINARY_FUNCTION(Sub, std::minus)
|
|
DEFINE_BROADCAST_BINARY_FUNCTION(Mul, std::multiplies)
|
|
DEFINE_BROADCAST_BINARY_FUNCTION(Div, std::divides)
|
|
|
|
#undef DEFINE_BROADCAST_BINARY_FUNCTION
|
|
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(bool, bool, And, std::logical_and)
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(bool, bool, Or, std::logical_or)
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(bool, bool, Xor, std::bit_xor)
|
|
|
|
#define DEFINE_BROADCAST_BITWISE_BINARY_FUNCTION(Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(bool, bool, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(std::int32_t, std::int32_t, Func, Op) \
|
|
DELEGATE_BROADCAST_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, Op)
|
|
|
|
DEFINE_BROADCAST_BITWISE_BINARY_FUNCTION(BitwiseAnd, std::bit_and)
|
|
DEFINE_BROADCAST_BITWISE_BINARY_FUNCTION(BitwiseOr, std::bit_or)
|
|
DEFINE_BROADCAST_BITWISE_BINARY_FUNCTION(BitwiseXor, std::bit_xor)
|
|
|
|
#undef DEFINE_BITWISE_BROADCAST_BINARY_FUNCTION
|
|
|
|
#undef DELEGATE_BROADCAST_BINARY_FUNCTION
|
|
|
|
#define CAFFE2_RAND_UNIFORM_REAL(T) \
|
|
template <> \
|
|
void RandUniform<T, CPUContext>( \
|
|
const size_t n, const T a, const T b, T* r, CPUContext* context) { \
|
|
std::uniform_real_distribution<T> distribution(a, b); \
|
|
for (size_t i = 0; i < n; ++i) { \
|
|
r[i] = distribution(context->RandGenerator()); \
|
|
} \
|
|
}
|
|
CAFFE2_RAND_UNIFORM_REAL(float);
|
|
CAFFE2_RAND_UNIFORM_REAL(double);
|
|
#undef CAFFE2_RAND_UNIFORM_REAL
|
|
|
|
#define CAFFE2_RAND_UNIFORM_CHAR(T) \
|
|
template <> \
|
|
void RandUniform<T, CPUContext>( \
|
|
const size_t n, const T a, const T b, T* r, CPUContext* context) { \
|
|
std::uniform_int_distribution<short> distribution((short)a, (short)b); \
|
|
for (size_t i = 0; i < n; ++i) { \
|
|
r[i] = static_cast<T>(distribution(context->RandGenerator())); \
|
|
} \
|
|
}
|
|
CAFFE2_RAND_UNIFORM_CHAR(int8_t);
|
|
CAFFE2_RAND_UNIFORM_CHAR(uint8_t);
|
|
#undef CAFFE2_RAND_UNIFORM_CHAR
|
|
|
|
#define CAFFE2_RAND_UNIFORM_INT(T) \
|
|
template <> \
|
|
void RandUniform<T, CPUContext>( \
|
|
const size_t n, const T a, const T b, T* r, CPUContext* context) { \
|
|
std::uniform_int_distribution<T> distribution(a, b); \
|
|
for (size_t i = 0; i < n; ++i) { \
|
|
r[i] = distribution(context->RandGenerator()); \
|
|
} \
|
|
}
|
|
|
|
CAFFE2_RAND_UNIFORM_INT(int16_t);
|
|
CAFFE2_RAND_UNIFORM_INT(int32_t);
|
|
CAFFE2_RAND_UNIFORM_INT(int64_t);
|
|
CAFFE2_RAND_UNIFORM_INT(uint16_t);
|
|
CAFFE2_RAND_UNIFORM_INT(uint32_t);
|
|
CAFFE2_RAND_UNIFORM_INT(uint64_t);
|
|
#undef CAFFE2_RAND_UNIFORM_INT
|
|
|
|
// This is not uniformly distributed between a and b.
|
|
// It takes advantage of normal distribution to generate numbers
|
|
// with mean = sum / n.
|
|
// Ideally the algorithm should be generating n numbers between 0 and 1,
|
|
// sum them up as scaled_sum, and use sum / scaled_sum to adjust the values
|
|
// to between a and b.
|
|
// The algorithm is non-trivial given the adjustment would be different towards
|
|
// each value.
