mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
This reverts commit 7cfd23636c8fa6fcbb8bf3ea34e15b847ec9ad9d. Reverted https://github.com/pytorch/pytorch/pull/134935 on behalf of https://github.com/izaitsevfb due to breaks internal builds, caffe2 is still used internally ([comment](https://github.com/pytorch/pytorch/pull/134935#issuecomment-2349368152))
484 lines
16 KiB
C++
484 lines
16 KiB
C++
#include <array>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "caffe2/serialize/inline_container.h"
|
|
#include <c10/util/Logging.h>
|
|
#include "c10/util/irange.h"
|
|
|
|
namespace caffe2 {
|
|
namespace serialize {
|
|
namespace {
|
|
|
|
TEST(PyTorchStreamWriterAndReader, SaveAndLoad) {
|
|
int64_t kFieldAlignment = 64L;
|
|
|
|
std::ostringstream oss;
|
|
// write records through writers
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 127> data1;
|
|
// Inplace memory buffer
|
|
std::vector<uint8_t> buf(data1.size());
|
|
|
|
for (auto i : c10::irange(data1.size())) {
|
|
data1[i] = data1.size() - i;
|
|
}
|
|
writer.writeRecord("key1", data1.data(), data1.size());
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 64> data2;
|
|
for (auto i : c10::irange(data2.size())) {
|
|
data2[i] = data2.size() - i;
|
|
}
|
|
writer.writeRecord("key2", data2.data(), data2.size());
|
|
|
|
const std::unordered_set<std::string>& written_records =
|
|
writer.getAllWrittenRecords();
|
|
ASSERT_EQ(written_records.size(), 2);
|
|
ASSERT_EQ(written_records.count("key1"), 1);
|
|
ASSERT_EQ(written_records.count("key2"), 1);
|
|
|
|
writer.writeEndOfFile();
|
|
ASSERT_EQ(written_records.count(kSerializationIdRecordName), 1);
|
|
|
|
std::string the_file = oss.str();
|
|
const char* file_name = "output.zip";
|
|
std::ofstream foo(file_name);
|
|
foo.write(the_file.c_str(), the_file.size());
|
|
foo.close();
|
|
|
|
std::istringstream iss(the_file);
|
|
|
|
// read records through readers
|
|
PyTorchStreamReader reader(&iss);
|
|
ASSERT_TRUE(reader.hasRecord("key1"));
|
|
ASSERT_TRUE(reader.hasRecord("key2"));
|
|
ASSERT_FALSE(reader.hasRecord("key2000"));
|
|
at::DataPtr data_ptr;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
int64_t size;
|
|
std::tie(data_ptr, size) = reader.getRecord("key1");
|
|
size_t off1 = reader.getRecordOffset("key1");
|
|
ASSERT_EQ(size, data1.size());
|
|
ASSERT_EQ(memcmp(data_ptr.get(), data1.data(), data1.size()), 0);
|
|
ASSERT_EQ(memcmp(the_file.c_str() + off1, data1.data(), data1.size()), 0);
|
|
ASSERT_EQ(off1 % kFieldAlignment, 0);
|
|
// inplace getRecord() test
|
|
std::vector<uint8_t> dst(size);
|
|
size_t ret = reader.getRecord("key1", dst.data(), size);
|
|
ASSERT_EQ(ret, size);
|
|
ASSERT_EQ(memcmp(dst.data(), data1.data(), size), 0);
|
|
// chunked getRecord() test
