mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Opacus found an issue with the input (batched) gradients produced from instance norm. What was surprising is that we are testing that the input gradients match--but here the input gradients with instance norm are so close to 0 (typically around 1e-10) that they all look the same. It only shows up if you use another layer in front of instance norm so those small differences get magnified. This fixes the bug and makes sure that each layer we support is used in a test with a model at least once Pull Request resolved: https://github.com/pytorch/pytorch/pull/79800 Approved by: https://github.com/zou3519, https://github.com/albanD
542 lines
29 KiB
Python
542 lines
29 KiB
Python
# Owner(s): ["module: nn"]
|
|
|
|
from functools import partial
|
|
from itertools import product, chain
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn import CrossEntropyLoss
|
|
from torch.nn.utils._per_sample_grad import call_for_per_sample_grads
|
|
from torch.testing._internal.common_cuda import TEST_CUDA
|
|
from torch.testing._internal.common_device_type import OpDTypes, instantiate_device_type_tests, ops
|
|
from torch.testing._internal.common_nn import TestBase, module_tests, new_module_tests
|
|
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, make_tensor, run_tests, parametrize
|
|
from torch.testing._internal.common_methods_invocations import SampleInput, op_db
|
|
from torch.nn.utils._expanded_weights import ExpandedWeight
|
|
from torch.nn.utils._expanded_weights.expanded_weights_utils import forward_helper, set_grad_sample_if_exists, \
|
|
unpack_expanded_weight_or_tensor, sum_over_all_but_batch_and_last_n, standard_kwargs
|
|
|
|
class TestContext:
|
|
pass
|
|
|
|
class TestExpandedWeightHelperFunction(TestCase):
|
|
def test_forward_helper(self, device):
|
|
input = torch.randn(3, 4, device=device)
|
|
weight = torch.randn(5, 4, device=device)
|
|
bias = torch.randn(5, device=device)
|
|
for (weight_batched, bias_batched) in product([True, False], [True, False]):
|
|
maybe_batched_weight = ExpandedWeight(weight.clone().requires_grad_(), 3) if weight_batched else weight
|
|
maybe_batched_bias = ExpandedWeight(bias.clone().requires_grad_(), 3) if bias_batched else bias
|
|
args = (input, maybe_batched_weight, maybe_batched_bias)
|
|
expanded_args, expanded_kwargs = standard_kwargs(('bias',), args)
|
|
res = forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
|
|
expected = nn.functional.linear(input, weight, bias)
|
|
self.assertEqual(res, expected)
|
|
|
|
self.assertEqual(len(expanded_args), 2)
|
|
assert expanded_args[0] is args[0] # avoids property checks in assertEquals
|
|
assert expanded_args[1] is args[1] # avoids property checks in assertEquals
|
|
self.assertEqual(len(expanded_kwargs), 1)
|
|
assert expanded_kwargs['bias'] is args[2] # avoids property checks in assertEquals
|
|
|
|
def test_forward_helper_failure_args(self, device):
|
|
weight = torch.randn(5, 4, device=device)
|
|
bias = torch.randn(5, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, r"do not support inputs that are also ExpandedWeights."):
|
|
input = ExpandedWeight(torch.randn(3, 4, requires_grad=True), 3)
|
|
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (input, weight, bias))
|
|
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
|
|
with self.assertRaisesRegex(RuntimeError, r"requires a Tensor as the first input"):