|
|
#define CAFFE2_RAND_FIXED_SUM(T) \
|
|
template <> \
|
|
void RandFixedSum<T, CPUContext>( \
|
|
const size_t n, \
|
|
const T a, \
|
|
const T b, \
|
|
const T sum, \
|
|
T* r, \
|
|
CPUContext* context) { \
|
|
CAFFE_ENFORCE_GE(a, 0); \
|
|
CAFFE_ENFORCE_GE(sum / (double)n, a); \
|
|
CAFFE_ENFORCE_LE(sum / (double)n, b); \
|
|
T current_sum = 0; \
|
|
for (size_t i = 0; i < n - 1; ++i) { \
|
|
auto remaining_numbers = n - 1 - i; \
|
|
double mean = (sum - current_sum) / remaining_numbers; \
|
|
double stdev = std::min(mean - a, b - mean); \
|
|
std::normal_distribution<double> distribution{mean, stdev / 4.0}; \
|
|
T value = distribution(context->RandGenerator()); \
|
|
auto remaining_sum = sum - current_sum - value; \
|
|
if (value < a || remaining_sum > b * remaining_numbers) { \
|
|
value = a; \
|
|
} else if (value > b || remaining_sum < a * remaining_numbers) { \
|
|
value = b; \
|
|
} \
|
|
r[i] = value; \
|
|
CAFFE_ENFORCE(a <= value && value <= b); \
|
|
current_sum += value; \
|
|
} \
|
|
r[n - 1] = sum - current_sum; \
|
|
CAFFE_ENFORCE(a <= r[n - 1] && r[n - 1] <= b); \
|
|
}
|
|
CAFFE2_RAND_FIXED_SUM(float);
|
|
CAFFE2_RAND_FIXED_SUM(double);
|
|
CAFFE2_RAND_FIXED_SUM(int8_t);
|
|
CAFFE2_RAND_FIXED_SUM(int16_t);
|
|
CAFFE2_RAND_FIXED_SUM(int32_t);
|
|
CAFFE2_RAND_FIXED_SUM(int64_t);
|
|
CAFFE2_RAND_FIXED_SUM(uint8_t);
|
|
CAFFE2_RAND_FIXED_SUM(uint16_t);
|
|
CAFFE2_RAND_FIXED_SUM(uint32_t);
|
|
CAFFE2_RAND_FIXED_SUM(uint64_t);
|
|
#undef CAFFE2_RAND_FIXED_SUM
|
|
|
|
#define CAFFE2_SPECIALIZED_RAND_UNIFORM_UNIQUE(T) \
|
|
template <> \
|
|
void RandUniformUnique<T, CPUContext>( \
|
|
const size_t n, \
|
|
const T a, \
|
|
const T b, \
|
|
T* r, \
|
|
const size_t m, \
|
|
const T* avoid, \
|
|
CPUContext* context) { \
|
|
CAFFE_ENFORCE_LE( \
|
|
n, b - a - m + 1, "Cannot satisfy the unique requirement"); \
|
|
std::unordered_set<T> avoid_set(n); \
|
|
if (m) { \
|
|
avoid_set.insert(avoid, avoid + m); \
|
|
CAFFE_ENFORCE_EQ(m, avoid_set.size(), "Avoid should be unique"); \
|
|
} \
|
|
std::uniform_int_distribution<T> distribution(a, b); \
|
|
T v = 0; \
|
|
for (size_t i = 0; i < n; ++i) { \
|
|
do { \
|
|
v = distribution(context->RandGenerator()); \
|
|
} while (avoid_set.count(v)); \
|
|
r[i] = v; \
|
|
avoid_set.insert(v); \
|
|
} \
|
|
}
|
|
|
|
CAFFE2_SPECIALIZED_RAND_UNIFORM_UNIQUE(int32_t);
|
|
CAFFE2_SPECIALIZED_RAND_UNIFORM_UNIQUE(int64_t);
|
|
#undef CAFFE2_SPECIALIZED_RAND_UNIFORM_UNIQUE
|
|
|
|
template <>
|
|
void RandGaussian<float, CPUContext>(
|
|
const size_t n,
|
|
const float mean,
|
|
const float std,
|
|
float* r,
|
|
CPUContext* context) {
|
|
std::normal_distribution<float> distribution(mean, std);
|
|
for (size_t i = 0; i < n; ++i) {
|
|
r[i] = distribution(context->RandGenerator());
|
|
}
|
|
}
|
|
|
|
#define CAFFE2_SPECIALIZED_SUM(T) \
|
|
template <> \
|
|
void Sum<T, CPUContext>( \
|
|
const int N, \
|
|
const T* x, \
|
|
T* y, \
|
|
CPUContext* /* unused */, \
|
|
Tensor* /* unused */) { \
|
|
*y = ConstEigenVectorMap<T>(x, N).sum(); \
|
|
}
|
|
|
|
CAFFE2_SPECIALIZED_SUM(float);
|
|
CAFFE2_SPECIALIZED_SUM(int32_t);
|
|
CAFFE2_SPECIALIZED_SUM(int64_t);
|
|
|
|
#undef CAFFE2_SPECIALIZED_SUM
|
|
|
|
template <>
|
|
void SumSqr<float, CPUContext>(
|
|
const int N,
|
|
const float* x,
|
|
float* y,
|
|
CPUContext* /*context*/ /* unused */,
|
|
Tensor* /*scratch_ptr*/ /* unused */) {
|
|
*y = ConstEigenVectorMap<float>(x, N).squaredNorm();
|
|
}
|
|
|
|
template <>
|
|
void Select<float, CPUContext>(
|
|
const int N,
|
|
const int D,
|
|
const float* x,
|
|
const int* idx,
|
|
float* y,
|
|
CPUContext* /*context*/) {
|
|
for (int i = 0; i < N; ++i) {
|
|
DCHECK_LT(idx[i], D);
|
|
y[i] = x[i * D + idx[i]];
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <typename T, bool kCol2Im>
|
|
void Im2ColNdNCHWImpl(
|
|
const int N,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* img_shape,
|
|
const int* col_shape,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const float* X_data,
|
|
float* Y_data,
|
|
CPUContext* context) {
|
|
if (kCol2Im) {
|
|
Set<T, CPUContext>(img_size, 0, Y_data, context);
|
|
}
|
|
const int outer_size = col_shape[0];
|
|
const int inner_size = col_size / outer_size;
|
|
const int kernel_size = std::accumulate(
|
|
kernel_shape, kernel_shape + N, 1, std::multiplies<int>());
|
|
std::vector<int> d_offset(N, 0);
|
|
std::vector<int> d_iter(N, 0);
|
|
for (int i = 0; i < outer_size; ++i) {
|
|
// Loop over spatial axes in reverse order to compute a per-axis offset.
