Files
pytorch/torch/_refs/linalg/__init__.py
Laith Sakka 5471e80fb4 Remove guard_size_oblivious from vector_norm decomposition. (#148809)
This PR remove the usage of guard_size_oblivious in vector_norm by inlining it in the runtime check,
this prevent any data dependent error from ever appearing here at the locations where guard_size_oblivious
used to exist. Before this PR it used to break potentially. This is NOT BC breaking or changing of semantics from eager.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148809
Approved by: https://github.com/bobrenjc93
2025-04-10 16:19:00 +00:00

338 lines
11 KiB
Python

# mypy: allow-untyped-defs
from functools import partial
from typing import Optional, Union
import torch
import torch._prims as prims
import torch._prims_common as utils
import torch._refs as refs
import torch._refs.linalg as linalg
from torch import Tensor
from torch._prims_common import (
check_fp_or_complex,
check_is_matrix,
Dim,
DimsType,
ELEMENTWISE_TYPE_PROMOTION_KIND,
IntLike,
TensorLikeType,
)
from torch._prims_common.wrappers import (
_maybe_convert_to_dtype,
elementwise_type_promotion_wrapper,
out_wrapper,
)
__all__ = [
"diagonal",
"matrix_norm",
"norm",
"svd",
"svdvals",
"vector_norm",
"vecdot",
"cross",
]
def _check_norm_dtype(dtype: Optional[torch.dtype], x_dtype: torch.dtype, fn_name: str):
"""
Checks related to the dtype kwarg in `linalg.*norm` functions
"""
if dtype is not None:
torch._check(
utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
lambda: f"{fn_name}: dtype should be floating point or complex. Got {dtype}",
)
torch._check(
utils.is_complex_dtype(dtype) == utils.is_complex_dtype(x_dtype),
lambda: "{fn_name}: dtype should be {d} for {d} inputs. Got {dtype}".format(
fn_name=fn_name,
d="complex" if utils.is_complex_dtype(x_dtype) else "real",
dtype=dtype,
),
)
torch._check(
utils.get_higher_dtype(dtype, x_dtype) == dtype,
lambda: f"{fn_name}: the dtype of the input ({x_dtype}) should be convertible "
"without narrowing to the specified dtype ({dtype})",
)
import operator
# Utilities should come BEFORE this import
from torch._decomp import register_decomposition
from torch._decomp.decompositions import pw_cast_for_opmath
@register_decomposition(torch._ops.ops.aten.linalg_cross)
@out_wrapper()
@pw_cast_for_opmath
def cross(a: Tensor, b: Tensor, dim: int = -1):
torch._check(
a.ndim == b.ndim,
lambda: "linalg.cross: inputs must have the same number of dimensions.",
)
torch._check(
a.size(dim) == 3 and b.size(dim) == 3,
lambda: f"linalg.cross: inputs dim {dim} must have length 3, got {a.size(dim)} and {b.size(dim)}",
)
a, b = torch.broadcast_tensors(a, b)
dim = utils.canonicalize_dim(a.ndim, dim)
idx = torch.arange(3, device=a.device)
return a.index_select(dim, (idx + 1) % 3) * b.index_select(
dim, (idx + 2) % 3
) - a.index_select(dim, (idx + 2) % 3) * b.index_select(dim, (idx + 1) % 3)
def diagonal(
input: TensorLikeType,
*,
offset: int = 0,
dim1: int = -2,
dim2: int = -1,
) -> TensorLikeType:
return torch.diagonal(input, offset=offset, dim1=dim1, dim2=dim2)
def _check_vector_norm_args(
x: TensorLikeType, ord: Union[float, int] = 2, dim: Optional[DimsType] = None
):
from torch.fx.experimental.symbolic_shapes import sym_or
if not (ord < 0.0 or ord == float("inf")):
return
torch._check(
sym_or(
x.numel() != 0,
not isinstance(dim, IntLike) and dim is not None and len(dim) != 0,
),
"linalg.vector_norm cannot compute the {ord} norm on an empty tensor "
"because the operation does not have an identity",
)
shape = x.shape
if dim is not None and not isinstance(dim, IntLike):
for d in dim:
torch._check(
sym_or(x.numel() != 0, d < len(shape) and d >= 0 and shape[d] != 0),
"linalg.vector_norm cannot compute the {ord} norm on the "
f"dimension {d} because this dimension is empty and the "
"operation does not have an identity",
)
@register_decomposition(torch._ops.ops.aten.linalg_vector_norm)
@out_wrapper(exact_dtype=True)
def vector_norm(
x: TensorLikeType,
ord: Union[float, int] = 2,
dim: Optional[DimsType] = None,
keepdim: bool = False,
*,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
