mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:30:26 +08:00
Define it once in `.ci/docker/trition_version.txt` and use everywhere. Also, patch version defined in `triton/__init__.py` as currently it always returns `2.0.0` even if package name is `2.1.0` Followup after https://github.com/pytorch/pytorch/pull/95896 where version needed to be updated in 4+ places Pull Request resolved: https://github.com/pytorch/pytorch/pull/96580 Approved by: https://github.com/huydhn
1286 lines
47 KiB
Python
1286 lines
47 KiB
Python
# Welcome to the PyTorch setup.py.
|
|
#
|
|
# Environment variables you are probably interested in:
|
|
#
|
|
# DEBUG
|
|
# build with -O0 and -g (debug symbols)
|
|
#
|
|
# REL_WITH_DEB_INFO
|
|
# build with optimizations and -g (debug symbols)
|
|
#
|
|
# MAX_JOBS
|
|
# maximum number of compile jobs we should use to compile your code
|
|
#
|
|
# USE_CUDA=0
|
|
# disables CUDA build
|
|
#
|
|
# CFLAGS
|
|
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
|
|
# which we have faithfully adhered to in our build system is that CFLAGS
|
|
# also applies to C++ files (unless CXXFLAGS is set), in contrast to the
|
|
# default behavior of autogoo and cmake build systems.)
|
|
#
|
|
# CC
|
|
# the C/C++ compiler to use
|
|
#
|
|
# Environment variables for feature toggles:
|
|
#
|
|
# USE_CUDNN=0
|
|
# disables the cuDNN build
|
|
#
|
|
# USE_FBGEMM=0
|
|
# disables the FBGEMM build
|
|
#
|
|
# USE_KINETO=0
|
|
# disables usage of libkineto library for profiling
|
|
#
|
|
# USE_NUMPY=0
|
|
# disables the NumPy build
|
|
#
|
|
# BUILD_TEST=0
|
|
# disables the test build
|
|
#
|
|
# USE_MKLDNN=0
|
|
# disables use of MKLDNN
|
|
#
|
|
# USE_MKLDNN_ACL
|
|
# enables use of Compute Library backend for MKLDNN on Arm;
|
|
# USE_MKLDNN must be explicitly enabled.
|
|
#
|
|
# MKLDNN_CPU_RUNTIME
|
|
# MKL-DNN threading mode: TBB or OMP (default)
|
|
#
|
|
# USE_STATIC_MKL
|
|
# Prefer to link with MKL statically - Unix only
|
|
# USE_ITT=0
|
|
# disable use of Intel(R) VTune Profiler's ITT functionality
|
|
#
|
|
# USE_NNPACK=0
|
|
# disables NNPACK build
|
|
#
|
|
# USE_QNNPACK=0
|
|
# disables QNNPACK build (quantized 8-bit operators)
|
|
#
|
|
# USE_DISTRIBUTED=0
|
|
# disables distributed (c10d, gloo, mpi, etc.) build
|
|
#
|
|
# USE_TENSORPIPE=0
|
|
# disables distributed Tensorpipe backend build
|
|
#
|
|
# USE_GLOO=0
|
|
# disables distributed gloo backend build
|
|
#
|
|
# USE_MPI=0
|
|
# disables distributed MPI backend build
|
|
#
|
|
# USE_SYSTEM_NCCL=0
|
|
# disables use of system-wide nccl (we will use our submoduled
|
|
# copy in third_party/nccl)
|
|
#
|
|
# BUILD_CAFFE2_OPS=0
|
|
# disable Caffe2 operators build
|
|
#
|
|
# BUILD_CAFFE2=0
|
|
# disable Caffe2 build
|
|
#
|
|
# USE_IBVERBS
|
|
# toggle features related to distributed support
|
|
#
|
|
# USE_OPENCV
|
|
# enables use of OpenCV for additional operators
|
|
#
|
|
# USE_OPENMP=0
|
|
# disables use of OpenMP for parallelization
|
|
#
|
|
# USE_FFMPEG
|
|
# enables use of ffmpeg for additional operators
|
|
#
|
|
# USE_FLASH_ATTENTION=0
|
|
# disables building flash attention for scaled dot product attention
|
|
#
|
|
# USE_LEVELDB
|
|
# enables use of LevelDB for storage
|
|
#
|
|
# USE_LMDB
|
|
# enables use of LMDB for storage
|
|
#
|
|
# BUILD_BINARY
|
|
# enables the additional binaries/ build
|
|
#
|
|
# ATEN_AVX512_256=TRUE
|
|
# ATen AVX2 kernels can use 32 ymm registers, instead of the default 16.
|
|
# This option can be used if AVX512 doesn't perform well on a machine.
|
|
# The FBGEMM library also uses AVX512_256 kernels on Xeon D processors,
|
|
# but it also has some (optimized) assembly code.
|
|
#
|
|
# PYTORCH_BUILD_VERSION
|
|
# PYTORCH_BUILD_NUMBER
|
|
# specify the version of PyTorch, rather than the hard-coded version
|
|
# in this file; used when we're building binaries for distribution
|
|
#
|
|
# TORCH_CUDA_ARCH_LIST
|
|
# specify which CUDA architectures to build for.
|
|
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
|
|
# These are not CUDA versions, instead, they specify what
|
|
# classes of NVIDIA hardware we should generate PTX for.
|
|
#
|
|
# PYTORCH_ROCM_ARCH
|
|
# specify which AMD GPU targets to build for.
|
|
# ie `PYTORCH_ROCM_ARCH="gfx900;gfx906"`
|
|
#
|
|
# ONNX_NAMESPACE
|
|
# specify a namespace for ONNX built here rather than the hard-coded
|
|
# one in this file; needed to build with other frameworks that share ONNX.
|
|
#
|
|
# BLAS
|
|
# BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, FlexiBLAS, or OpenBLAS. If set
|
|
# then the build will fail if the requested BLAS is not found, otherwise
|
|
# the BLAS will be chosen based on what is found on your system.
|
|
#
|
|
# MKL_THREADING
|
|
# MKL threading mode: SEQ, TBB or OMP (default)
|
|
#
|
|
# USE_REDIS
|
|
# Whether to use Redis for distributed workflows (Linux only)
|
|
#
|
|
# USE_ZSTD
|
|
# Enables use of ZSTD, if the libraries are found
|
|
#
|
|
# Environment variables we respect (these environment variables are
|
|
# conventional and are often understood/set by other software.)
|
|
#
|
|
# CUDA_HOME (Linux/OS X)
|
|
# CUDA_PATH (Windows)
|
|
# specify where CUDA is installed; usually /usr/local/cuda or
|
|
# /usr/local/cuda-x.y
|
|
# CUDAHOSTCXX
|
|
# specify a different compiler than the system one to use as the CUDA
|
|
# host compiler for nvcc.
|
|
#
|
|
# CUDA_NVCC_EXECUTABLE
|
|
# Specify a NVCC to use. This is used in our CI to point to a cached nvcc
|
|
#
|
|
# CUDNN_LIB_DIR
|
|
# CUDNN_INCLUDE_DIR
|
|
# CUDNN_LIBRARY
|
|
# specify where cuDNN is installed
|
|
#
|
|
# MIOPEN_LIB_DIR
|
|
# MIOPEN_INCLUDE_DIR
|
|
# MIOPEN_LIBRARY
|
|
# specify where MIOpen is installed
|
|
#
|
|
# NCCL_ROOT
|
|
# NCCL_LIB_DIR
|
|
# NCCL_INCLUDE_DIR
|
|
# specify where nccl is installed
|
|
#
|
|
# NVFUSER_SOURCE_DIR
|
|
# specify nvfuser root directory
|