|
|
int offset = i;
|
|
for (int d_i = N - 1; d_i >= 0; --d_i) {
|
|
d_offset[d_i] = offset % kernel_shape[d_i];
|
|
offset /= kernel_shape[d_i];
|
|
}
|
|
for (int j = 0; j < inner_size; ++j) {
|
|
// Loop over spatial axes in forward order to compute the indices in the
|
|
// image and column, and whether the index lies in the padding.
|
|
const int col_index = i * inner_size + j;
|
|
int img_index = i / kernel_size;
|
|
bool is_padding = false;
|
|
for (int d_i = 0; d_i < N; ++d_i) {
|
|
const int d_img = d_iter[d_i] * stride[d_i] - pad[d_i] +
|
|
d_offset[d_i] * dilation[d_i];
|
|
is_padding |= d_img < 0 || d_img >= img_shape[d_i + 1];
|
|
img_index = img_index * img_shape[d_i + 1] + d_img;
|
|
}
|
|
if (!kCol2Im) {
|
|
Y_data[col_index] = is_padding ? 0 : X_data[img_index];
|
|
} else if (!is_padding) {
|
|
Y_data[img_index] += X_data[col_index];
|
|
}
|
|
utils::IncreaseIndexInDims(N, col_shape + 1, d_iter.data());
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <>
|
|
void Im2ColNd<float, CPUContext, StorageOrder::NCHW>(
|
|
const int N,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* img_shape,
|
|
const int* col_shape,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const float* img_data,
|
|
float* col_data,
|
|
CPUContext* context) {
|
|
Im2ColNdNCHWImpl<float, false>(
|
|
N,
|
|
img_size,
|
|
col_size,
|
|
img_shape,
|
|
col_shape,
|
|
kernel_shape,
|
|
stride,
|
|
dilation,
|
|
pad,
|
|
img_data,
|
|
col_data,
|
|
context);
|
|
}
|
|
|
|
template <>
|
|
void Col2ImNd<float, CPUContext, StorageOrder::NCHW>(
|
|
const int N,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* img_shape,
|
|
const int* col_shape,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const float* col_data,
|
|
float* img_data,
|
|
CPUContext* context) {
|
|
Im2ColNdNCHWImpl<float, true>(
|
|
N,
|
|
img_size,
|
|
col_size,
|
|
img_shape,
|
|
col_shape,
|
|
kernel_shape,
|
|
stride,
|
|
dilation,
|
|
pad,
|
|
col_data,
|
|
img_data,
|
|
context);
|
|
}
|
|
|
|
template <>
|
|
void Im2Col<float, CPUContext, StorageOrder::NCHW>(
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int kernel_h,
|
|
const int kernel_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
const float* img_data,
|
|
float* col_data,
|
|
CPUContext* /*context*/) {
|
|
const int output_h =
|
|
(height + pad_b + pad_t - (dilation_h * (kernel_h - 1) + 1)) / stride_h +
|
|
1;
|
|
const int output_w =
|
|
(width + pad_l + pad_r - (dilation_w * (kernel_w - 1) + 1)) / stride_w +
|
|
1;
|
|
|
|
// Fast path for zero padding and no dilation
|
|
// From Torch, THNN_(unfolded_copy)
|
|
if (dilation_h == 1 && dilation_w == 1 && pad_l == 0 && pad_r == 0 &&
|
|
pad_t == 0 && pad_b == 0) {
|
|
for (auto k = 0; k < channels * kernel_h * kernel_w; k++) {
|
|
const auto nip = k / (kernel_h * kernel_w);
|
|
const auto rest = k % (kernel_h * kernel_w);
|
|
const auto kh = rest / kernel_w;
|
|
const auto kw = rest % kernel_w;
|
|
auto* dst = col_data + nip * (kernel_h * kernel_w * output_h * output_w) +
|
|
kh * (kernel_w * output_h * output_w) + kw * (output_h * output_w);
|
|
const auto* src = img_data + nip * (height * width);
|
|
for (auto y = 0; y < output_h; y++) {
|
|
const auto iy = y * stride_h + kh;
|
|
const auto ix = kw;
|
|
if (stride_w == 1) {
|
|
memcpy(
|
|
dst + (y * output_w),
|
|
src + (iy * width + ix),
|
|
sizeof(float) * output_w);
|
|
} else {
|
|
for (auto x = 0; x < output_w; x++) {
|
|
memcpy(
|
|
dst + (y * output_w + x),
|
|
src + (iy * width + ix + x * stride_w),
|
|
sizeof(float));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Fast path for equal padding
|
|
if (pad_l == pad_r && pad_t == pad_b) {
|
|
// From Intel, https://github.com/BVLC/caffe/pull/3536
|
|
const int pad_h = pad_t;
|
|
const int pad_w = pad_l;
|
|
const int channel_size = height * width;
|
|
for (int channel = channels; channel--; img_data += channel_size) {
|
|
for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
|
|