|
|
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (3, weight, bias))
|
|
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
|
|
with self.assertRaisesRegex(RuntimeError, r"requires a batch dimension but got an input of size 0"):
|
|
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (torch.tensor(3), weight, bias))
|
|
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
|
|
with self.assertRaisesRegex(RuntimeError, r"0 is not a valid batch size for Expanded Weights"):
|
|
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (torch.randn(0, 1, 2), weight, bias))
|
|
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
|
|
input = torch.randn(3, 4)
|
|
for (weight_batched, bias_batched) in product([True, False], [True, False]):
|
|
if not weight_batched and not bias_batched:
|
|
continue
|
|
maybe_batched_weight = ExpandedWeight(weight.clone().requires_grad_(), 4) if weight_batched else weight
|
|
maybe_batched_bias = ExpandedWeight(bias.clone().requires_grad_(), 4) if bias_batched else bias
|
|
with self.assertRaisesRegex(RuntimeError, r"Expected ExpandedWeights to have batch size matching input"):
|
|
expanded_args, expanded_kwargs = standard_kwargs(('bias',), (input, maybe_batched_weight, maybe_batched_bias))
|
|
forward_helper(nn.functional.linear, expanded_args, expanded_kwargs)
|
|
|
|
def test_set_grad_sample_if_exists(self, device):
|
|
def test_fn(_):
|
|
return True
|
|
|
|
orig_weight = torch.randn(4, device=device, requires_grad=True)
|
|
expanded_weight = ExpandedWeight(orig_weight, 3)
|
|
set_grad_sample_if_exists(expanded_weight, test_fn)
|
|
self.assertTrue(hasattr(orig_weight, 'grad_sample'))
|
|
self.assertTrue(orig_weight.grad_sample)
|
|
|
|
basic_tensor = torch.randn(4, device=device)
|
|
set_grad_sample_if_exists(basic_tensor, test_fn)
|
|
self.assertFalse(hasattr(basic_tensor, 'grad_sample'))
|
|
|
|
non_tensor = 3
|
|
set_grad_sample_if_exists(non_tensor, test_fn)
|
|
self.assertFalse(hasattr(non_tensor, 'grad_sample'))
|
|
|
|
def test_set_grad_sample_if_exists_failure(self, device):
|
|
def test_fn(_):
|
|
return True
|
|
|
|
grad_tensor = torch.randn(4, requires_grad=True, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
|
|
set_grad_sample_if_exists(grad_tensor, test_fn)
|
|
|
|
def test_unpack_expanded_weight_or_tensor(self, device):
|
|
input = torch.randn(3, requires_grad=True, device=device)
|
|
self.assertEqual(input, unpack_expanded_weight_or_tensor(ExpandedWeight(input, 3)))
|
|
|
|
input.requires_grad_(False)
|
|
self.assertEqual(input, unpack_expanded_weight_or_tensor(input))
|
|
self.assertTrue(unpack_expanded_weight_or_tensor(4) is None)
|
|
|
|
def test_unpack_expanded_weight_or_tensor_with_custom_function(self, device):
|
|
input = torch.randn(3, requires_grad=True, device=device)
|
|
self.assertTrue(unpack_expanded_weight_or_tensor(ExpandedWeight(input, 3), lambda x: x is input))
|
|
|
|
input.requires_grad_(False)
|
|
self.assertTrue(unpack_expanded_weight_or_tensor(input, lambda x: x is input))
|
|
self.assertTrue(unpack_expanded_weight_or_tensor(4, lambda x: x is input) is None)
|
|
|
|
def test_unpack_expanded_weight_or_tensor_failure(self, device):
|
|
input = torch.randn(3, requires_grad=True, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
|
|
unpack_expanded_weight_or_tensor(input)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"does not support a mixture of ExpandedWeight parameters and normal Parameters"):