|
#
|
|
# NVTOOLSEXT_PATH (Windows only)
|
|
# specify where nvtoolsext is installed
|
|
#
|
|
# ACL_ROOT_DIR
|
|
# specify where Compute Library is installed
|
|
#
|
|
# LIBRARY_PATH
|
|
# LD_LIBRARY_PATH
|
|
# we will search for libraries in these paths
|
|
#
|
|
# ATEN_THREADING
|
|
# ATen parallel backend to use for intra- and inter-op parallelism
|
|
# possible values:
|
|
# OMP - use OpenMP for intra-op and native backend for inter-op tasks
|
|
# NATIVE - use native thread pool for both intra- and inter-op tasks
|
|
# TBB - using TBB for intra- and native thread pool for inter-op parallelism
|
|
#
|
|
# USE_TBB
|
|
# enable TBB support
|
|
#
|
|
# USE_SYSTEM_TBB
|
|
# Use system-provided Intel TBB.
|
|
#
|
|
# USE_SYSTEM_LIBS (work in progress)
|
|
# Use system-provided libraries to satisfy the build dependencies.
|
|
# When turned on, the following cmake variables will be toggled as well:
|
|
# USE_SYSTEM_CPUINFO=ON USE_SYSTEM_SLEEF=ON BUILD_CUSTOM_PROTOBUF=OFF
|
|
|
|
# This future is needed to print Python2 EOL message
|
|
from __future__ import print_function
|
|
import sys
|
|
if sys.version_info < (3,):
|
|
print("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
|
|
sys.exit(-1)
|
|
if sys.platform == 'win32' and sys.maxsize.bit_length() == 31:
|
|
print("32-bit Windows Python runtime is not supported. Please switch to 64-bit Python.")
|
|
sys.exit(-1)
|
|
|
|
import platform
|
|
python_min_version = (3, 8, 0)
|
|
python_min_version_str = '.'.join(map(str, python_min_version))
|
|
if sys.version_info < python_min_version:
|
|
print("You are using Python {}. Python >={} is required.".format(platform.python_version(),
|
|
python_min_version_str))
|
|
sys.exit(-1)
|
|
|
|
from setuptools import setup, Extension, find_packages
|
|
from collections import defaultdict
|
|
from setuptools.dist import Distribution
|
|
import setuptools.command.build_ext
|
|
import setuptools.command.install
|
|
import setuptools.command.sdist
|
|
import filecmp
|
|
import shutil
|
|
import subprocess
|
|
import os
|
|
import json
|
|
import glob
|
|
import importlib
|
|
import time
|
|
import sysconfig
|
|
|
|
from tools.build_pytorch_libs import build_caffe2
|
|
from tools.setup_helpers.env import (IS_WINDOWS, IS_DARWIN, IS_LINUX,
|
|
build_type)
|
|
from tools.setup_helpers.cmake import CMake
|
|
from tools.generate_torch_version import get_torch_version
|
|
|
|
################################################################################
|
|
# Parameters parsed from environment
|
|
################################################################################
|
|
|
|
VERBOSE_SCRIPT = True
|
|
RUN_BUILD_DEPS = True
|
|
# see if the user passed a quiet flag to setup.py arguments and respect
|
|
# that in our parts of the build
|
|
EMIT_BUILD_WARNING = False
|
|
RERUN_CMAKE = False
|
|
CMAKE_ONLY = False
|
|
filtered_args = []
|
|
for i, arg in enumerate(sys.argv):
|
|
if arg == '--cmake':
|
|
RERUN_CMAKE = True
|
|
continue
|
|
if arg == '--cmake-only':
|
|
# Stop once cmake terminates. Leave users a chance to adjust build
|
|
# options.
|
|
CMAKE_ONLY = True
|
|
continue
|
|
if arg == 'rebuild' or arg == 'build':
|
|
arg = 'build' # rebuild is gone, make it build
|
|
EMIT_BUILD_WARNING = True
|
|
if arg == "--":
|
|
filtered_args += sys.argv[i:]
|
|
break
|
|
if arg == '-q' or arg == '--quiet':
|
|
VERBOSE_SCRIPT = False
|
|
if arg in ['clean', 'egg_info', 'sdist']:
|
|
RUN_BUILD_DEPS = False
|
|
filtered_args.append(arg)
|
|
sys.argv = filtered_args
|
|
|
|
if VERBOSE_SCRIPT:
|
|
def report(*args):
|
|
print(*args)
|
|
else:
|
|
def report(*args):
|
|
pass
|
|
|
|
# Make distutils respect --quiet too
|
|
setuptools.distutils.log.warn = report
|
|
|
|
# Constant known variables used throughout this file
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
lib_path = os.path.join(cwd, "torch", "lib")
|
|
third_party_path = os.path.join(cwd, "third_party")
|
|
caffe2_build_dir = os.path.join(cwd, "build")
|
|
|
|
# CMAKE: full path to python library
|
|
if IS_WINDOWS:
|
|
cmake_python_library = "{}/libs/python{}.lib".format(
|
|
sysconfig.get_config_var("prefix"),
|
|
sysconfig.get_config_var("VERSION"))
|
|
# Fix virtualenv builds
|
|
if not os.path.exists(cmake_python_library):
|
|
cmake_python_library = "{}/libs/python{}.lib".format(
|
|
sys.base_prefix,
|
|
sysconfig.get_config_var("VERSION"))
|
|
else:
|
|
cmake_python_library = "{}/{}".format(
|
|
sysconfig.get_config_var("LIBDIR"),
|
|
sysconfig.get_config_var("INSTSONAME"))
|
|
cmake_python_include_dir = sysconfig.get_path("include")
|
|
|
|
|
|
################################################################################
|
|
# Version, create_version_file, and package_name
|
|
################################################################################
|
|
package_name = os.getenv('TORCH_PACKAGE_NAME', 'torch')
|
|
package_type = os.getenv('PACKAGE_TYPE', 'wheel')
|
|
version = get_torch_version()
|
|
report("Building wheel {}-{}".format(package_name, version))
|
|
|
|
cmake = CMake()
|
|
|
|
|
|
def get_submodule_folders():
|
|
git_modules_path = os.path.join(cwd, ".gitmodules")
|
|
default_modules_path = [os.path.join(third_party_path, name) for name in [
|
|
"gloo", "cpuinfo", "tbb", "onnx",
|
|
"foxi", "QNNPACK", "fbgemm", "cutlass"
|
|
]]
|
|
if not os.path.exists(git_modules_path):
|
|
return default_modules_path
|
|
with open(git_modules_path) as f:
|
|
return [os.path.join(cwd, line.split("=", 1)[1].strip()) for line in
|
|
f.readlines() if line.strip().startswith("path")]
|
|
|
|
|
|
def check_submodules():
|
|
def check_for_files(folder, files):
|
|
if not any(os.path.exists(os.path.join(folder, f)) for f in files):
|
|
report("Could not find any of {} in {}".format(", ".join(files), folder))
|
|
report("Did you run 'git submodule update --init --recursive'?")