for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
|
|
int input_row = -pad_h + kernel_row * dilation_h;
|
|
for (int output_rows = output_h; output_rows; output_rows--) {
|
|
if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
|
|
for (int output_cols = output_w; output_cols; output_cols--) {
|
|
*(col_data++) = 0;
|
|
}
|
|
} else {
|
|
int input_col = -pad_w + kernel_col * dilation_w;
|
|
for (int output_col = output_w; output_col; output_col--) {
|
|
if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
|
|
*(col_data++) = img_data[input_row * width + input_col];
|
|
} else {
|
|
*(col_data++) = 0;
|
|
}
|
|
input_col += stride_w;
|
|
}
|
|
}
|
|
input_row += stride_h;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Baseline
|
|
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
|
|
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
|
|
|
|
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
|
|
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
|
|
|
|
int channels_col = channels * kernel_h * kernel_w;
|
|
for (int c = 0; c < channels_col; ++c) {
|
|
int w_offset = c % kernel_w;
|
|
int h_offset = (c / kernel_w) % kernel_h;
|
|
int c_im = c / kernel_h / kernel_w;
|
|
for (int h = 0; h < height_col; ++h) {
|
|
for (int w = 0; w < width_col; ++w) {
|
|
int h_pad = h * stride_h - pad_t + h_offset * dilation_h;
|
|
int w_pad = w * stride_w - pad_l + w_offset * dilation_w;
|
|
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width) {
|
|
col_data[(c * height_col + h) * width_col + w] =
|
|
img_data[(c_im * height + h_pad) * width + w_pad];
|
|
} else {
|
|
col_data[(c * height_col + h) * width_col + w] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void Im2Col<float, CPUContext, StorageOrder::NHWC>(
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int kernel_h,
|
|
const int kernel_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
const float* img_data,
|
|
float* col_data,
|
|
CPUContext* /*context*/) {
|
|
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
|
|
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
|
|
|
|
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
|
|
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
|
|
|
|
int h_pad = -pad_t;
|
|
for (int h = 0; h < height_col; ++h) {
|
|
int w_pad = -pad_l;
|
|
for (int w = 0; w < width_col; ++w) {
|
|
for (int ih = h_pad; ih < h_pad + dkernel_h; ih += dilation_h) {
|
|
for (int iw = w_pad; iw < w_pad + dkernel_w; iw += dilation_w) {
|
|
if (ih >= 0 && ih < height && iw >= 0 && iw < width) {
|
|
memcpy(
|
|
col_data,
|
|
img_data + (ih * width + iw) * channels,
|
|
sizeof(float) * channels);
|
|
} else {
|
|
// This should be simply padded with zero.
|
|
memset(col_data, 0, sizeof(float) * channels);
|
|
}
|
|
col_data += channels;
|
|
}
|
|
}
|
|
w_pad += stride_w;
|
|
}
|
|
h_pad += stride_h;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void Col2Im<float, CPUContext, StorageOrder::NCHW>(
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int kernel_h,
|
|
const int kernel_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
const float* col_data,
|
|
float* img_data,
|
|
CPUContext* context) {
|
|
const int output_h =
|
|
(height + pad_b + pad_t - (dilation_h * (kernel_h - 1) + 1)) / stride_h +
|
|
1;
|
|
const int output_w =
|
|
(width + pad_l + pad_r - (dilation_w * (kernel_w - 1) + 1)) / stride_w +
|
|
1;
|
|
|
|
Set<float, CPUContext>(height * width * channels, 0, img_data, context);
|
|
|
|
// Fast path for zero padding and no dilation
|
|
// From Torch, modified THNN_(unfolded_acc)
|
|
if (dilation_h == 1 && dilation_w == 1 && pad_l == 0 && pad_r == 0 &&
|
|
pad_t == 0 && pad_b == 0) {
|
|
for (auto k = 0; k < channels * kernel_h * kernel_w; k++) {
|
|
const auto nip = k / (kernel_h * kernel_w);
|
|
const auto rest = k % (kernel_h * kernel_w);
|
|
const auto kh = rest / kernel_w;
|
|
const auto kw = rest % kernel_w;
|
|
const auto* dst = col_data +
|
|
nip * (kernel_h * kernel_w * output_h * output_w) +
|