|
|
unpack_expanded_weight_or_tensor(input, lambda x: x is input)
|
|
|
|
def test_sum_over_all_but_batch_and_last_n(self, device):
|
|
input = torch.randn(1, 2, 3, 4, 5, device=device)
|
|
res = sum_over_all_but_batch_and_last_n(input, 2)
|
|
expected = input.sum((1, 2))
|
|
self.assertEqual(res, expected)
|
|
|
|
res = sum_over_all_but_batch_and_last_n(input, 0)
|
|
expected = input.sum((1, 2, 3, 4))
|
|
self.assertEqual(res, expected)
|
|
|
|
res = sum_over_all_but_batch_and_last_n(input, 4)
|
|
self.assertEqual(res, input)
|
|
|
|
class TestExpandedWeightFunctional(TestCase):
|
|
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
|
|
def test_expanded_weight_per_sample_grad(self, device, dtype, op):
|
|
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
|
|
for sample_input in supported_inputs(op, sample_inputs):
|
|
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
|
|
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
|
|
input = sample_input.input
|
|
args = sample_input.args
|
|
kwargs = sample_input.kwargs
|
|
batch_size = input.shape[0] if len(input.shape) > 1 else 1
|
|
|
|
# get per sample grads with ExpandedWeights objects
|
|
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
|
|
diff_input_list = (ew_input,) + tuple(ew_args) + tuple(ew_kwargs.values())
|
|
diff_input_list = [i for i in diff_input_list if is_diff_tensor(i)]
|
|
diff_input_list = [i.orig_weight if isinstance(i, ExpandedWeight) else i for i in diff_input_list]
|
|
if not diff_input_list:
|
|
continue
|
|
result = run_op(op, ew_input, *ew_args, **ew_kwargs)
|
|
result.sum().backward() # grad doesn't work with ExpandedWeight because it calls __torch_function__
|
|
expanded_weight_grad = tuple(i.grad_sample if hasattr(i, "grad_sample") else i.grad for i in diff_input_list)
|
|
|
|
# get per sample grads with for loop
|
|
func = partial(run_op, op)
|
|
per_sample_grad = for_loop_per_sample_grad(batch_size, input, func, *args, **kwargs)
|
|
|
|
# check equality
|
|
self.assertEqual(len(per_sample_grad), len(expanded_weight_grad))
|
|
for (result_grad, expected_grad) in zip(expanded_weight_grad, per_sample_grad):
|
|
if result_grad is None:
|
|
result_grad = torch.zeros_like(expected_grad)
|
|
self.assertEqual(result_grad, expected_grad)
|
|
|
|
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported, allowed_dtypes=(torch.double,))
|
|
def test_unsupported_expand_weights(self, device, dtype, op):
|
|
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
|
|
unsupported_inputs = supported_inputs(op, sample_inputs, supported_inputs=False)
|
|
for sample_input in unsupported_inputs:
|
|
with self.assertRaisesRegex(RuntimeError, r"Expanded Weights"):
|
|
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
|
|
sample_input = SampleInput(sample_input.args[0], args=(sample_input.input,), kwargs=sample_input.kwargs)
|
|
input = sample_input.input
|
|
|
|
batch_size = input.shape[0] if len(input.shape) > 1 else 1
|
|
|
|
# get per sample grads with ExpandedWeights objects
|
|
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
|
|
result = run_op(op, ew_input, *ew_args, **ew_kwargs)
|
|
diff_input_list = (ew_input,) + tuple(ew_args) + tuple(ew_kwargs.values())
|
|
diff_input_list = [i for i in diff_input_list if is_diff_tensor(i)]
|
|