|
|
sys.exit(1)
|
|
|
|
def not_exists_or_empty(folder):
|
|
return not os.path.exists(folder) or (os.path.isdir(folder) and len(os.listdir(folder)) == 0)
|
|
|
|
if bool(os.getenv("USE_SYSTEM_LIBS", False)):
|
|
return
|
|
folders = get_submodule_folders()
|
|
# If none of the submodule folders exists, try to initialize them
|
|
if all(not_exists_or_empty(folder) for folder in folders):
|
|
try:
|
|
print(' --- Trying to initialize submodules')
|
|
start = time.time()
|
|
subprocess.check_call(["git", "submodule", "update", "--init", "--recursive"], cwd=cwd)
|
|
end = time.time()
|
|
print(' --- Submodule initialization took {:.2f} sec'.format(end - start))
|
|
except Exception:
|
|
print(' --- Submodule initalization failed')
|
|
print('Please run:\n\tgit submodule update --init --recursive')
|
|
sys.exit(1)
|
|
for folder in folders:
|
|
check_for_files(folder, ["CMakeLists.txt", "Makefile", "setup.py", "LICENSE", "LICENSE.md", "LICENSE.txt"])
|
|
check_for_files(os.path.join(third_party_path, 'fbgemm', 'third_party',
|
|
'asmjit'), ['CMakeLists.txt'])
|
|
check_for_files(os.path.join(third_party_path, 'onnx', 'third_party',
|
|
'benchmark'), ['CMakeLists.txt'])
|
|
|
|
|
|
# Windows has very bad support for symbolic links.
|
|
# Instead of using symlinks, we're going to copy files over
|
|
def mirror_files_into_torchgen():
|
|
# (new_path, orig_path)
|
|
# Directories are OK and are recursively mirrored.
|
|
paths = [
|
|
('torchgen/packaged/ATen/native/native_functions.yaml', 'aten/src/ATen/native/native_functions.yaml'),
|
|
('torchgen/packaged/ATen/native/tags.yaml', 'aten/src/ATen/native/tags.yaml'),
|
|
('torchgen/packaged/ATen/templates', 'aten/src/ATen/templates'),
|
|
]
|
|
for new_path, orig_path in paths:
|
|
# Create the dirs involved in new_path if they don't exist
|
|
if not os.path.exists(new_path):
|
|
os.makedirs(os.path.dirname(new_path), exist_ok=True)
|
|
|
|
# Copy the files from the orig location to the new location
|
|
if os.path.isfile(orig_path):
|
|
shutil.copyfile(orig_path, new_path)
|
|
continue
|
|
if os.path.isdir(orig_path):
|
|
if os.path.exists(new_path):
|
|
# copytree fails if the tree exists already, so remove it.
|
|
shutil.rmtree(new_path)
|
|
shutil.copytree(orig_path, new_path)
|
|
continue
|
|
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
|
|
|
|
# all the work we need to do _before_ setup runs
|
|
def build_deps():
|
|
report('-- Building version ' + version)
|
|
|
|
check_submodules()
|
|
check_pydep('yaml', 'pyyaml')
|
|
|
|
build_caffe2(version=version,
|
|
cmake_python_library=cmake_python_library,
|
|
build_python=True,
|
|
rerun_cmake=RERUN_CMAKE,
|
|
cmake_only=CMAKE_ONLY,
|
|
cmake=cmake)
|
|
|
|
if CMAKE_ONLY:
|
|
report('Finished running cmake. Run "ccmake build" or '
|
|
'"cmake-gui build" to adjust build options and '
|
|
'"python setup.py install" to build.')
|
|
sys.exit()
|
|
|
|
# Use copies instead of symbolic files.
|
|
# Windows has very poor support for them.
|
|
sym_files = [
|
|
'tools/shared/_utils_internal.py',
|
|
'torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h',
|
|
'torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h',
|
|
]
|
|
orig_files = [
|
|
'torch/_utils_internal.py',
|
|
'third_party/valgrind-headers/callgrind.h',
|
|
'third_party/valgrind-headers/valgrind.h',
|
|
]
|
|
for sym_file, orig_file in zip(sym_files, orig_files):
|
|
same = False
|
|
if os.path.exists(sym_file):
|
|
if filecmp.cmp(sym_file, orig_file):
|
|
same = True
|
|
else:
|
|
os.remove(sym_file)
|
|
if not same:
|
|
shutil.copyfile(orig_file, sym_file)
|
|
|
|
################################################################################
|
|
# Building dependent libraries
|
|
################################################################################
|
|
|
|
missing_pydep = '''
|
|
Missing build dependency: Unable to `import {importname}`.
|
|
Please install it via `conda install {module}` or `pip install {module}`
|
|
'''.strip()
|
|
|
|
|
|
def check_pydep(importname, module):
|
|
try:
|
|
importlib.import_module(importname)
|
|
except ImportError as e:
|
|
raise RuntimeError(missing_pydep.format(importname=importname, module=module)) from e
|
|
|
|
|
|
class build_ext(setuptools.command.build_ext.build_ext):
|
|
|
|
# Copy libiomp5.dylib inside the wheel package on OS X
|
|
def _embed_libiomp(self):
|
|
|
|
lib_dir = os.path.join(self.build_lib, 'torch', 'lib')
|
|
libtorch_cpu_path = os.path.join(lib_dir, 'libtorch_cpu.dylib')
|
|
if not os.path.exists(libtorch_cpu_path):
|
|
return
|
|
# Parse libtorch_cpu load commands
|
|
otool_cmds = subprocess.check_output(['otool', '-l', libtorch_cpu_path]).decode('utf-8').split('\n')
|
|
rpaths, libs = [], []
|
|
for idx, line in enumerate(otool_cmds):
|
|
if line.strip() == 'cmd LC_LOAD_DYLIB':
|
|
lib_name = otool_cmds[idx + 2].strip()
|
|
assert lib_name.startswith('name ')
|
|
libs.append(lib_name.split(' ', 1)[1].rsplit('(', 1)[0][:-1])
|
|
|
|
if line.strip() == 'cmd LC_RPATH':
|
|
rpath = otool_cmds[idx + 2].strip()
|
|
assert rpath.startswith('path ')
|
|
rpaths.append(rpath.split(' ', 1)[1].rsplit('(', 1)[0][:-1])
|
|
|
|
omp_lib_name = 'libiomp5.dylib'
|
|
if os.path.join('@rpath', omp_lib_name) not in libs:
|
|
return
|
|
|
|
# Copy libiomp5 from rpath locations
|
|
for rpath in rpaths:
|
|
source_lib = os.path.join(rpath, omp_lib_name)
|
|
if not os.path.exists(source_lib):
|
|
continue
|
|
target_lib = os.path.join(self.build_lib, 'torch', 'lib', omp_lib_name)
|
|
self.copy_file(source_lib, target_lib)
|
|
break
|
|
|
|
def run(self):
