mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
FIXES #113263. Same idea as in https://github.com/pytorch/pytorch/pull/113417, but we need a more intrusive C API to silently nop default saved tensor hooks, in order to support user-code that use torch.autograd.disable_saved_tensors_hooks (see test_unpack_hooks_can_be_disabled). We mock the output of get_hooks while leaving push/pop untouched. For compiled autograd, we're firing pack hooks once and unpack hooks twice right now, I'll look into this separately from this issue. Pull Request resolved: https://github.com/pytorch/pytorch/pull/123196 Approved by: https://github.com/soulitzer
348 lines
11 KiB
Python
348 lines
11 KiB
Python
# Owner(s): ["oncall: pt2"]
|
|
import functools
|
|
import sys
|
|
import unittest
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from functorch.compile import aot_function, min_cut_rematerialization_partition, nop
|
|
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
instantiate_device_type_tests,
|
|
)
|
|
|
|
from torch.testing._internal.common_utils import IS_CI, IS_WINDOWS, run_tests, TestCase
|
|
|
|
if IS_WINDOWS and IS_CI:
|
|
sys.stderr.write("torch.compile not supported on windows")
|
|
if __name__ == "__main__":
|
|
sys.exit(0)
|
|
raise unittest.SkipTest("torch.compile not supported on windows")
|
|
|
|
|
|
def count_philox_rand(gm, args, freq):
|
|
assert [node.target for node in gm.graph.nodes].count(
|
|
torch.ops.rngprims.philox_rand.default
|
|
) == freq
|
|
return gm
|
|
|
|
|
|
class TestFunctionalizationRngOps(TestCase):
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_rand_like(self, dtype, device):
|
|
def fn(x):
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
x = torch.rand(10, device=device, dtype=dtype)
|
|
|
|
for seed in range(10):
|
|
torch.cuda.manual_seed(seed)
|
|
ref = fn(x)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
aot_fn = aot_function(fn, functools.partial(count_philox_rand, freq=2))
|
|
res = aot_fn(x)
|
|
|
|
self.assertEqual(ref, res)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_rand_like_dynamic(self, dtype, device):
|
|
def fn(x):
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
for seed in range(1, 10):
|
|
shape = (seed, seed)
|
|
x = torch.rand(shape, device=device, dtype=dtype)
|
|
torch.cuda.manual_seed(seed)
|
|
ref = fn(x)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
opt_fn = torch.compile(fn, backend="aot_eager", dynamic=True)
|
|
res = opt_fn(x)
|
|
|
|
self.assertEqual(ref, res)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_rand_like_dynamic_bwd(self, dtype, device):
|
|
def fn(x):
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
for seed in range(1, 10):
|
|
shape = (seed, seed)
|
|
x = torch.rand(shape, device=device, dtype=dtype, requires_grad=True)
|
|
torch.cuda.manual_seed(seed)
|
|
ref = fn(x)
|
|
ref.sum().backward()
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
opt_fn = torch.compile(fn, backend="aot_eager", dynamic=True)
|
|
res = opt_fn(x)
|
|
res.sum().backward()
|
|
|
|
self.assertEqual(ref, res)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_rand(self, dtype, device):
|
|
shape = (10,)
|
|
|
|
def fn(x):
|
|
a = torch.rand(*shape, device=device, dtype=dtype) * x
|
|
a = torch.rand(*shape, device=device, dtype=dtype) * a
|
|
return a
|
|
|
|
x = torch.rand(*shape, device=device, dtype=dtype)
|
|
|
|
for seed in range(10):
|
|
torch.cuda.manual_seed(seed)
|
|
ref = fn(x)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
aot_fn = aot_function(fn, functools.partial(count_philox_rand, freq=2))
|
|
res = aot_fn(x)
|
|
|
|
self.assertEqual(ref, res)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_autograd_function(self, dtype, device):
|
|
shape = (16, 16)
|
|
|
|
class Custom(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.save_for_backward(x)
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
(x,) = ctx.saved_tensors
|
|
return grad_out * torch.rand_like(grad_out) * torch.cos(x)
|
|
|
|
custom = Custom.apply
|
|
|
|
x = torch.rand(*shape, device=device, dtype=dtype, requires_grad=True)
|
|
|
|
x_clone = x.clone().detach().requires_grad_(True)
|
|
|
|
torch.cuda.manual_seed(123)
|
|
ref = custom(x)
|
|
ref.sum().backward()
|
|
|
|
torch.cuda.manual_seed(123)
|
|
fwd_compiler = functools.partial(count_philox_rand, freq=2)
|
|
bwd_compiler = functools.partial(count_philox_rand, freq=1)
|
|
aot_custom = aot_function(custom, fwd_compiler, bwd_compiler)
|
|
res = aot_custom(x_clone)
|
|
res.sum().backward()
|
|
|
|
self.assertEqual(ref, res)
|
|
self.assertEqual(x.grad, x_clone.grad)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_multiple_subgraphs(self, dtype, device):