|
|
ret = reader.getRecord(
|
|
"key1", dst.data(), size, 3, buf.data(), [](void* dst, const void* src, size_t n) {
|
|
memcpy(dst, src, n);
|
|
});
|
|
ASSERT_EQ(ret, size);
|
|
ASSERT_EQ(memcmp(dst.data(), data1.data(), size), 0);
|
|
|
|
std::tie(data_ptr, size) = reader.getRecord("key2");
|
|
size_t off2 = reader.getRecordOffset("key2");
|
|
ASSERT_EQ(off2 % kFieldAlignment, 0);
|
|
|
|
ASSERT_EQ(size, data2.size());
|
|
ASSERT_EQ(memcmp(data_ptr.get(), data2.data(), data2.size()), 0);
|
|
ASSERT_EQ(memcmp(the_file.c_str() + off2, data2.data(), data2.size()), 0);
|
|
// inplace getRecord() test
|
|
dst.resize(size);
|
|
ret = reader.getRecord("key2", dst.data(), size);
|
|
ASSERT_EQ(ret, size);
|
|
ASSERT_EQ(memcmp(dst.data(), data2.data(), size), 0);
|
|
// chunked getRecord() test
|
|
ret = reader.getRecord(
|
|
"key2", dst.data(), size, 3, buf.data(), [](void* dst, const void* src, size_t n) {
|
|
memcpy(dst, src, n);
|
|
});
|
|
ASSERT_EQ(ret, size);
|
|
ASSERT_EQ(memcmp(dst.data(), data2.data(), size), 0);
|
|
// clean up
|
|
remove(file_name);
|
|
}
|
|
|
|
TEST(PyTorchStreamWriterAndReader, LoadWithMultiThreads) {
|
|
|
|
std::ostringstream oss;
|
|
// write records through writers
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 127> data1;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 64> data2;
|
|
for (auto i : c10::irange(data1.size())) {
|
|
data1[i] = data1.size() - i;
|
|
}
|
|
writer.writeRecord("key1", data1.data(), data1.size());
|
|
|
|
for (auto i : c10::irange(data2.size())) {
|
|
data2[i] = data2.size() - i;
|
|
}
|
|
writer.writeRecord("key2", data2.data(), data2.size());
|
|
|
|
const std::unordered_set<std::string>& written_records =
|
|
writer.getAllWrittenRecords();
|
|
ASSERT_EQ(written_records.size(), 2);
|
|
ASSERT_EQ(written_records.count("key1"), 1);
|
|
ASSERT_EQ(written_records.count("key2"), 1);
|
|
|
|
writer.writeEndOfFile();
|
|
ASSERT_EQ(written_records.count(kSerializationIdRecordName), 1);
|
|
|
|
std::string the_file = oss.str();
|
|
const char* file_name = "output.zip";
|
|
std::ofstream foo(file_name);
|
|
foo.write(the_file.c_str(), the_file.size());
|
|
foo.close();
|
|
|
|
// read records through pytorchStreamReader
|
|
std::istringstream iss(the_file);
|
|
PyTorchStreamReader reader(&iss);
|
|
reader.setAdditionalReaderSizeThreshold(0);
|
|
// before testing, sanity check
|
|
int64_t size1, size2, ret;
|
|
at::DataPtr data_ptr;
|
|
std::tie(data_ptr, size1) = reader.getRecord("key1");
|
|
std::tie(data_ptr, size2) = reader.getRecord("key2");
|
|
|
|
// Test getRecord(name, additional_readers)
|
|
std::vector<std::shared_ptr<ReadAdapterInterface>> additionalReader;
|
|
for(int i=0; i<10; ++i){
|
|
// Test various sized additional readers.