diff_input_list = [i.orig_weight if isinstance(i, ExpandedWeight) else i for i in diff_input_list]
|
|
result.sum().backward() # grad doesn't work with ExpandedWeight because it calls __torch_function__
|
|
|
|
@ops(filter(lambda op: op.supports_expanded_weight, op_db), dtypes=OpDTypes.supported)
|
|
def test_expanded_weight_forward(self, device, dtype, op):
|
|
sample_inputs = op.sample_inputs(device, dtype)
|
|
for sample_input in supported_inputs(op, sample_inputs):
|
|
if op.name == "nn.functional.embedding": # embedding flips its argument order for autograd tests
|
|
sample_input = SampleInput(sample_input.args[0].clone(),
|
|
args=(sample_input.input.clone(),),
|
|
kwargs=sample_input.kwargs)
|
|
if "cuda" in device and "max_norm" in sample_input.kwargs and "padding_idx" in sample_input.kwargs:
|
|
self.skipTest("embedding is non-determinstic in this case, see issue #74679")
|
|
batch_size = sample_input.input.shape[0] if len(sample_input.input.shape) > 1 else 1
|
|
(ew_input, ew_args, ew_kwargs) = make_expanded_weight(sample_input, batch_size)
|
|
expanded_weight_result = run_op(op, ew_input, *ew_args, **ew_kwargs)
|
|
normal_result = run_op(op, sample_input.input, *sample_input.args, **sample_input.kwargs)
|
|
self.assertEqual(expanded_weight_result, normal_result)
|
|
|
|
def test_expanded_weight_error(self, device):
|
|
batch_size = 3
|
|
sample_input = make_tensor((batch_size, 4), dtype=torch.float32, device=device, requires_grad=True)
|
|
sample_weight = make_tensor((4), dtype=torch.float32, device=device, requires_grad=True)
|
|
with self.assertRaisesRegex(RuntimeError, r"Expanded Weights encountered but cannot handle function"):
|
|
torch.add(sample_input, ExpandedWeight(sample_weight, batch_size))
|
|
|
|
def _test_embedding_model(self, model, num_embedding, device):
|
|
batch_size = 32
|
|
input = torch.randint(0, num_embedding, (batch_size, 5, 5), device=device)
|
|
return self._test_model(partial(model, num_embedding=num_embedding), batch_size, input, device)
|
|
|
|
def _test_conv_model(self, model, input_size, num_dim, device):
|
|
batch_size = 32
|
|
input_ending = [input_size] * num_dim
|
|
input = torch.randn([batch_size, 3] + input_ending, device=device)
|
|
return self._test_model(partial(model, num_dim=num_dim), batch_size, input, device)
|
|
|
|
def _test_model(self, model, batch_size, input, device):
|
|
model = model(10).to(device)
|
|
targets = torch.randint(0, 10, (batch_size,), device=device)
|
|
criterion = CrossEntropyLoss(reduction='sum') # use a loss that doesn't average across the batch to test in a for loop
|
|
result = call_for_per_sample_grads(model, batch_size, input)
|
|
loss = criterion(result, targets)
|
|
loss.backward()
|
|
result = []
|
|
for weight in model.parameters():
|
|
result.append(weight.grad_sample)
|
|
del weight.grad_sample
|
|
|
|
expected = []
|
|
for i in range(batch_size):
|
|
loss = criterion(model(input[i].unsqueeze(0)), targets[i].unsqueeze(0))
|
|
expected.append(torch.autograd.grad(loss, model.parameters(), torch.ones_like(loss)))
|
|
|
|
expected = [torch.stack(grad) for grad in zip(*expected)]
|
|
for (res, exp) in zip(result, expected):
|
|
self.assertEqual(res, exp, atol=1e-4, rtol=5e-5)
|
|
|
|
|
|
def test_cnn_model(self, device):
|
|
def convnet(num_classes, num_dim):
|
|
return nn.Sequential(
|
|
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.AvgPool2d(kernel_size=2, stride=2),
|
|