|
kh * (kernel_w * output_h * output_w) + kw * (output_h * output_w);
|
|
auto* src = img_data + nip * (height * width);
|
|
for (auto y = 0; y < output_h; y++) {
|
|
const auto iy = y * stride_h + kh;
|
|
const auto ix = kw;
|
|
if (stride_w == 1) {
|
|
auto offsrc = src + (iy * width + ix);
|
|
const auto offdst = dst + (y * output_w);
|
|
for (auto i = 0; i < output_w; ++i) {
|
|
offsrc[i] += offdst[i];
|
|
}
|
|
} else {
|
|
for (auto x = 0; x < output_w; x++) {
|
|
auto offsrc = src + (iy * width + ix + x * stride_w);
|
|
const auto offdst = dst + (y * output_w + x);
|
|
*offsrc += *offdst;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Fast path for equal padding
|
|
if (pad_l == pad_r && pad_t == pad_b) {
|
|
// From Intel, https://github.com/BVLC/caffe/pull/3536
|
|
const int pad_h = pad_t;
|
|
const int pad_w = pad_l;
|
|
const int channel_size = height * width;
|
|
for (int channel = channels; channel--; img_data += channel_size) {
|
|
for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
|
|
for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
|
|
int input_row = -pad_h + kernel_row * dilation_h;
|
|
for (int output_rows = output_h; output_rows; output_rows--) {
|
|
if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
|
|
col_data += output_w;
|
|
} else {
|
|
int input_col = -pad_w + kernel_col * dilation_w;
|
|
for (int output_col = output_w; output_col; output_col--) {
|
|
if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
|
|
img_data[input_row * width + input_col] += *col_data;
|
|
}
|
|
++col_data;
|
|
input_col += stride_w;
|
|
}
|
|
}
|
|
input_row += stride_h;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Fallback
|
|
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
|
|
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
|
|
|
|
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
|
|
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
|
|
int channels_col = channels * kernel_h * kernel_w;
|
|
for (int c = 0; c < channels_col; ++c) {
|
|
int w_offset = c % kernel_w;
|
|
int h_offset = (c / kernel_w) % kernel_h;
|
|
int c_im = c / kernel_h / kernel_w;
|
|
for (int h = 0; h < height_col; ++h) {
|
|
for (int w = 0; w < width_col; ++w) {
|
|
int h_pad = h * stride_h - pad_t + h_offset * dilation_h;
|
|
int w_pad = w * stride_w - pad_l + w_offset * dilation_w;
|
|
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width) {
|
|
img_data[(c_im * height + h_pad) * width + w_pad] +=
|
|
col_data[(c * height_col + h) * width_col + w];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void Col2Im<float, CPUContext, StorageOrder::NHWC>(
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int kernel_h,
|
|
const int kernel_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
const float* col_data,
|
|
float* img_data,
|
|
CPUContext* context) {
|
|
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
|
|
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
|
|
|
|
Set<float, CPUContext>(height * width * channels, 0, img_data, context);
|
|
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
|
|
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
|
|
int h_pad = -pad_t;
|
|
for (int h = 0; h < height_col; ++h) {
|
|
int w_pad = -pad_l;
|
|
for (int w = 0; w < width_col; ++w) {
|
|
for (int ih = h_pad; ih < h_pad + dkernel_h; ih += dilation_h) {
|
|
for (int iw = w_pad; iw < w_pad + dkernel_w; iw += dilation_w) {
|
|
if (ih >= 0 && ih < height && iw >= 0 && iw < width) {
|
|
auto* img_data_patch = img_data + (ih * width + iw) * channels;
|
|
Add<float, CPUContext>(
|
|
channels, img_data_patch, col_data, img_data_patch, context);
|
|
}
|
|
col_data += channels;
|
|
}
|
|
}
|
|
w_pad += stride_w;
|
|
}
|
|
h_pad += stride_h;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void BiasCHW<float, CPUContext>(
|
|
const float* bias,
|
|
const float* /*bias_multiplier*/,
|
|
const int bias_channels,
|
|
const int image_size,
|
|
float* image,
|
|
CPUContext* /*context*/) {