|
|
# Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an
|
|
# accurate report on what is used and what is not.
|
|
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
|
|
if cmake_cache_vars['USE_NUMPY']:
|
|
report('-- Building with NumPy bindings')
|
|
else:
|
|
report('-- NumPy not found')
|
|
if cmake_cache_vars['USE_CUDNN']:
|
|
report('-- Detected cuDNN at ' +
|
|
cmake_cache_vars['CUDNN_LIBRARY'] + ', ' + cmake_cache_vars['CUDNN_INCLUDE_DIR'])
|
|
else:
|
|
report('-- Not using cuDNN')
|
|
if cmake_cache_vars['USE_CUDA']:
|
|
report('-- Detected CUDA at ' + cmake_cache_vars['CUDA_TOOLKIT_ROOT_DIR'])
|
|
else:
|
|
report('-- Not using CUDA')
|
|
if cmake_cache_vars['USE_MKLDNN']:
|
|
report('-- Using MKLDNN')
|
|
if cmake_cache_vars['USE_MKLDNN_ACL']:
|
|
report('-- Using Compute Library for the Arm architecture with MKLDNN')
|
|
else:
|
|
report('-- Not using Compute Library for the Arm architecture with MKLDNN')
|
|
if cmake_cache_vars['USE_MKLDNN_CBLAS']:
|
|
report('-- Using CBLAS in MKLDNN')
|
|
else:
|
|
report('-- Not using CBLAS in MKLDNN')
|
|
else:
|
|
report('-- Not using MKLDNN')
|
|
if cmake_cache_vars['USE_NCCL'] and cmake_cache_vars['USE_SYSTEM_NCCL']:
|
|
report('-- Using system provided NCCL library at {}, {}'.format(cmake_cache_vars['NCCL_LIBRARIES'],
|
|
cmake_cache_vars['NCCL_INCLUDE_DIRS']))
|
|
elif cmake_cache_vars['USE_NCCL']:
|
|
report('-- Building NCCL library')
|
|
else:
|
|
report('-- Not using NCCL')
|
|
if cmake_cache_vars['USE_DISTRIBUTED']:
|
|
if IS_WINDOWS:
|
|
report('-- Building without distributed package')
|
|
else:
|
|
report('-- Building with distributed package: ')
|
|
report(' -- USE_TENSORPIPE={}'.format(cmake_cache_vars['USE_TENSORPIPE']))
|
|
report(' -- USE_GLOO={}'.format(cmake_cache_vars['USE_GLOO']))
|
|
report(' -- USE_MPI={}'.format(cmake_cache_vars['USE_OPENMPI']))
|
|
else:
|
|
report('-- Building without distributed package')
|
|
if cmake_cache_vars['STATIC_DISPATCH_BACKEND']:
|
|
report('-- Using static dispatch with backend {}'.format(cmake_cache_vars['STATIC_DISPATCH_BACKEND']))
|
|
if cmake_cache_vars['USE_LIGHTWEIGHT_DISPATCH']:
|
|
report('-- Using lightweight dispatch')
|
|
if cmake_cache_vars['BUILD_EXECUTORCH']:
|
|
report('-- Building Executorch')
|
|
|
|
if cmake_cache_vars['USE_ITT']:
|
|
report('-- Using ITT')
|
|
else:
|
|
report('-- Not using ITT')
|
|
|
|
if cmake_cache_vars['BUILD_NVFUSER']:
|
|
report('-- Building nvfuser')
|
|
else:
|
|
report('-- Not Building nvfuser')
|
|
|
|
# Do not use clang to compile extensions if `-fstack-clash-protection` is defined
|
|
# in system CFLAGS
|
|
c_flags = str(os.getenv('CFLAGS', ''))
|
|
if IS_LINUX and '-fstack-clash-protection' in c_flags and 'clang' in os.environ.get('CC', ''):
|
|
os.environ['CC'] = str(os.environ['CC'])
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
setuptools.command.build_ext.build_ext.run(self)
|
|
|
|
if IS_DARWIN and package_type != 'conda':
|
|
self._embed_libiomp()
|
|
|
|
# Copy the essential export library to compile C++ extensions.
|
|
if IS_WINDOWS:
|
|
build_temp = self.build_temp
|
|
|
|
ext_filename = self.get_ext_filename('_C')
|
|
lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'
|
|
|
|
export_lib = os.path.join(
|
|
build_temp, 'torch', 'csrc', lib_filename).replace('\\', '/')
|
|
|
|
build_lib = self.build_lib
|
|
|
|
target_lib = os.path.join(
|
|
build_lib, 'torch', 'lib', '_C.lib').replace('\\', '/')
|
|
|
|
# Create "torch/lib" directory if not exists.
|
|
# (It is not created yet in "develop" mode.)
|
|
target_dir = os.path.dirname(target_lib)
|
|
if not os.path.exists(target_dir):
|
|
os.makedirs(target_dir)
|
|
|
|
self.copy_file(export_lib, target_lib)
|
|
|
|
def build_extensions(self):
|
|
self.create_compile_commands()