|
|
std::tie(data_ptr, ret) = reader.getRecord("key1", additionalReader);
|
|
ASSERT_EQ(ret, size1);
|
|
ASSERT_EQ(memcmp(data_ptr.get(), data1.data(), size1), 0);
|
|
|
|
std::tie(data_ptr, ret) = reader.getRecord("key2", additionalReader);
|
|
ASSERT_EQ(ret, size2);
|
|
ASSERT_EQ(memcmp(data_ptr.get(), data2.data(), size2), 0);
|
|
}
|
|
|
|
// Inplace multi-threading getRecord(name, dst, n, additional_readers) test
|
|
additionalReader.clear();
|
|
std::vector<uint8_t> dst1(size1), dst2(size2);
|
|
for(int i=0; i<10; ++i){
|
|
// Test various sizes of read threads
|
|
additionalReader.push_back(std::make_unique<IStreamAdapter>(&iss));
|
|
|
|
ret = reader.getRecord("key1", dst1.data(), size1, additionalReader);
|
|
ASSERT_EQ(ret, size1);
|
|
ASSERT_EQ(memcmp(dst1.data(), data1.data(), size1), 0);
|
|
|
|
ret = reader.getRecord("key2", dst2.data(), size2, additionalReader);
|
|
ASSERT_EQ(ret, size2);
|
|
ASSERT_EQ(memcmp(dst2.data(), data2.data(), size2), 0);
|
|
}
|
|
// clean up
|
|
remove(file_name);
|
|
}
|
|
|
|
TEST(PytorchStreamWriterAndReader, GetNonexistentRecordThrows) {
|
|
std::ostringstream oss;
|
|
// write records through writers
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 127> data1;
|
|
|
|
// Inplace memory buffer
|
|
std::vector<uint8_t> buf;
|
|
|
|
for (auto i : c10::irange(data1.size())) {
|
|
data1[i] = data1.size() - i;
|
|
}
|
|
writer.writeRecord("key1", data1.data(), data1.size());
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 64> data2;
|
|
for (auto i : c10::irange(data2.size())) {
|
|
data2[i] = data2.size() - i;
|
|
}
|
|
writer.writeRecord("key2", data2.data(), data2.size());
|
|
|
|
const std::unordered_set<std::string>& written_records =
|
|
writer.getAllWrittenRecords();
|
|
ASSERT_EQ(written_records.size(), 2);
|
|
ASSERT_EQ(written_records.count("key1"), 1);
|
|
ASSERT_EQ(written_records.count("key2"), 1);
|
|
|
|
writer.writeEndOfFile();
|
|
ASSERT_EQ(written_records.count(kSerializationIdRecordName), 1);
|
|
|
|
std::string the_file = oss.str();
|
|
const char* file_name = "output2.zip";
|
|
std::ofstream foo(file_name);
|
|
foo.write(the_file.c_str(), the_file.size());
|
|
foo.close();
|
|
|
|
std::istringstream iss(the_file);
|
|
|
|
// read records through readers
|
|
PyTorchStreamReader reader(&iss);
|
|
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
|
|
EXPECT_THROW(reader.getRecord("key3"), c10::Error);
|
|
std::vector<uint8_t> dst(data1.size());
|
|
EXPECT_THROW(reader.getRecord("key3", dst.data(), data1.size()), c10::Error);
|
|
EXPECT_THROW(
|
|
reader.getRecord(
|
|
"key3",
|
|
dst.data(),
|
|
data1.size(),
|
|
3,
|
|
buf.data(),
|
|
[](void* dst, const void* src, size_t n) { memcpy(dst, src, n); }),
|
|
c10::Error);
|
|
|
|
// Reader should still work after throwing
|
|
EXPECT_TRUE(reader.hasRecord("key1"));
|
|
// clean up
|
|
remove(file_name);
|
|
}
|
|
|
|
TEST(PytorchStreamWriterAndReader, SkipDebugRecords) {
|
|
std::ostringstream oss;
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 127> data1;
|
|
// Inplace memory buffer
|
|
std::vector<uint8_t> buf(data1.size());
|
|
|
|
for (auto i : c10::irange(data1.size())) {
|
|
data1[i] = data1.size() - i;
|
|
}
|
|
writer.writeRecord("key1.debug_pkl", data1.data(), data1.size());
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 64> data2;
|
|
for (auto i : c10::irange(data2.size())) {
|
|
data2[i] = data2.size() - i;
|
|
}
|
|
writer.writeRecord("key2.debug_pkl", data2.data(), data2.size());
