mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
This is a lot of files changed! Don't panic! Here's how it works: * Previously, we set `follow_imports = silent` for our mypy.ini configuration. Per https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports, what this does is whenever we have an import to a module which is not listed as a file to be typechecked in mypy, we typecheck it as normal but suppress all errors that occurred in that file. * When mypy is run inside lintrunner, the list of files is precisely the files covered by the glob in lintrunner.toml, but with files in excludes excluded. * The top-level directive `# mypy: ignore-errors` instructs mypy to typecheck the file as normal, but ignore all errors. * Therefore, it should be equivalent to set `follow_imports = normal`, if we put `# mypy: ignore-errors` on all files that were previously excluded from the file list. * Having done this, we can remove the exclude list from .lintrunner.toml, since excluding a file from typechecking is baked into the files themselves. * torch/_dynamo and torch/_inductor were previously in the exclude list, because they were covered by MYPYINDUCTOR. It is not OK to mark these as `# mypy: ignore-errors` as this will impede typechecking on the alternate configuration. So they are temporarily being checked twice, but I am suppressing the errors in these files as the configurations are not quite the same. I plan to unify the configurations so this is only a temporary state. * There were some straggler type errors after these changes somehow, so I fixed them as needed. There weren't that many. In the future, to start type checking a file, just remove the ignore-errors directive from the top of the file. The codemod was done with this script authored by GPT-4: ``` import glob exclude_patterns = [ ... ] for pattern in exclude_patterns: for filepath in glob.glob(pattern, recursive=True): if filepath.endswith('.py'): with open(filepath, 'r+') as f: content = f.read() f.seek(0, 0) f.write('# mypy: ignore-errors\n\n' + content) ``` Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/118414 Approved by: https://github.com/thiagocrepaldi, https://github.com/albanD
192 lines
4.5 KiB
Python
192 lines
4.5 KiB
Python
# mypy: ignore-errors
|
|
|
|
"""Wrapper to mimic (parts of) np.random API surface.
|
|
|
|
NumPy has strict guarantees on reproducibility etc; here we don't give any.
|
|
|
|
Q: default dtype is float64 in numpy
|
|
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import functools
|
|
from math import sqrt
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
from . import _dtypes_impl, _util
|
|
from ._normalizations import array_or_scalar, ArrayLike, normalizer
|
|
|
|
|
|
__all__ = [
|
|
"seed",
|
|
"random_sample",
|
|
"sample",
|
|
"random",
|
|
"rand",
|
|
"randn",
|
|
"normal",
|
|
"choice",
|
|
"randint",
|
|
"shuffle",
|
|
"uniform",
|
|
]
|
|
|
|
|
|
def use_numpy_random():
|
|
# local import to avoid ref cycles
|
|
import torch._dynamo.config as config
|
|
|
|
return config.use_numpy_random_stream
|
|
|
|
|
|
def deco_stream(func):
|
|
@functools.wraps(func)
|
|
def inner(*args, **kwds):
|
|
if not use_numpy_random():
|
|
return func(*args, **kwds)
|
|
else:
|
|
import numpy
|
|
|
|
from ._ndarray import ndarray
|
|
|
|
f = getattr(numpy.random, func.__name__)
|
|
|
|
# numpy funcs accept numpy ndarrays, unwrap
|
|
args = tuple(
|
|
arg.tensor.numpy() if isinstance(arg, ndarray) else arg for arg in args