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.AvgPool2d(kernel_size=2, stride=2),
|
|
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.AvgPool2d(kernel_size=2, stride=2),
|
|
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.AdaptiveAvgPool2d((1, 1)),
|
|
nn.Flatten(start_dim=1, end_dim=-1),
|
|
nn.Linear(128, num_classes, bias=True),
|
|
)
|
|
|
|
return self._test_conv_model(convnet, 28, 2, device)
|
|
|
|
@parametrize('num_dim', [1, 2, 3])
|
|
def test_instance_norm_model(self, num_dim, device):
|
|
def instance_norm_model(num_classes, num_dim):
|
|
conv_layer = nn.Conv1d if num_dim == 1 else nn.Conv2d if num_dim == 2 else nn.Conv3d
|
|
norm_layer = nn.InstanceNorm1d if num_dim == 1 else nn.InstanceNorm2d if num_dim == 2 else nn.InstanceNorm3d
|
|
return nn.Sequential(
|
|
conv_layer(3, 32, kernel_size=3, stride=1, padding=1),
|
|
norm_layer(32, affine=True),
|
|
nn.Flatten(start_dim=1, end_dim=-1),
|
|
nn.Linear(32 * (7 ** num_dim), num_classes, bias=True),
|
|
)
|
|
return self._test_conv_model(instance_norm_model, 7, num_dim, device)
|
|
|
|
@parametrize('num_dim', [1, 2, 3])
|
|
def test_group_norm_model(self, num_dim, device):
|
|
def group_norm_model(num_classes, num_dim):
|
|
conv_layer = nn.Conv1d if num_dim == 1 else nn.Conv2d if num_dim == 2 else nn.Conv3d
|
|
return nn.Sequential(
|
|
conv_layer(3, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.GroupNorm(8, 32, affine=True),
|
|
nn.Flatten(start_dim=1, end_dim=-1),
|
|
nn.Linear(32 * (7 ** num_dim), num_classes, bias=True),
|
|
)
|
|
return self._test_conv_model(group_norm_model, 7, num_dim, device)
|
|
|
|
@parametrize('num_dim', [1, 2, 3])
|
|
def test_layer_norm_model(self, num_dim, device):
|
|
def layer_norm_model(num_classes, num_dim):
|
|
conv_layer = nn.Conv1d if num_dim == 1 else nn.Conv2d if num_dim == 2 else nn.Conv3d
|
|
normalized_shape = [7] * num_dim
|
|
return nn.Sequential(
|
|
conv_layer(3, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.LayerNorm(normalized_shape, elementwise_affine=True),
|
|
nn.Flatten(start_dim=1, end_dim=-1),
|
|
nn.Linear(32 * (7 ** num_dim), num_classes, bias=True),
|
|
)
|
|
return self._test_conv_model(layer_norm_model, 7, num_dim, device)
|
|
|
|
def test_embedding_model(self, device):
|
|
def embedding_model(num_classes, num_embedding):
|
|
return nn.Sequential(
|
|
nn.Embedding(num_embedding, 15),
|
|
nn.Flatten(start_dim=1, end_dim=-1),
|
|
nn.Linear(375, num_classes, bias=True)
|
|
)
|
|
return self._test_embedding_model(embedding_model, 16, device)
|
|
|
|
def test_group_norm_error(self, device):
|
|
# group norm has to call native_group_norm. This checks that it hits the same errors
|
|
# that normal group norm would
|
|
|
|
N = 3
|
|
C = 5
|
|
inp = torch.randn(N, C)
|
|
with self.assertRaisesRegex(RuntimeError, r"Expected number of channels in input to be divisible"):
|
|
F.group_norm(inp, 2) # 5 is not divisible by 2
|
|
|
|
class TestExpandedWeightModule(TestCase):
|
|
def _do_test(self, module, input):
|
|
batch_size = input.shape[0]
|
|
diff_input = input.dtype == torch.float or input.dtype == torch.double
|
|
if diff_input:
|
|
input.requires_grad_()
|
|
with freeze_rng_state():
|
|
# get per sample grads with ExpandedWeights context manager
|
|
actual_res = call_for_per_sample_grads(module, batch_size, input).sum()
|
|
actual_res.backward()
|
|
actual_grads = []
|
|
for param in module.parameters():
|