|
|
// Sum the per-channel bias into every image plane
|
|
for (int c = 0; c < bias_channels; ++c) {
|
|
float b = bias[c];
|
|
|
|
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
|
float32x4_t vBias = vdupq_n_f32(b);
|
|
|
|
// We give alignment hints for additional speed, so handle the
|
|
// non-vectorizable prologue separately
|
|
constexpr int kVecSizeInFloat = sizeof(float32x4_t) / sizeof(float);
|
|
|
|
// FIXME: if input < kVecSizeInFloat, can't vectorize at all
|
|
|
|
int prologue = kVecSizeInFloat -
|
|
// remainder in floats
|
|
(((uintptr_t)image) % (sizeof(float32x4_t))) / sizeof(float);
|
|
|
|
int i = 0;
|
|
// Prologue loop
|
|
for (; i < prologue; ++i) {
|
|
image[i] += b;
|
|
}
|
|
|
|
// The loop is manually unrolled by 8
|
|
constexpr int kUnroll = 8;
|
|
constexpr int kFloatsPerLoop = kUnroll * kVecSizeInFloat;
|
|
|
|
int remainder = image_size - prologue;
|
|
int vectorizable = prologue + (remainder / kFloatsPerLoop) * kFloatsPerLoop;
|
|
|
|
// Vectorizable body
|
|
for (; i < vectorizable; i += kFloatsPerLoop) {
|
|
// Manually unrolled
|
|
float32x4_t v0 = vld1q_f32_aligned(image + i + 0);
|
|
float32x4_t v1 = vld1q_f32_aligned(image + i + 4);
|
|
float32x4_t v2 = vld1q_f32_aligned(image + i + 8);
|
|
float32x4_t v3 = vld1q_f32_aligned(image + i + 12);
|
|
float32x4_t v4 = vld1q_f32_aligned(image + i + 16);
|
|
float32x4_t v5 = vld1q_f32_aligned(image + i + 20);
|
|
float32x4_t v6 = vld1q_f32_aligned(image + i + 24);
|
|
float32x4_t v7 = vld1q_f32_aligned(image + i + 28);
|
|
|
|
v0 = vaddq_f32(v0, vBias);
|
|
v1 = vaddq_f32(v1, vBias);
|
|
v2 = vaddq_f32(v2, vBias);
|
|
v3 = vaddq_f32(v3, vBias);
|
|
v4 = vaddq_f32(v4, vBias);
|
|
v5 = vaddq_f32(v5, vBias);
|
|
v6 = vaddq_f32(v6, vBias);
|
|
v7 = vaddq_f32(v7, vBias);
|
|
|
|
vst1q_f32_aligned(image + i + 0, v0);
|
|
vst1q_f32_aligned(image + i + 4, v1);
|
|
vst1q_f32_aligned(image + i + 8, v2);
|
|
vst1q_f32_aligned(image + i + 12, v3);
|
|
vst1q_f32_aligned(image + i + 16, v4);
|
|
vst1q_f32_aligned(image + i + 20, v5);
|
|
vst1q_f32_aligned(image + i + 24, v6);
|
|
vst1q_f32_aligned(image + i + 28, v7);
|
|
}
|
|
|
|
// Non-vectorizable epilogue
|
|
for (; i < image_size; ++i) {
|
|
image[i] += b;
|
|
}
|
|
#else
|
|
// Non-NEON CPU implementation
|
|
for (int i = 0; i < image_size; ++i) {
|
|
image[i] += b;
|
|
}
|
|
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
|
|
|
|
image += image_size;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void CopyMatrix<CPUContext>(
|
|
const size_t itemsize,
|
|
const int M,
|
|
const int N,
|
|
const void* A,
|
|
const int lda,
|
|
void* B,
|
|
const int ldb,
|
|
CPUContext* /*context*/,
|
|
TypeMeta::TypedCopy copy) {
|
|
if (A == nullptr || B == nullptr) {
|
|
return;
|
|
}
|
|
if (lda == N && ldb == N) {
|
|
// can coalese to a single memcpy of size M * N
|
|
if (copy) {
|
|
copy(static_cast<const char*>(A), static_cast<char*>(B), N * M);
|
|
} else {
|
|
memcpy(
|
|
static_cast<char*>(B), static_cast<const char*>(A), itemsize * N * M);
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < M; ++i) {
|
|
if (copy) {
|
|
copy(
|
|
static_cast<const char*>(A) + lda * i * itemsize,
|
|
static_cast<char*>(B) + ldb * i * itemsize,
|
|
N);
|
|
} else {
|
|
memcpy(
|
|
static_cast<char*>(B) + ldb * i * itemsize,
|
|
static_cast<const char*>(A) + lda * i * itemsize,
|
|
itemsize * N);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_MKL
|
|
|
|
#define DELEGATE_COPY_MATRIX_FUNCTION(T, Func) \
|
|
template <> \
|
|
void CopyMatrix<T, CPUContext>( \
|
|
const int M, \
|
|
const int N, \
|
|
const T* A, \
|
|
const int lda, \
|
|
T* B, \
|
|
const int ldb, \
|
|
CPUContext* /* context */) { \
|
|
Func('R', 'N', M, N, T(1), A, lda, B, ldb); \
|
|
}
|
|
DELEGATE_COPY_MATRIX_FUNCTION(float, mkl_somatcopy)
|
|
DELEGATE_COPY_MATRIX_FUNCTION(double, mkl_domatcopy)
|
|
#undef DELEGATE_COPY_MATRIX_FUNCTION
|
|
|
|
#endif // CAFFE2_USE_MKL
|
|
|
|
#define CAFFE2_SPECIALIZED_COPY_MATRIX(T) \