|
|
# The caffe2 extensions are created in
|
|
# tmp_install/lib/pythonM.m/site-packages/caffe2/python/
|
|
# and need to be copied to build/lib.linux.... , which will be a
|
|
# platform dependent build folder created by the "build" command of
|
|
# setuptools. Only the contents of this folder are installed in the
|
|
# "install" command by default.
|
|
# We only make this copy for Caffe2's pybind extensions
|
|
caffe2_pybind_exts = [
|
|
'caffe2.python.caffe2_pybind11_state',
|
|
'caffe2.python.caffe2_pybind11_state_gpu',
|
|
'caffe2.python.caffe2_pybind11_state_hip',
|
|
]
|
|
i = 0
|
|
while i < len(self.extensions):
|
|
ext = self.extensions[i]
|
|
if ext.name not in caffe2_pybind_exts:
|
|
i += 1
|
|
continue
|
|
fullname = self.get_ext_fullname(ext.name)
|
|
filename = self.get_ext_filename(fullname)
|
|
report("\nCopying extension {}".format(ext.name))
|
|
|
|
relative_site_packages = sysconfig.get_path('purelib').replace(sysconfig.get_path('data'), '').lstrip(os.path.sep)
|
|
src = os.path.join("torch", relative_site_packages, filename)
|
|
if not os.path.exists(src):
|
|
report("{} does not exist".format(src))
|
|
del self.extensions[i]
|
|
else:
|
|
dst = os.path.join(os.path.realpath(self.build_lib), filename)
|
|
report("Copying {} from {} to {}".format(ext.name, src, dst))
|
|
dst_dir = os.path.dirname(dst)
|
|
if not os.path.exists(dst_dir):
|
|
os.makedirs(dst_dir)
|
|
self.copy_file(src, dst)
|
|
i += 1
|
|
|
|
# Copy functorch extension
|
|
for i, ext in enumerate(self.extensions):
|
|
if ext.name != "functorch._C":
|
|
continue
|
|
fullname = self.get_ext_fullname(ext.name)
|
|
filename = self.get_ext_filename(fullname)
|
|
fileext = os.path.splitext(filename)[1]
|
|
src = os.path.join(os.path.dirname(filename), "functorch" + fileext)
|
|
dst = os.path.join(os.path.realpath(self.build_lib), filename)
|
|
if os.path.exists(src):
|
|
report("Copying {} from {} to {}".format(ext.name, src, dst))
|
|
dst_dir = os.path.dirname(dst)
|
|
if not os.path.exists(dst_dir):
|
|
os.makedirs(dst_dir)
|
|
self.copy_file(src, dst)
|
|
|
|
# Copy nvfuser extension
|
|
for i, ext in enumerate(self.extensions):
|
|
if ext.name != "nvfuser._C":
|
|
continue
|
|
fullname = self.get_ext_fullname(ext.name)
|
|
filename = self.get_ext_filename(fullname)
|
|
fileext = os.path.splitext(filename)[1]
|
|
src = os.path.join(os.path.dirname(filename), "nvfuser" + fileext)
|
|
dst = os.path.join(os.path.realpath(self.build_lib), filename)
|
|
if os.path.exists(src):
|
|
report("Copying {} from {} to {}".format(ext.name, src, dst))
|
|
dst_dir = os.path.dirname(dst)
|
|
if not os.path.exists(dst_dir):
|
|
os.makedirs(dst_dir)
|
|
self.copy_file(src, dst)
|
|
|
|
setuptools.command.build_ext.build_ext.build_extensions(self)
|
|
|
|
|
|
def get_outputs(self):
|
|
outputs = setuptools.command.build_ext.build_ext.get_outputs(self)
|
|
outputs.append(os.path.join(self.build_lib, "caffe2"))
|
|
report("setup.py::get_outputs returning {}".format(outputs))
|
|
return outputs
|
|
|
|
def create_compile_commands(self):
|
|
def load(filename):
|
|
with open(filename) as f:
|
|
return json.load(f)
|
|
ninja_files = glob.glob('build/*compile_commands.json')
|
|
cmake_files = glob.glob('torch/lib/build/*/compile_commands.json')
|
|
all_commands = [entry
|
|
for f in ninja_files + cmake_files
|
|
for entry in load(f)]
|
|
|
|
# cquery does not like c++ compiles that start with gcc.
|
|
# It forgets to include the c++ header directories.
|
|
# We can work around this by replacing the gcc calls that python
|
|
# setup.py generates with g++ calls instead
|
|
for command in all_commands:
|
|
if command['command'].startswith("gcc "):
|
|
command['command'] = "g++ " + command['command'][4:]
|
|
|
|
new_contents = json.dumps(all_commands, indent=2)
|
|
contents = ''
|
|
if os.path.exists('compile_commands.json'):
|
|
with open('compile_commands.json', 'r') as f:
|
|
contents = f.read()
|
|
if contents != new_contents:
|
|
with open('compile_commands.json', 'w') as f:
|
|
f.write(new_contents)
|
|
|
|
class concat_license_files():
|
|
"""Merge LICENSE and LICENSES_BUNDLED.txt as a context manager
|
|
|
|
LICENSE is the main PyTorch license, LICENSES_BUNDLED.txt is auto-generated
|
|
from all the licenses found in ./third_party/. We concatenate them so there
|
|
is a single license file in the sdist and wheels with all of the necessary
|
|
licensing info.
|
|
"""
|
|
def __init__(self, include_files=False):
|
|
self.f1 = 'LICENSE'
|
|
self.f2 = 'third_party/LICENSES_BUNDLED.txt'
|
|
self.include_files = include_files
|
|
|
|
def __enter__(self):
|
|
"""Concatenate files"""
|
|
|
|
old_path = sys.path
|
|
sys.path.append(third_party_path)
|
|
try:
|
|
from build_bundled import create_bundled
|
|
finally:
|
|
sys.path = old_path
|
|
|
|
with open(self.f1, 'r') as f1:
|
|
self.bsd_text = f1.read()
|
|
|
|
with open(self.f1, 'a') as f1:
|
|
f1.write('\n\n')
|
|
create_bundled(os.path.relpath(third_party_path), f1,
|
|
include_files=self.include_files)
|
|
|
|
|
|
def __exit__(self, exception_type, exception_value, traceback):
|
|
"""Restore content of f1"""
|
|
with open(self.f1, 'w') as f:
|
|
f.write(self.bsd_text)
|
|
|
|
|
|
try:
|
|
from wheel.bdist_wheel import bdist_wheel
|
|
except ImportError:
|
|
# This is useful when wheel is not installed and bdist_wheel is not
|
|
# specified on the command line. If it _is_ specified, parsing the command
|
|
# line will fail before wheel_concatenate is needed
|
|
wheel_concatenate = None
|
|
else:
|
|
# Need to create the proper LICENSE.txt for the wheel
|
|
class wheel_concatenate(bdist_wheel):
|
|
""" check submodules on sdist to prevent incomplete tarballs """
|
|
def run(self):
|
|
with concat_license_files(include_files=True):
|
|
super().run()
|
|
|
|
|
|
class install(setuptools.command.install.install):
|
|
def run(self):
|
|
super().run()
|
|
|
|
|
|
class clean(setuptools.Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
import glob
|
|
import re
|
|
with open('.gitignore', 'r') as f:
|
|
ignores = f.read()
|
|
pat = re.compile(r'^#( BEGIN NOT-CLEAN-FILES )?')
|
|
for wildcard in filter(None, ignores.split('\n')):
|
|
match = pat.match(wildcard)
|
|
if match:
|
|
if match.group(1):
|
|
# Marker is found and stop reading .gitignore.
|
|
break
|
|
# Ignore lines which begin with '#'.
|
|
else:
|
|
# Don't remove absolute paths from the system
|
|
wildcard = wildcard.lstrip('./')
|
|
|
|
for filename in glob.glob(wildcard):
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
shutil.rmtree(filename, ignore_errors=True)
|
|
|
|
|
|
class sdist(setuptools.command.sdist.sdist):
|
|
def run(self):
|
|
with concat_license_files():
|
|
super().run()
|
|
|
|
|
|
def get_cmake_cache_vars():
|
|
try:
|
|
return defaultdict(lambda: False, cmake.get_cmake_cache_variables())
|
|
except FileNotFoundError:
|
|
# CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory.
|
|
return defaultdict(lambda: False)
|
|
|
|
|
|
def configure_extension_build():
|
|
r"""Configures extension build options according to system environment and user's choice.
|
|
|
|
Returns:
|
|
The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup.