|
actual_grads.append(param.grad_sample)
|
|
del param.grad_sample
|
|
if diff_input:
|
|
actual_grads.append(input.grad.clone())
|
|
input.grad = torch.zeros_like(input.grad)
|
|
|
|
# get per sample grads with a for loop
|
|
expected_res = torch.tensor(0., device=input.device, dtype=torch.double)
|
|
expected_grads = []
|
|
for i in range(batch_size):
|
|
input_slice = input[i]
|
|
diff_params = module.parameters()
|
|
if diff_input:
|
|
diff_params = chain(diff_params, (input_slice,))
|
|
res = module(input_slice.unsqueeze(0)).sum()
|
|
out_grads = torch.autograd.grad(res, diff_params, torch.ones_like(res), allow_unused=True)
|
|
expected_grads.append(out_grads)
|
|
expected_res += res
|
|
expected_grads = tuple(torch.stack(grad) for grad in zip(*expected_grads))
|
|
self.assertEqual(actual_res, expected_res)
|
|
[self.assertEqual(actual, expected) for (actual, expected) in zip(actual_grads, expected_grads)]
|
|
|
|
def _do_test_multi_input(self, module, input):
|
|
class TestModule(nn.Module):
|
|
def __init__(self, module):
|
|
super().__init__()
|
|
self.module = module
|
|
|
|
def forward(self, input):
|
|
return self.module(input) + self.module(input)
|
|
|
|
batch_size = input.shape[0]
|
|
diff_input = input.dtype == torch.float or input.dtype == torch.double
|
|
if diff_input:
|
|
input.requires_grad_()
|
|
with freeze_rng_state():
|
|
# get per sample grads with ExpandedWeights context manager, calling .backward() twice
|
|
test_module = TestModule(module)
|
|
actual_res = call_for_per_sample_grads(test_module, batch_size, input).sum()
|
|
actual_res.backward()
|
|
actual_grads = []
|
|
for param in module.parameters():
|
|
actual_grads.append(param.grad_sample)
|
|
del param.grad_sample
|
|
if diff_input:
|
|
actual_grads.append(input.grad.clone())
|
|
input.grad = torch.zeros_like(input.grad)
|
|
|
|
|
|
# get per sample grads with a for loop, running over the input twice
|
|
expected_grads = []
|
|
for i in range(batch_size):
|
|
input_slice = input[i]
|
|
diff_params = module.parameters()
|
|
if diff_input:
|
|
diff_params = chain(diff_params, (input_slice,))
|
|
res = module(input_slice.unsqueeze(0)).sum()
|
|
out_grads = torch.autograd.grad(res, diff_params, torch.ones_like(res), allow_unused=True)
|
|
expected_grads.append(out_grads)
|
|
expected_grads = tuple(torch.stack(grad) for grad in zip(*expected_grads))
|
|
expected_grads = tuple(expected_grad for expected_grad in expected_grads if expected_grad is not None)
|
|
assert [self.assertEqual(actual, 2 * expected) for (actual, expected) in zip(actual_grads, expected_grads)]
|
|
|
|
def test_per_sample_api_failing(self):
|
|
module = nn.Linear(10, 10)
|
|
input = torch.randn(64, 10)
|
|
with self.assertRaisesRegex(RuntimeError, r"Module passed must be nn.Module"):
|
|
call_for_per_sample_grads("fail", 64, input)
|
|
with self.assertRaisesRegex(RuntimeError, r"Batch size passed must be an integer"):
|
|
call_for_per_sample_grads(module, 6.4, input)
|
|
with self.assertRaisesRegex(RuntimeError, r"Batch size must be positive"):
|
|
call_for_per_sample_grads(module, -64, input)
|
|
with self.assertRaisesRegex(RuntimeError, r"incorrect for multiple calls"):
|
|
loss = call_for_per_sample_grads(module, 64, input).sum()
|
|
loss.backward() # populate grad_sample fields
|
|
call_for_per_sample_grads(module, 64, input)
|
|
|
|
class ContextManagerTests(TestBase):
|
|