|
|
template <> \
|
|
void CopyMatrix<T, CPUContext>( \
|
|
const int M, \
|
|
const int N, \
|
|
const T* A, \
|
|
const int lda, \
|
|
T* B, \
|
|
const int ldb, \
|
|
CPUContext* /* context */) { \
|
|
if (M == 0 || N == 0) { \
|
|
return; \
|
|
} \
|
|
if (lda == N) { \
|
|
if (ldb == N) { \
|
|
std::memcpy(B, A, sizeof(T) * M * N); \
|
|
} else { \
|
|
EigenOuterStridedMatrixMap<T>(B, N, M, EigenOuterStride(ldb)) = \
|
|
ConstEigenMatrixMap<T>(A, N, M); \
|
|
} \
|
|
} else { \
|
|
if (ldb == N) { \
|
|
EigenMatrixMap<T>(B, N, M) = ConstEigenOuterStridedMatrixMap<T>( \
|
|
A, N, M, EigenOuterStride(lda)); \
|
|
} else { \
|
|
EigenOuterStridedMatrixMap<T>(B, N, M, EigenOuterStride(ldb)) = \
|
|
ConstEigenOuterStridedMatrixMap<T>( \
|
|
A, N, M, EigenOuterStride(lda)); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#ifndef CAFFE2_USE_MKL
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(float)
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(double)
|
|
#endif // CAFFE2_USE_MKL
|
|
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(int)
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(TIndex)
|
|
#ifdef CAFFE2_UNIQUE_LONG_TYPEMETA
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(long)
|
|
#endif
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(std::uint8_t)
|
|
CAFFE2_SPECIALIZED_COPY_MATRIX(std::uint16_t)
|
|
|
|
#undef CAFFE2_SPECIALIZXED_COPY_MATRIX
|
|
|
|
#define CAFFE2_SPECIALIZED_COPYVECTOR(T) \
|
|
template <> \
|
|
void CopyVector<T, CPUContext>( \
|
|
const int N, const T* src, T* dst, CPUContext* /*context*/) { \
|
|
if (src != dst && N > 0) { \
|
|
memcpy(dst, src, sizeof(T) * N); \
|
|
} \
|
|
}
|
|
CAFFE2_SPECIALIZED_COPYVECTOR(float)
|
|
#undef CAFFE2_SPECIALIZED_COPYVECTOR
|
|
|
|
namespace {
|
|
|
|
#ifdef CAFFE2_USE_HPTT
|
|
|
|
bool TransposeWithHPTT(
|
|
const int ndim,
|
|
const int* dims,
|
|
const int* axes,
|
|
const float* X,
|
|
float* Y) {
|
|
std::vector<int> axes_cm(ndim);
|
|
std::vector<int> dims_cm(ndim);
|
|
// Convert row-major index to column-major.
|
|
const auto cm_fn = [ndim](const int i) { return ndim - i - 1; };
|
|
for (int i = 0; i < ndim; ++i) {
|
|
axes_cm[i] = cm_fn(axes[cm_fn(i)]);
|
|
dims_cm[i] = dims[cm_fn(i)];
|
|
}
|
|
|
|
// HPTT doesn't handle 0 sized inputs.
|
|
for (auto dim : dims_cm) {
|
|
if (dim <= 0) {
|
|
return false;
|
|
}
|
|
}
|
|
auto plan = hptt::create_plan(
|
|
axes_cm.data(),
|
|
ndim,
|
|
1.0,
|
|
X,
|
|
dims_cm.data(),
|
|
nullptr,
|
|
0.0,
|
|
Y,
|
|
nullptr,
|
|
hptt::ESTIMATE,
|
|
1);
|
|
if (plan == nullptr) {
|
|
return false;
|
|
}
|
|
plan->execute();
|
|
return true;
|
|
}
|
|
|
|
#endif // CAFFE2_USE_HPTT
|
|
|
|
template <typename T>
|
|
void Tranpose2D(const int rows, const int cols, const T* X, T* Y);
|
|
|
|
#ifdef CAFFE2_USE_MKL
|
|
|
|
#define DELEGATE_TRANSPOSE_2D_FUNCTION(T, Func) \
|
|
template <> \
|
|
void Tranpose2D<T>(const int rows, const int cols, const T* X, T* Y) { \
|
|
Func('R', 'T', rows, cols, T(1), X, cols, Y, rows); \
|
|
}
|
|
DELEGATE_TRANSPOSE_2D_FUNCTION(float, mkl_somatcopy);
|
|
DELEGATE_TRANSPOSE_2D_FUNCTION(double, mkl_domatcopy);
|
|
#undef DELEGATE_TRANSPOSE_2D_FUNCTION
|
|
|
|
#endif // CAFFE2_USE_MKL
|
|
|
|
#define CAFFE2_SPECIALIZED_TRANSPOSE_2D(T) \
|
|
template <> \
|
|
void Tranpose2D<T>(const int rows, const int cols, const T* X, T* Y) { \
|
|
EigenMatrixMap<T>(Y, rows, cols) = \
|
|
ConstEigenMatrixMap<T>(X, cols, rows).transpose(); \
|
|
}
|
|
|
|
#ifndef CAFFE2_USE_MKL
|
|
|
|
template <>
|
|
void Tranpose2D<float>(
|
|
const int rows,
|
|
const int cols,
|
|
const float* X,
|
|
float* Y) {
|
|
#ifdef CAFFE2_USE_HPTT
|
|
const std::array<int, 2> dims = {rows, cols};
|
|
const std::array<int, 2> axes = {1, 0};
|
|
if (TransposeWithHPTT(2, dims.data(), axes.data(), X, Y)) {
|
|
return;
|
|
}
|
|
#endif // CAFFE2_USE_HPTT
|
|
EigenMatrixMap<float>(Y, rows, cols) =
|
|
ConstEigenMatrixMap<float>(X, cols, rows).transpose();
|
|
}
|
|
|
|