|
|
"""
|
|
|
|
cmake_cache_vars = get_cmake_cache_vars()
|
|
|
|
################################################################################
|
|
# Configure compile flags
|
|
################################################################################
|
|
|
|
library_dirs = []
|
|
extra_install_requires = []
|
|
|
|
if IS_WINDOWS:
|
|
# /NODEFAULTLIB makes sure we only link to DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
extra_link_args = ['/NODEFAULTLIB:LIBCMT.LIB']
|
|
# /MD links against DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
# /EHsc is about standard C++ exception handling
|
|
extra_compile_args = ['/MD', '/FS', '/EHsc']
|
|
else:
|
|
extra_link_args = []
|
|
extra_compile_args = [
|
|
'-Wall',
|
|
'-Wextra',
|
|
'-Wno-strict-overflow',
|
|
'-Wno-unused-parameter',
|
|
'-Wno-missing-field-initializers',
|
|
'-Wno-unknown-pragmas',
|
|
# This is required for Python 2 declarations that are deprecated in 3.
|
|
'-Wno-deprecated-declarations',
|
|
# Python 2.6 requires -fno-strict-aliasing, see
|
|
# http://legacy.python.org/dev/peps/pep-3123/
|
|
# We also depend on it in our code (even Python 3).
|
|
'-fno-strict-aliasing',
|
|
# Clang has an unfixed bug leading to spurious missing
|
|
# braces warnings, see
|
|
# https://bugs.llvm.org/show_bug.cgi?id=21629
|
|
'-Wno-missing-braces',
|
|
]
|
|
|
|
library_dirs.append(lib_path)
|
|
|
|
main_compile_args = []
|
|
main_libraries = ['torch_python']
|
|
main_link_args = []
|
|
main_sources = ["torch/csrc/stub.c"]
|
|
|
|
if cmake_cache_vars['USE_CUDA']:
|
|
library_dirs.append(
|
|
os.path.dirname(cmake_cache_vars['CUDA_CUDA_LIB']))
|
|
|
|
if build_type.is_debug():
|
|
if IS_WINDOWS:
|
|
extra_compile_args.append('/Z7')
|
|
extra_link_args.append('/DEBUG:FULL')
|
|
else:
|
|
extra_compile_args += ['-O0', '-g']
|
|
extra_link_args += ['-O0', '-g']
|
|
|
|
if build_type.is_rel_with_deb_info():
|
|
if IS_WINDOWS:
|
|
extra_compile_args.append('/Z7')
|
|
extra_link_args.append('/DEBUG:FULL')
|
|
else:
|
|
extra_compile_args += ['-g']
|
|
extra_link_args += ['-g']
|
|
|
|
# special CUDA 11.7 package that requires installation of cuda runtime, cudnn and cublas
|
|
pytorch_extra_install_requirements = os.getenv("PYTORCH_EXTRA_INSTALL_REQUIREMENTS", "")
|
|
if pytorch_extra_install_requirements:
|
|
report(f"pytorch_extra_install_requirements: {pytorch_extra_install_requirements}")
|
|
extra_install_requires += pytorch_extra_install_requirements.split("|")
|
|
|
|
|
|
# Cross-compile for M1
|
|
if IS_DARWIN:
|
|
macos_target_arch = os.getenv('CMAKE_OSX_ARCHITECTURES', '')
|
|
if macos_target_arch in ['arm64', 'x86_64']:
|
|
macos_sysroot_path = os.getenv('CMAKE_OSX_SYSROOT')
|
|
if macos_sysroot_path is None:
|
|
macos_sysroot_path = subprocess.check_output([
|
|
'xcrun', '--show-sdk-path', '--sdk', 'macosx'
|
|
]).decode('utf-8').strip()
|
|
extra_compile_args += ['-arch', macos_target_arch, '-isysroot', macos_sysroot_path]
|
|
extra_link_args += ['-arch', macos_target_arch]
|
|
|
|
|
|
def make_relative_rpath_args(path):
|
|
if IS_DARWIN:
|
|
return ['-Wl,-rpath,@loader_path/' + path]
|
|
elif IS_WINDOWS:
|
|
return []
|
|
else:
|
|
return ['-Wl,-rpath,$ORIGIN/' + path]
|
|
|
|
################################################################################
|
|
# Declare extensions and package
|
|
################################################################################
|
|
|
|
extensions = []
|
|
excludes = ['tools', 'tools.*']
|
|
if not cmake_cache_vars['BUILD_CAFFE2']:
|
|
excludes.extend(['caffe2', 'caffe2.*'])
|
|
if not cmake_cache_vars['BUILD_FUNCTORCH']:
|
|
excludes.extend(['functorch', 'functorch.*'])
|
|
if not cmake_cache_vars['BUILD_NVFUSER']:
|
|
excludes.extend(['nvfuser', 'nvfuser.*'])
|
|
packages = find_packages(exclude=excludes)
|
|
C = Extension("torch._C",
|
|
libraries=main_libraries,
|
|
sources=main_sources,
|
|
language='c',
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=[],
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args + main_link_args + make_relative_rpath_args('lib'))
|
|
C_flatbuffer = Extension("torch._C_flatbuffer",
|
|
libraries=main_libraries,
|
|
sources=["torch/csrc/stub_with_flatbuffer.c"],
|
|
language='c',
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=[],
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args + main_link_args + make_relative_rpath_args('lib'))
|
|
extensions.append(C)
|
|
extensions.append(C_flatbuffer)
|
|
|
|
# These extensions are built by cmake and copied manually in build_extensions()
|
|
# inside the build_ext implementation
|
|
if cmake_cache_vars['USE_ROCM']:
|
|
triton_req_file = os.path.join(cwd, ".github", "requirements", "triton-requirements-rocm.txt")
|
|
if os.path.exists(triton_req_file):
|
|
with open(triton_req_file) as f:
|
|
triton_req = f.read().strip()
|
|
extra_install_requires.append(triton_req)
|
|
|
|
if cmake_cache_vars['BUILD_CAFFE2']:
|
|
extensions.append(
|
|
Extension(
|
|
name=str('caffe2.python.caffe2_pybind11_state'),
|
|
sources=[]),
|
|
)
|
|
if cmake_cache_vars['USE_CUDA']:
|
|
extensions.append(
|
|
Extension(
|
|
name=str('caffe2.python.caffe2_pybind11_state_gpu'),
|
|
sources=[]),
|
|
)
|
|
if cmake_cache_vars['USE_ROCM']:
|
|
extensions.append(
|
|
Extension(
|
|
name=str('caffe2.python.caffe2_pybind11_state_hip'),
|
|
sources=[]),
|
|
)
|
|
if cmake_cache_vars['BUILD_FUNCTORCH']:
|
|
extensions.append(
|
|
Extension(
|
|
name=str('functorch._C'),
|
|
sources=[]),
|
|
)
|
|
if cmake_cache_vars['BUILD_NVFUSER']:
|
|
extensions.append(
|
|
Extension(
|
|
name=str('nvfuser._C'),
|
|
sources=[]),
|
|
)
|
|
|
|
cmdclass = {
|
|
'bdist_wheel': wheel_concatenate,
|
|
'build_ext': build_ext,
|
|
'clean': clean,
|
|
'install': install,
|
|
'sdist': sdist,
|
|
}
|
|
|
|
entry_points = {
|
|
'console_scripts': [
|
|
'convert-caffe2-to-onnx = caffe2.python.onnx.bin.conversion:caffe2_to_onnx',
|
|
'convert-onnx-to-caffe2 = caffe2.python.onnx.bin.conversion:onnx_to_caffe2',
|
|
'torchrun = torch.distributed.run:main',
|
|
]
|
|
}
|
|
|
|
return extensions, cmdclass, packages, entry_points, extra_install_requires
|
|
|
|
# post run, warnings, printed at the end to make them more visible
|
|
build_update_message = """
|
|
It is no longer necessary to use the 'build' or 'rebuild' targets
|
|
|
|
To install:
|
|
$ python setup.py install
|
|
To develop locally:
|
|
$ python setup.py develop
|
|
To force cmake to re-generate native build files (off by default):
|
|
$ python setup.py develop --cmake
|
|
"""
|
|
|
|
|
|
def print_box(msg):
|
|
lines = msg.split('\n')
|
|
size = max(len(l) + 1 for l in lines)
|
|
print('-' * (size + 2))
|
|
for l in lines:
|
|
print('|{}{}|'.format(l, ' ' * (size - len(l))))
|
|
print('-' * (size + 2))
|
|
|
|
|
|
def main():
|
|
# the list of runtime dependencies required by this built package
|
|
install_requires = [
|
|
'filelock',
|
|
'typing-extensions',
|
|
'sympy',
|
|
'networkx',
|
|
'jinja2',
|
|
]
|
|
|
|
extras_require = {
|
|
'opt-einsum': ['opt-einsum>=3.3']
|
|
}
|
|
if platform.system() == 'Linux':
|
|
triton_pin_file = os.path.join(cwd, ".ci", "docker", "ci_commit_pins", "triton.txt")
|
|
triton_version_file = os.path.join(cwd, ".ci", "docker", "triton_version.txt")
|
|
if os.path.exists(triton_pin_file) and os.path.exists(triton_version_file):
|
|
with open(triton_pin_file) as f:
|
|
triton_pin = f.read().strip()
|
|
with open(triton_version_file) as f:
|
|
triton_version = f.read().strip()
|
|
extras_require['dynamo'] = ['pytorch-triton==' + triton_version + '+' + triton_pin[:10], 'jinja2']