def __init__(self, *args, **kwargs):
|
|
self.test_cpu = kwargs.get('test_cpu', True)
|
|
self.test_cuda = kwargs.get('test_cuda', True)
|
|
super().__init__(*args, **kwargs)
|
|
|
|
@property
|
|
def constructor_args(self):
|
|
return self._get_arg('constructor_args', False)
|
|
|
|
def test_context_manager(self, test_case, device):
|
|
kwargs = {'device': device, 'dtype': torch.double}
|
|
module = self.constructor(*self.constructor_args).to(**kwargs)
|
|
if 'Embedding' in self.get_name():
|
|
kwargs['dtype'] = torch.long
|
|
input = self._get_input().to(**kwargs)
|
|
if len(input.shape) == 0 or input.shape[0] == 0:
|
|
raise unittest.SkipTest("Can't get per sample gradients when no batch dim or batch dim is 0")
|
|
if self.constructor == torch.nn.Linear and len(input.shape) == 1:
|
|
raise unittest.SkipTest("Can't get per sample gradients for input of rank 1")
|
|
test_case._do_test(module, input)
|
|
|
|
def test_context_manager_multiple_inputs(self, test_case, device):
|
|
module = self.constructor(*self.constructor_args).to(device)
|
|
input = self._get_input()
|
|
if len(input.shape) == 0 or input.shape[0] == 0:
|
|
raise unittest.SkipTest("Can't get per sample gradients when no batch dim or batch dim is 0")
|
|
if self.constructor == torch.nn.Linear and len(input.shape) == 1:
|
|
raise unittest.SkipTest("Can't get per sample gradients for input of rank 1")
|
|
test_case._do_test_multi_input(module, input)
|
|
|
|
# TODO: Once all of these use ModuleInfo, replace with ModuleInfo tests
|
|
# These currently use the legacy nn tests
|
|
supported_modules = ['Linear', 'Conv1d', 'Conv2d', 'Conv3d', 'Embedding', 'LayerNorm', 'GroupNorm', 'InstanceNorm']
|
|
supported_tests = [t for t in module_tests + new_module_tests if 'module_name' in t and t['module_name'] in supported_modules]
|
|
for test_param in supported_tests:
|
|
if 'constructor' not in test_param:
|
|
name = test_param.pop('module_name')
|
|
test_param['constructor'] = getattr(nn, name)
|
|
decorator = test_param.pop('decorator', None)
|
|
test = ContextManagerTests(**test_param)
|
|
test_name = test.get_name()
|
|
if hasattr(TestExpandedWeightModule, test_name):
|
|
raise RuntimeError('Found two tests with the same name: ' + test_name)
|
|
test_name_multi_input = test.get_name() + "_multiple_inputs"
|
|
if hasattr(TestExpandedWeightModule, test_name_multi_input):
|
|
raise RuntimeError('Found two tests with the same name: ' + test_name)
|
|
if decorator is not None:
|
|
fn = decorator(fn)
|
|
if test.test_cpu:
|
|
setattr(TestExpandedWeightModule, test_name, lambda self, test=test: test.test_context_manager(self, 'cpu'))
|
|
setattr(TestExpandedWeightModule, test_name_multi_input,
|
|
lambda self, test=test: test.test_context_manager_multiple_inputs(self, 'cpu'))
|
|
if TEST_CUDA and test.test_cuda:
|
|
# since this checks derivatives, only use double for precision
|
|
setattr(TestExpandedWeightModule, test_name + '_cuda_double',
|
|
lambda self, test=test: test.test_context_manager(self, 'cuda'))
|
|
|
|
# ------------- HELPER FUNCTIONS -----------------
|
|
|
|
def run_op(op, input, *args, **kwargs):
|
|
r"""
|
|
OpInfo for Embedding switches the input and weight so autograd tests will only check the derivative
|
|
of the weight, not the input, which can't be differentiable since its dtype is int. Calls op,
|
|
using the special ordering that Embedding's OpInfo expects for that case.