|
|
|
|
const std::unordered_set<std::string>& written_records =
|
|
writer.getAllWrittenRecords();
|
|
ASSERT_EQ(written_records.size(), 2);
|
|
ASSERT_EQ(written_records.count("key1.debug_pkl"), 1);
|
|
ASSERT_EQ(written_records.count("key2.debug_pkl"), 1);
|
|
writer.writeEndOfFile();
|
|
ASSERT_EQ(written_records.count(kSerializationIdRecordName), 1);
|
|
|
|
std::string the_file = oss.str();
|
|
const char* file_name = "output3.zip";
|
|
std::ofstream foo(file_name);
|
|
foo.write(the_file.c_str(), the_file.size());
|
|
foo.close();
|
|
|
|
std::istringstream iss(the_file);
|
|
|
|
// read records through readers
|
|
PyTorchStreamReader reader(&iss);
|
|
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
|
|
|
|
reader.setShouldLoadDebugSymbol(false);
|
|
EXPECT_FALSE(reader.hasRecord("key1.debug_pkl"));
|
|
at::DataPtr ptr;
|
|
size_t size;
|
|
std::tie(ptr, size) = reader.getRecord("key1.debug_pkl");
|
|
EXPECT_EQ(size, 0);
|
|
std::vector<uint8_t> dst(data1.size());
|
|
size_t ret = reader.getRecord("key1.debug_pkl", dst.data(), data1.size());
|
|
EXPECT_EQ(ret, 0);
|
|
ret = reader.getRecord(
|
|
"key1.debug_pkl",
|
|
dst.data(),
|
|
data1.size(),
|
|
3,
|
|
buf.data(),
|
|
[](void* dst, const void* src, size_t n) { memcpy(dst, src, n); });
|
|
EXPECT_EQ(ret, 0);
|
|
// clean up
|
|
remove(file_name);
|
|
}
|
|
|
|
TEST(PytorchStreamWriterAndReader, ValidSerializationId) {
|
|
std::ostringstream oss;
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
|
|
std::array<char, 127> data1;
|
|
|
|
for (auto i: c10::irange(data1.size())) {
|
|
data1[i] = data1.size() - i;
|
|
}
|
|
writer.writeRecord("key1.debug_pkl", data1.data(), data1.size());
|
|
writer.writeEndOfFile();
|
|
auto writer_serialization_id = writer.serializationId();
|
|
|
|
std::string the_file = oss.str();
|
|
|
|
std::istringstream iss(the_file);
|
|
|
|
// read records through readers
|
|
PyTorchStreamReader reader(&iss);
|
|
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
|
|
|
|
EXPECT_EQ(reader.serializationId(), writer_serialization_id);
|
|
|
|
// write a second time
|
|
PyTorchStreamWriter writer2([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
writer2.writeRecord("key1.debug_pkl", data1.data(), data1.size());
|
|
writer2.writeEndOfFile();
|
|
auto writer2_serialization_id = writer2.serializationId();
|
|
|
|
EXPECT_EQ(writer_serialization_id, writer2_serialization_id);
|
|
}
|
|
|
|
TEST(PytorchStreamWriterAndReader, SkipDuplicateSerializationIdRecords) {
|
|
std::ostringstream oss;
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
|
|
std::string dup_serialization_id = "dup-serialization-id";
|
|
writer.writeRecord(kSerializationIdRecordName, dup_serialization_id.c_str(), dup_serialization_id.size());
|
|
|
|
const std::unordered_set<std::string>& written_records =
|
|
writer.getAllWrittenRecords();
|
|
ASSERT_EQ(written_records.size(), 0);
|
|
writer.writeEndOfFile();
|
|
ASSERT_EQ(written_records.count(kSerializationIdRecordName), 1);
|
|
auto writer_serialization_id = writer.serializationId();
|
|
|
|
std::string the_file = oss.str();
|
|
const char* file_name = "output4.zip";
|
|
std::ofstream foo(file_name);
|
|
foo.write(the_file.c_str(), the_file.size());
|
|
foo.close();
|
|
|
|
std::istringstream iss(the_file);
|
|
|
|
// read records through readers
|
|
PyTorchStreamReader reader(&iss);
|
|
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
|
|
|
|
EXPECT_EQ(reader.serializationId(), writer_serialization_id);