|
|
|
|
# Parse the command line and check the arguments before we proceed with
|
|
# building deps and setup. We need to set values so `--help` works.
|
|
dist = Distribution()
|
|
dist.script_name = os.path.basename(sys.argv[0])
|
|
dist.script_args = sys.argv[1:]
|
|
try:
|
|
dist.parse_command_line()
|
|
except setuptools.distutils.errors.DistutilsArgError as e:
|
|
print(e)
|
|
sys.exit(1)
|
|
|
|
mirror_files_into_torchgen()
|
|
if RUN_BUILD_DEPS:
|
|
build_deps()
|
|
|
|
extensions, cmdclass, packages, entry_points, extra_install_requires = configure_extension_build()
|
|
|
|
install_requires += extra_install_requires
|
|
|
|
# Read in README.md for our long_description
|
|
with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f:
|
|
long_description = f.read()
|
|
|
|
version_range_max = max(sys.version_info[1], 10) + 1
|
|
torch_package_data = [
|
|
'py.typed',
|
|
'bin/*',
|
|
'test/*',
|
|
'_C/*.pyi',
|
|
'_C_flatbuffer/*.pyi',
|
|
'cuda/*.pyi',
|
|
'optim/*.pyi',
|
|
'autograd/*.pyi',
|
|
'nn/*.pyi',
|
|
'nn/modules/*.pyi',
|
|
'nn/parallel/*.pyi',
|
|
'utils/data/*.pyi',
|
|
'utils/data/datapipes/*.pyi',
|
|
'lib/*.so*',
|
|
'lib/*.dylib*',
|
|
'lib/*.dll',
|
|
'lib/*.lib',
|
|
'lib/*.pdb',
|
|
'lib/torch_shm_manager',
|
|
'lib/*.h',
|
|
'include/*.h',
|
|
'include/ATen/*.h',
|
|
'include/ATen/cpu/*.h',
|
|
'include/ATen/cpu/vec/vec256/*.h',
|
|
'include/ATen/cpu/vec/vec256/vsx/*.h',
|
|
'include/ATen/cpu/vec/vec512/*.h',
|
|
'include/ATen/cpu/vec/*.h',
|
|
'include/ATen/core/*.h',
|
|
'include/ATen/cuda/*.cuh',
|
|
'include/ATen/cuda/*.h',
|
|
'include/ATen/cuda/detail/*.cuh',
|
|
'include/ATen/cuda/detail/*.h',
|
|
'include/ATen/cudnn/*.h',
|
|
'include/ATen/functorch/*.h',
|
|
'include/ATen/ops/*.h',
|
|
'include/ATen/hip/*.cuh',
|
|
'include/ATen/hip/*.h',
|
|
'include/ATen/hip/detail/*.cuh',
|
|
'include/ATen/hip/detail/*.h',
|
|
'include/ATen/hip/impl/*.h',
|
|
'include/ATen/miopen/*.h',
|
|
'include/ATen/detail/*.h',
|
|
'include/ATen/native/*.h',
|
|
'include/ATen/native/cpu/*.h',
|
|
'include/ATen/native/cuda/*.h',
|
|
'include/ATen/native/cuda/*.cuh',
|
|
'include/ATen/native/hip/*.h',
|
|
'include/ATen/native/hip/*.cuh',
|
|
'include/ATen/native/quantized/*.h',
|
|
'include/ATen/native/quantized/cpu/*.h',
|
|
'include/ATen/quantized/*.h',
|
|
'include/caffe2/serialize/*.h',
|
|
'include/c10/*.h',
|
|
'include/c10/macros/*.h',
|
|
'include/c10/core/*.h',
|
|
'include/ATen/core/boxing/*.h',
|
|
'include/ATen/core/boxing/impl/*.h',
|
|
'include/ATen/core/dispatch/*.h',
|
|
'include/ATen/core/op_registration/*.h',
|
|
'include/c10/core/impl/*.h',
|
|
'include/c10/util/*.h',
|
|
'include/c10/cuda/*.h',
|
|
'include/c10/cuda/impl/*.h',
|
|
'include/c10/hip/*.h',
|
|
'include/c10/hip/impl/*.h',
|
|
'include/torch/*.h',
|
|
'include/torch/csrc/*.h',
|
|
'include/torch/csrc/api/include/torch/*.h',
|
|
'include/torch/csrc/api/include/torch/data/*.h',
|
|
'include/torch/csrc/api/include/torch/data/dataloader/*.h',
|
|
'include/torch/csrc/api/include/torch/data/datasets/*.h',
|
|
'include/torch/csrc/api/include/torch/data/detail/*.h',
|
|
'include/torch/csrc/api/include/torch/data/samplers/*.h',
|
|
'include/torch/csrc/api/include/torch/data/transforms/*.h',
|
|
'include/torch/csrc/api/include/torch/detail/*.h',
|
|
'include/torch/csrc/api/include/torch/detail/ordered_dict.h',
|
|
'include/torch/csrc/api/include/torch/nn/*.h',
|
|
'include/torch/csrc/api/include/torch/nn/functional/*.h',
|
|
'include/torch/csrc/api/include/torch/nn/options/*.h',
|
|
'include/torch/csrc/api/include/torch/nn/modules/*.h',
|
|
'include/torch/csrc/api/include/torch/nn/modules/container/*.h',
|
|
'include/torch/csrc/api/include/torch/nn/parallel/*.h',
|
|
'include/torch/csrc/api/include/torch/nn/utils/*.h',
|
|
'include/torch/csrc/api/include/torch/optim/*.h',
|
|
'include/torch/csrc/api/include/torch/optim/schedulers/*.h',
|
|
'include/torch/csrc/api/include/torch/serialize/*.h',
|
|
'include/torch/csrc/autograd/*.h',
|
|
'include/torch/csrc/autograd/functions/*.h',
|
|
'include/torch/csrc/autograd/generated/*.h',
|
|
'include/torch/csrc/autograd/utils/*.h',
|
|
'include/torch/csrc/cuda/*.h',
|
|
'include/torch/csrc/distributed/c10d/*.h',
|
|
'include/torch/csrc/distributed/c10d/*.hpp',
|
|
'include/torch/csrc/distributed/rpc/*.h',
|
|
'include/torch/csrc/distributed/autograd/context/*.h',
|
|
'include/torch/csrc/distributed/autograd/functions/*.h',
|
|
'include/torch/csrc/distributed/autograd/rpc_messages/*.h',
|
|
'include/torch/csrc/jit/*.h',