|
|
"""
|
|
if op.name == "nn.functional.embedding":
|
|
return op(args[0], input, **kwargs)
|
|
else:
|
|
return op(input, *args, **kwargs)
|
|
|
|
def make_expanded_weight(sample_input, batch_size):
|
|
def expanded_weight_or_clone(arg):
|
|
return ExpandedWeight(torch.clone(arg), batch_size) if is_diff_tensor(arg) else clone_if_tensor(arg)
|
|
|
|
ew_input = clone_if_tensor(sample_input.input)
|
|
ew_args = tuple(expanded_weight_or_clone(arg) for arg in sample_input.args)
|
|
ew_kwargs = {name: expanded_weight_or_clone(arg) for (name, arg) in sample_input.kwargs.items()}
|
|
return ew_input, ew_args, ew_kwargs
|
|
|
|
def supported_inputs(op, sample_inputs, supported_inputs=True):
|
|
r"""
|
|
ExpandedWeights currently does not support some use cases when there's no batch dimension or
|
|
operations that would cause inter-batch operations. Removes all of the cases it cannot deal with
|
|
"""
|
|
def filter_fn(input):
|
|
convolutions = ["nn.functional.conv1d", "nn.functional.conv2d", "nn.functional.conv3d"]
|
|
if op.name == "nn.functional.linear":
|
|
is_supported_input = len(input.input.shape) > 1 # input of rank 1 means no batch dim
|
|
elif op.name == "nn.functional.layer_norm":
|
|
normalized_shape = input.args[0]
|
|
is_supported_input = input.input.shape != normalized_shape # would cause inter-batch operations
|
|
elif op.name in convolutions:
|
|
# currently can't deal with padding computation on Python level
|
|
is_supported_input = 'padding' not in input.kwargs or not isinstance(input.kwargs['padding'], str)
|
|
elif op.name == "nn.functional.embedding":
|
|
idx = input.args[0]
|
|
is_supported_input = len(idx.shape) > 1 # there's no batch size
|
|
else:
|
|
is_supported_input = True
|
|
is_supported_input = is_supported_input and input.input.shape[0] > 0 # 0 is not a valid batch size
|
|
return is_supported_input if supported_inputs else not is_supported_input
|
|
return [input for input in sample_inputs if filter_fn(input)]
|
|
|
|
def for_loop_per_sample_grad(batch_size, input, func, *args, **kwargs):
|
|
# get per sample grads by getting derivative for each input in a for loop
|
|
per_sample_grad = []
|
|
for i in range(batch_size):
|
|
per_sample_input = input[i]
|
|
result = func(per_sample_input.unsqueeze(0), *args, **kwargs)
|
|
diff_input_list = (per_sample_input,) + tuple(args) + tuple(kwargs.values())
|
|
diff_input_list = [i for i in diff_input_list if isinstance(i, torch.Tensor) and i.requires_grad]
|
|
per_sample_grad.append(torch.autograd.grad(result, diff_input_list, torch.ones_like(result), allow_unused=True))
|
|
if len(per_sample_grad) == batch_size:
|
|
per_sample_grad = tuple(torch.stack(grad) for grad in zip(*per_sample_grad))
|
|
return per_sample_grad
|
|
|
|
def is_diff_tensor(t):
|
|
return isinstance(t, ExpandedWeight) or (isinstance(t, torch.Tensor) and t.requires_grad)
|
|
|
|
def clone_if_tensor(t):
|
|
if isinstance(t, torch.Tensor):
|
|
res = torch.clone(t).detach()
|
|
res.requires_grad_(t.requires_grad)
|
|
return res
|
|
else:
|
|
return t
|
|
|
|
instantiate_device_type_tests(TestExpandedWeightHelperFunction, globals())
|
|
instantiate_device_type_tests(TestExpandedWeightFunctional, globals())
|
|
if __name__ == '__main__':
|
|
run_tests()
|