|
|
)
|
|
kwds = {
|
|
key: val.tensor.numpy() if isinstance(val, ndarray) else val
|
|
for key, val in kwds.items()
|
|
}
|
|
|
|
value = f(*args, **kwds)
|
|
|
|
# `value` can be either numpy.ndarray or python scalar (or None)
|
|
if isinstance(value, numpy.ndarray):
|
|
value = ndarray(torch.as_tensor(value))
|
|
|
|
return value
|
|
|
|
return inner
|
|
|
|
|
|
@deco_stream
|
|
def seed(seed=None):
|
|
if seed is not None:
|
|
torch.random.manual_seed(seed)
|
|
|
|
|
|
@deco_stream
|
|
def random_sample(size=None):
|
|
if size is None:
|
|
size = ()
|
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
|
values = torch.empty(size, dtype=dtype).uniform_()
|
|
return array_or_scalar(values, return_scalar=size == ())
|
|
|
|
|
|
def rand(*size):
|
|
if size == ():
|
|
size = None
|
|
return random_sample(size)
|
|
|
|
|
|
sample = random_sample
|
|
random = random_sample
|
|
|
|
|
|
@deco_stream
|
|
def uniform(low=0.0, high=1.0, size=None):
|
|
if size is None:
|
|
size = ()
|
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
|
values = torch.empty(size, dtype=dtype).uniform_(low, high)
|
|
return array_or_scalar(values, return_scalar=size == ())
|
|
|
|
|
|
@deco_stream
|
|
def randn(*size):
|
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
|
values = torch.randn(size, dtype=dtype)
|
|
return array_or_scalar(values, return_scalar=size == ())
|
|
|
|
|
|
@deco_stream
|
|
def normal(loc=0.0, scale=1.0, size=None):
|
|
if size is None:
|
|
size = ()
|
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
|
values = torch.empty(size, dtype=dtype).normal_(loc, scale)
|
|
return array_or_scalar(values, return_scalar=size == ())
|
|
|
|
|
|
@deco_stream
|
|
def shuffle(x):
|
|
# no @normalizer because we do not cast e.g. lists to tensors
|
|
from ._ndarray import ndarray
|
|
|
|
if isinstance(x, torch.Tensor):
|
|
tensor = x
|
|
elif isinstance(x, ndarray):
|
|
tensor = x.tensor
|
|
else:
|
|
raise NotImplementedError("We do not random.shuffle lists in-place")
|
|
|
|
perm = torch.randperm(tensor.shape[0])
|
|
xp = tensor[perm]
|
|
tensor.copy_(xp)
|
|
|
|
|
|
@deco_stream
|
|
def randint(low, high=None, size=None):
|
|
if size is None:
|
|
size = ()
|
|
if not isinstance(size, (tuple, list)):
|
|
size = (size,)
|
|
if high is None:
|
|
low, high = 0, low
|
|
values = torch.randint(low, high, size=size)
|
|
return array_or_scalar(values, int, return_scalar=size == ())
|
|
|
|
|
|
@deco_stream
|
|
@normalizer
|
|
def choice(a: ArrayLike, size=None, replace=True, p: Optional[ArrayLike] = None):
|
|
# https://stackoverflow.com/questions/59461811/random-choice-with-pytorch
|
|
if a.numel() == 1:
|
|
a = torch.arange(a)
|
|
|
|
# TODO: check a.dtype is integer -- cf np.random.choice(3.4) which raises
|
|
|
|
# number of draws
|
|
if size is None:
|
|
num_el = 1
|
|
elif _util.is_sequence(size):
|
|
num_el = 1
|
|
for el in size:
|
|
num_el *= el
|
|
else:
|
|
num_el = size
|
|
|
|
# prepare the probabilities
|
|
if p is None:
|
|
p = torch.ones_like(a) / a.shape[0]
|
|
|
|
# cf https://github.com/numpy/numpy/blob/main/numpy/random/mtrand.pyx#L973
|
|
atol = sqrt(torch.finfo(p.dtype).eps)
|
|
if abs(p.sum() - 1.0) > atol:
|
|
raise ValueError("probabilities do not sum to 1.")
|
|
|
|
# actually sample
|
|
indices = torch.multinomial(p, num_el, replacement=replace)
|
|
|
|
if _util.is_sequence(size):
|
|
indices = indices.reshape(size)
|
|
|
|
samples = a[indices]
|
|
|
|
return samples
|