|
|
'include/torch/csrc/jit/backends/*.h',
|
|
'include/torch/csrc/jit/generated/*.h',
|
|
'include/torch/csrc/jit/passes/*.h',
|
|
'include/torch/csrc/jit/passes/quantization/*.h',
|
|
'include/torch/csrc/jit/passes/utils/*.h',
|
|
'include/torch/csrc/jit/runtime/*.h',
|
|
'include/torch/csrc/jit/ir/*.h',
|
|
'include/torch/csrc/jit/frontend/*.h',
|
|
'include/torch/csrc/jit/api/*.h',
|
|
'include/torch/csrc/jit/serialization/*.h',
|
|
'include/torch/csrc/jit/python/*.h',
|
|
'include/torch/csrc/jit/mobile/*.h',
|
|
'include/torch/csrc/jit/testing/*.h',
|
|
'include/torch/csrc/jit/tensorexpr/*.h',
|
|
'include/torch/csrc/jit/tensorexpr/operators/*.h',
|
|
'include/torch/csrc/jit/codegen/cuda/*.h',
|
|
'include/torch/csrc/jit/codegen/cuda/ops/*.h',
|
|
'include/torch/csrc/jit/codegen/cuda/scheduler/*.h',
|
|
'include/torch/csrc/onnx/*.h',
|
|
'include/torch/csrc/profiler/*.h',
|
|
'include/torch/csrc/profiler/orchestration/*.h',
|
|
'include/torch/csrc/profiler/stubs/*.h',
|
|
'include/torch/csrc/utils/*.h',
|
|
'include/torch/csrc/tensor/*.h',
|
|
'include/torch/csrc/lazy/backend/*.h',
|
|
'include/torch/csrc/lazy/core/*.h',
|
|
'include/torch/csrc/lazy/core/internal_ops/*.h',
|
|
'include/torch/csrc/lazy/core/ops/*.h',
|
|
'include/torch/csrc/lazy/ts_backend/*.h',
|
|
'include/pybind11/*.h',
|
|
'include/pybind11/detail/*.h',
|
|
'include/TH/*.h*',
|
|
'include/TH/generic/*.h*',
|
|
'include/THC/*.cuh',
|
|
'include/THC/*.h*',
|
|
'include/THC/generic/*.h',
|
|
'include/THH/*.cuh',
|
|
'include/THH/*.h*',
|
|
'include/THH/generic/*.h',
|
|
'include/sleef.h',
|
|
"_inductor/codegen/*.h",
|
|
'share/cmake/ATen/*.cmake',
|
|
'share/cmake/Caffe2/*.cmake',
|
|
'share/cmake/Caffe2/public/*.cmake',
|
|
'share/cmake/Caffe2/Modules_CUDA_fix/*.cmake',
|
|
'share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake',
|
|
'share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake',
|
|
'share/cmake/Gloo/*.cmake',
|
|
'share/cmake/Tensorpipe/*.cmake',
|
|
'share/cmake/Torch/*.cmake',
|
|
'utils/benchmark/utils/*.cpp',
|
|
'utils/benchmark/utils/valgrind_wrapper/*.cpp',
|
|
'utils/benchmark/utils/valgrind_wrapper/*.h',
|
|
'utils/model_dump/skeleton.html',
|
|
'utils/model_dump/code.js',
|
|
'utils/model_dump/*.mjs',
|
|
]
|
|
|
|
if get_cmake_cache_vars()['BUILD_CAFFE2']:
|
|
torch_package_data.extend([
|
|
'include/caffe2/**/*.h',
|
|
'include/caffe2/utils/*.h',
|
|
'include/caffe2/utils/**/*.h',
|
|
])
|
|
torchgen_package_data = [
|
|
# Recursive glob doesn't work in setup.py,
|
|
# https://github.com/pypa/setuptools/issues/1806
|
|
# To make this robust we should replace it with some code that
|
|
# returns a list of everything under packaged/
|
|
'packaged/ATen/*',
|
|
'packaged/ATen/native/*',
|
|
'packaged/ATen/templates/*',
|
|
]
|
|
setup(
|
|
name=package_name,
|
|
version=version,
|
|
description=("Tensors and Dynamic neural networks in "
|
|
"Python with strong GPU acceleration"),
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
ext_modules=extensions,
|
|
cmdclass=cmdclass,
|
|
packages=packages,
|
|
entry_points=entry_points,
|
|
install_requires=install_requires,
|
|
extras_require=extras_require,
|
|
package_data={
|
|
'torch': torch_package_data,
|
|
'torchgen': torchgen_package_data,
|
|
'caffe2': [
|
|
'python/serialized_test/data/operator_test/*.zip',
|
|
],
|
|
},
|
|
url='https://pytorch.org/',
|
|
download_url='https://github.com/pytorch/pytorch/tags',
|
|
author='PyTorch Team',
|
|
author_email='packages@pytorch.org',
|
|
python_requires='>={}'.format(python_min_version_str),
|
|
# PyPI package information.
|
|
classifiers=[
|
|
'Development Status :: 5 - Production/Stable',
|
|
'Intended Audience :: Developers',
|
|
'Intended Audience :: Education',
|
|
'Intended Audience :: Science/Research',
|
|
'License :: OSI Approved :: BSD License',
|
|
'Topic :: Scientific/Engineering',
|
|
'Topic :: Scientific/Engineering :: Mathematics',
|
|
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
|
'Topic :: Software Development',
|
|
'Topic :: Software Development :: Libraries',
|
|
'Topic :: Software Development :: Libraries :: Python Modules',
|
|
'Programming Language :: C++',
|
|
'Programming Language :: Python :: 3',
|
|
] + ['Programming Language :: Python :: 3.{}'.format(i) for i in range(python_min_version[1], version_range_max)],
|
|
license='BSD-3',
|
|
keywords='pytorch, machine learning',
|
|
)
|
|
if EMIT_BUILD_WARNING:
|
|
print_box(build_update_message)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|