CAFFE2_SPECIALIZED_TRANSPOSE_2D(double)
|
|
|
|
#endif // CAFFE2_USE_MKL
|
|
|
|
CAFFE2_SPECIALIZED_TRANSPOSE_2D(int)
|
|
CAFFE2_SPECIALIZED_TRANSPOSE_2D(TIndex)
|
|
#ifdef CAFFE2_UNIQUE_LONG_TYPEMETA
|
|
CAFFE2_SPECIALIZED_TRANSPOSE_2D(long)
|
|
#endif
|
|
CAFFE2_SPECIALIZED_TRANSPOSE_2D(std::uint8_t)
|
|
CAFFE2_SPECIALIZED_TRANSPOSE_2D(std::uint16_t)
|
|
|
|
#undef CAFFE2_SPECIALIZED_TRANSPOSE_2D
|
|
|
|
std::vector<int>
|
|
ComputeXStrides(const int ndim, const int* dims, const int* axes) {
|
|
std::vector<int> x_strides(ndim);
|
|
std::vector<int> buff(ndim);
|
|
int cur_stride = 1;
|
|
for (int i = ndim - 1; i >= 0; --i) {
|
|
buff[i] = cur_stride;
|
|
cur_stride *= dims[i];
|
|
}
|
|
for (int i = 0; i < ndim; ++i) {
|
|
x_strides[i] = buff[axes[i]];
|
|
}
|
|
return x_strides;
|
|
}
|
|
|
|
template <typename T>
|
|
void TransposeND(
|
|
const int ndim,
|
|
const int* dims,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y) {
|
|
std::vector<int> Y_dims(ndim);
|
|
for (int i = 0; i < ndim; ++i) {
|
|
Y_dims[i] = dims[axes[i]];
|
|
}
|
|
// Measure amount of contiguous data we can copy at once
|
|
int block_size = 1;
|
|
int num_shared_idx = 0;
|
|
for (int i = ndim - 1; i >= 0 && axes[i] == i; --i) {
|
|
block_size *= Y_dims[i];
|
|
++num_shared_idx;
|
|
}
|
|
const int itr_axes = ndim - num_shared_idx;
|
|
const int num_blocks = std::accumulate(
|
|
Y_dims.cbegin(), Y_dims.cbegin() + itr_axes, 1, std::multiplies<int>());
|
|
const std::vector<int> X_strides = ComputeXStrides(itr_axes, dims, axes);
|
|
std::vector<int> index(itr_axes, 0);
|
|
for (int Y_index = 0; Y_index < num_blocks; ++Y_index) {
|
|
const int X_index = std::inner_product(
|
|
X_strides.cbegin(), X_strides.cend(), index.cbegin(), 0);
|
|
if (block_size == 1) {
|
|
Y[Y_index] = X[X_index];
|
|
} else {
|
|
std::memcpy(
|
|
Y + block_size * Y_index,
|
|
X + block_size * X_index,
|
|
block_size * sizeof(T));
|
|
}
|
|
utils::IncreaseIndexInDims(itr_axes, Y_dims.data(), index.data());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TransposeCPUImpl(
|
|
const int ndim,
|
|
const int* dims,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y) {
|
|
if (utils::IsIdentityPermutation(ndim, axes)) {
|
|
const int size =
|
|
std::accumulate(dims, dims + ndim, 1, std::multiplies<int>());
|
|
std::memcpy(Y, X, size * sizeof(T));
|
|
return;
|
|
}
|
|
if (ndim == 2) {
|
|
Tranpose2D<T>(dims[0], dims[1], X, Y);
|
|
} else {
|
|
TransposeND<T>(ndim, dims, axes, X, Y);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void TransposeCPUImpl(
|
|
const int ndim,
|
|
const int* dims,
|
|
const int* axes,
|
|
const float* X,
|
|
float* Y) {
|
|
if (utils::IsIdentityPermutation(ndim, axes)) {
|
|
const int size =
|
|
std::accumulate(dims, dims + ndim, 1, std::multiplies<int>());
|
|
std::memcpy(Y, X, size * sizeof(float));
|
|
return;
|
|
}
|
|
if (ndim == 2) {
|
|
Tranpose2D<float>(dims[0], dims[1], X, Y);
|
|
} else {
|
|
#ifdef CAFFE2_USE_HPTT
|
|
if (TransposeWithHPTT(ndim, dims, axes, X, Y)) {
|
|
return;
|
|
}
|
|
#endif
|
|
TransposeND<float>(ndim, dims, axes, X, Y);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#define CAFFE2_SPECIALIZED_TRANSPOSE(T) \
|
|
template <> \
|
|
void Transpose<T, CPUContext>( \
|
|
const int ndim, \
|
|
const int* dims, \
|
|
const int* axes, \
|
|
const T* X, \
|
|
T* Y, \
|
|
CPUContext* /* context */) { \
|
|
TransposeCPUImpl(ndim, dims, axes, X, Y); \
|
|
}
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(float)
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(double)
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(int)
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(TIndex)
|
|
#ifdef CAFFE2_UNIQUE_LONG_TYPEMETA
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(long)
|
|
#endif
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(std::uint8_t)
|
|
CAFFE2_SPECIALIZED_TRANSPOSE(std::uint16_t)
|
|
#undef CAFFE2_SPECIALIZED_TRANSPOSE
|
|
|
|
} // namespace math
|
|
} // namespace caffe2
|