|
|
# Checks that rng state is maintained when there are multiple aot traced
|
|
# graphs.
|
|
shape = (16, 16)
|
|
|
|
class CustomOp1(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.save_for_backward(x)
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
(x,) = ctx.saved_tensors
|
|
return grad_out * torch.rand_like(grad_out) * torch.cos(x)
|
|
|
|
class CustomOp2(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.save_for_backward(x)
|
|
a = torch.rand_like(x) * x
|
|
return a
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
(x,) = ctx.saved_tensors
|
|
return grad_out * torch.rand_like(grad_out) * torch.rand_like(x)
|
|
|
|
custom_op1 = CustomOp1.apply
|
|
custom_op2 = CustomOp2.apply
|
|
|
|
def fn(x):
|
|
a = custom_op1(x)
|
|
b = a.sin()
|
|
return custom_op2(b)
|
|
|
|
fwd_compiler = functools.partial(count_philox_rand, freq=2)
|
|
bwd_compiler = functools.partial(count_philox_rand, freq=1)
|
|
aot_custom_op1 = aot_function(custom_op1, fwd_compiler, bwd_compiler)
|
|
fwd_compiler = functools.partial(count_philox_rand, freq=1)
|
|
bwd_compiler = functools.partial(count_philox_rand, freq=2)
|
|
aot_custom_op2 = aot_function(custom_op2, fwd_compiler, bwd_compiler)
|
|
|
|
def aot_fn(x):
|
|
a = aot_custom_op1(x)
|
|
b = a.sin()
|
|
return aot_custom_op2(b)
|
|
|
|
for seed in range(10):
|
|
torch.cuda.manual_seed(seed)
|
|
x = torch.rand(*shape, device=device, dtype=dtype, requires_grad=True)
|
|
x_clone = x.clone().detach().requires_grad_(True)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
ref = fn(x)
|
|
ref.sum().backward()
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
res = aot_fn(x_clone)
|
|
res.sum().backward()
|
|
|
|
self.assertEqual(ref, res)
|
|
self.assertEqual(x.grad, x_clone.grad)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_set_get_rng_state(self, dtype, device):
|
|
def fn(x):
|
|
a = torch.rand_like(x) * x
|
|
state = torch.cuda.get_rng_state()
|
|
a = torch.rand_like(x) * a
|
|
torch.cuda.set_rng_state(state)
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
x = torch.rand(10, device=device, dtype=dtype)
|
|
|
|
for seed in range(10):
|
|
torch.cuda.manual_seed(seed)
|
|
ref = fn(x)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
fwd_compiler = functools.partial(count_philox_rand, freq=3)
|
|
aot_fn = aot_function(fn, fwd_compiler)
|
|
res = aot_fn(x)
|
|
|
|
self.assertEqual(ref, res)
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_min_cut_partitioner(self, dtype, device):
|
|
# Checks that the calling convention is maintained
|
|
shape = (16, 16)
|
|
|
|
def fn(x):
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
a = torch.sin(a)
|
|
a = torch.sin(a)
|
|
a = torch.sin(a)
|
|
return a
|
|
|
|
x = torch.rand(*shape, device=device, dtype=dtype, requires_grad=True)
|
|
|
|
x_clone = x.clone().detach().requires_grad_(True)
|
|
|
|
torch.cuda.manual_seed(123)
|
|
ref = fn(x)
|
|
ref.sum().backward()
|
|
|
|
torch.cuda.manual_seed(123)
|
|
fwd_compiler = functools.partial(count_philox_rand, freq=2)
|
|
bwd_compiler = functools.partial(count_philox_rand, freq=0)
|
|
aot_custom = aot_function(
|
|
fn,
|
|
fwd_compiler,
|
|
bwd_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
# aot_custom = aot_function(fn, fwd_compiler, bwd_compiler)
|
|
res = aot_custom(x_clone)
|
|
res.sum().backward()
|
|
|
|
self.assertEqual(ref, res)
|
|
self.assertEqual(x.grad, x_clone.grad)
|
|
|
|
# TODO - Dropout needs more work because of offset calculation
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
@dtypes(torch.float32)
|
|
def test_checkpoint(self, dtype, device):
|
|
def g(x, y):
|
|
return torch.nn.functional.dropout(x, 0.6)
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(g, x, y, use_reentrant=False)
|
|
|
|
# x = torch.rand(2, 2, device="cuda", requires_grad=True)
|
|
x = torch.ones(2, 2, device="cuda", requires_grad=True)
|
|
y = torch.rand(2, 2, device="cuda", requires_grad=True)
|
|
torch.cuda.manual_seed(123)
|
|
ref = fn(x, y)
|
|
|
|
# With checkpointing we should recompute dropout in bwd, and philox_rand is passed from fwd
|
|
fwd_compiler = functools.partial(count_philox_rand, freq=1)
|
|
bwd_compiler = functools.partial(count_philox_rand, freq=0)
|
|
aot_fn = aot_function(fn, fwd_compiler, bwd_compiler)
|
|
# We cant check accuracy here because rand_like generated different rand numbers than dropout
|
|
res = aot_fn(x, y)
|
|
res.sum().backward()
|
|
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_dropout_decomp(self, dtype, device):
|
|
def fn(x):
|
|
return torch.nn.functional.dropout(x, 0.6) * x
|
|
|
|
x = torch.rand(10, device=device, dtype=dtype)
|
|
|
|
# Ensure the decomp is happening
|
|
aot_fn = aot_function(fn, functools.partial(count_philox_rand, freq=1))
|
|
# We cant check accuracy here because rand_like generated different rand numbers than dropout
|
|
aot_fn(x)
|
|
|
|
|
|
only_for = ("cuda",)
|
|
instantiate_device_type_tests(TestFunctionalizationRngOps, globals(), only_for=only_for)
|
|
|
|
|
|
class NegativeTest(TestCase):
|
|
@dtypes(torch.float32)
|
|
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
|
|
def test_on_cpu(self, dtype, device):
|
|
def fn(x):
|
|
a = torch.rand_like(x) * x
|
|
a = torch.rand_like(x) * a
|
|
return a
|
|
|
|
x = torch.rand(10, device=device, dtype=dtype)
|
|
|
|
aot_fn = aot_function(fn, nop)
|
|
with self.assertRaises(RuntimeError):
|
|
aot_fn(x)
|
|
|
|
|
|
only_for = ("cpu",)
|
|
instantiate_device_type_tests(NegativeTest, globals(), only_for=only_for)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|