|
|
// clean up
|
|
remove(file_name);
|
|
}
|
|
|
|
TEST(PytorchStreamWriterAndReader, LogAPIUsageMetadata) {
|
|
std::map<std::string, std::map<std::string, std::string>> logs;
|
|
|
|
SetAPIUsageMetadataLogger(
|
|
[&](const std::string& context,
|
|
const std::map<std::string, std::string>& metadata_map) {
|
|
logs.insert({context, metadata_map});
|
|
});
|
|
std::ostringstream oss;
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
writer.writeEndOfFile();
|
|
|
|
std::istringstream iss(oss.str());
|
|
// read records through readers
|
|
PyTorchStreamReader reader(&iss);
|
|
|
|
ASSERT_EQ(logs.size(), 2);
|
|
std::map<std::string, std::map<std::string, std::string>> expected_logs = {
|
|
{"pytorch.stream.writer.metadata",
|
|
{{"serialization_id", writer.serializationId()},
|
|
{"file_name", "archive"},
|
|
{"file_size", str(oss.str().length())}}},
|
|
{"pytorch.stream.reader.metadata",
|
|
{{"serialization_id", writer.serializationId()},
|
|
{"file_name", "archive"},
|
|
{"file_size", str(iss.str().length())}}}
|
|
};
|
|
ASSERT_EQ(expected_logs, logs);
|
|
|
|
// reset logger
|
|
SetAPIUsageMetadataLogger(
|
|
[&](const std::string& context,
|
|
const std::map<std::string, std::string>& metadata_map) {});
|
|
}
|
|
|
|
class ChunkRecordIteratorTest : public ::testing::TestWithParam<int64_t> {};
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
ChunkRecordIteratorTestGroup,
|
|
ChunkRecordIteratorTest,
|
|
testing::Values(100, 150, 1010));
|
|
|
|
TEST_P(ChunkRecordIteratorTest, ChunkRead) {
|
|
auto chunkSize = GetParam();
|
|
std::string zipFileName = "output_chunk_" + std::to_string(chunkSize) + ".zip";
|
|
const char* fileName = zipFileName.c_str();
|
|
const std::string recordName = "key1";
|
|
const size_t tensorDataSizeInBytes = 1000;
|
|
|
|
// write records through writers
|
|
std::ostringstream oss(std::ios::binary);
|
|
PyTorchStreamWriter writer([&](const void* b, size_t n) -> size_t {
|
|
oss.write(static_cast<const char*>(b), n);
|
|
return oss ? n : 0;
|
|
});
|
|
|
|
auto tensorData = std::vector<uint8_t>(tensorDataSizeInBytes, 1);
|
|
auto dataPtr = tensorData.data();
|
|
writer.writeRecord(recordName, dataPtr, tensorDataSizeInBytes);
|
|
const std::unordered_set<std::string>& written_records =
|
|
writer.getAllWrittenRecords();
|
|
ASSERT_EQ(written_records.size(), 1);
|
|
ASSERT_EQ(written_records.count(recordName), 1);
|
|
writer.writeEndOfFile();
|
|
ASSERT_EQ(written_records.count(kSerializationIdRecordName), 1);
|
|
|
|
std::string the_file = oss.str();
|
|
std::ofstream foo(fileName, std::ios::binary);
|
|
foo.write(the_file.c_str(), the_file.size());
|
|
foo.close();
|
|
LOG(INFO) << "Finished saving tensor into zip file " << fileName;
|
|
|
|
LOG(INFO) << "Testing chunk size " << chunkSize;
|
|
PyTorchStreamReader reader(fileName);
|
|
ASSERT_TRUE(reader.hasRecord(recordName));
|
|
auto chunkIterator = reader.createChunkReaderIter(
|
|
recordName, tensorDataSizeInBytes, chunkSize);
|
|
std::vector<uint8_t> buffer(chunkSize);
|
|
size_t totalReadSize = 0;
|
|
while (auto readSize = chunkIterator.next(buffer.data())) {
|
|
auto expectedData = std::vector<uint8_t>(readSize, 1);
|
|
ASSERT_EQ(memcmp(expectedData.data(), buffer.data(), readSize), 0);
|
|
totalReadSize += readSize;
|
|
}
|
|
ASSERT_EQ(totalReadSize, tensorDataSizeInBytes);
|
|
// clean up
|
|
remove(fileName);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace serialize
|
|
} // namespace caffe2
|