check_fp_or_complex(x.dtype, "linalg.vector_norm")
if isinstance(dim, Dim):
dim = [dim] # type: ignore[assignment]
_check_vector_norm_args(x, ord, dim)
_check_norm_dtype(dtype, x.dtype, "linalg.vector_norm")
computation_dtype, result_dtype = utils.reduction_dtypes(
x, utils.REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT, dtype
)
to_result_dtype = partial(_maybe_convert_to_dtype, dtype=result_dtype)
# Implementation
if ord == 0.0:
return torch.sum(torch.ne(x, 0.0), dim=dim, keepdim=keepdim, dtype=result_dtype)
elif ord == float("inf"):
return to_result_dtype(torch.amax(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
elif ord == float("-inf"):
return to_result_dtype(torch.amin(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
else:
# From here on the computation dtype is important as the reduction is non-trivial
x = _maybe_convert_to_dtype(x, computation_dtype) # type: ignore[assignment]
reduce_sum = partial(torch.sum, dim=dim, keepdim=keepdim)
is_ord_even = ord % 2 == 0 if isinstance(ord, IntLike) else ord % 2.0 == 0.0
if (dim is None and x.numel() == 1) or (
dim is not None and (x.ndim > 0 and all(x.shape[d] == 1 for d in dim))
):
if x.ndim > 64:
raise RuntimeError(
f"Received a tensor with {x.ndim} dimensions, but only tensors with up to 64 dims are supported!"
)
x = torch.abs(x)
if keepdim or x.ndim == 0:
return to_result_dtype(x).contiguous()
elif dim is None:
return x.flatten()[0]
else:
new_shape = [s for d, s in enumerate(x.shape) if d not in dim]
return to_result_dtype(x.view(new_shape)).contiguous()
if not (is_ord_even and utils.is_float_dtype(x.dtype)):
x = torch.abs(x)
return to_result_dtype(torch.pow(reduce_sum(torch.pow(x, ord)), 1.0 / ord)) # type: ignore[return-value]
def _backshift_permutation(dim0, dim1, ndim):
# Auxiliary function for matrix_norm
# Computes the permutation that moves the two given dimensions to the back
ret = [i for i in range(ndim) if i != dim0 and i != dim1]
ret.extend((dim0, dim1))
return ret
def _inverse_permutation(perm):
# Given a permutation, returns its inverse. It's equivalent to argsort on an array
return [i for i, j in sorted(enumerate(perm), key=operator.itemgetter(1))]
# CompositeImplicitAutograd
@out_wrapper(exact_dtype=True)
def matrix_norm(
A: TensorLikeType,
ord: Union[float, str] = "fro",
dim: DimsType = (-2, -1),
keepdim: bool = False,
*,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
# shape
check_is_matrix(A, "linalg.matrix_norm")
# dim
dim = utils.canonicalize_dims(A.ndim, dim)
if isinstance(dim, Dim):
dim = (dim,) # type: ignore[assignment]
torch._check(
len(dim) == 2, lambda: "linalg.matrix_norm: dim must be a 2-tuple. Got {dim}"
)
torch._check(
dim[0] != dim[1],
lambda: "linalg.matrix_norm: dims must be different. Got ({dim[0]}, {dim[1]})",
)
# dtype arg
_check_norm_dtype(dtype, A.dtype, "linalg.matrix_norm")
if isinstance(ord, str):
# ord
torch._check(
ord in ("fro", "nuc"),
lambda: "linalg.matrix_norm: Order {ord} not supported.",
)
# dtype
check_fp_or_complex(
A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != "nuc"
)
if ord == "fro":
return vector_norm(A, 2, dim, keepdim, dtype=dtype)
else: # ord == "nuc"
if dtype is not None:
A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
perm = _backshift_permutation(dim[0], dim[1], A.ndim)
result = torch.sum(svdvals(prims.transpose(A, perm)), -1, keepdim)
if keepdim:
inv_perm = _inverse_permutation(perm)
result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
return result
else:
# ord
abs_ord = abs(ord)
torch._check(
abs_ord in (2, 1, float("inf")),
lambda: "linalg.matrix_norm: Order {ord} not supported.",
)
# dtype
check_fp_or_complex(
A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != 2
)
max_min = partial(torch.amax if ord > 0.0 else torch.amin, keepdim=keepdim)
if abs_ord == 2.0:
if dtype is not None:
A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
perm = _backshift_permutation(dim[0], dim[1], A.ndim)
result = max_min(svdvals(prims.transpose(A, perm)), dim=-1)
if keepdim:
inv_perm = _inverse_permutation(perm)
result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
return result
else: # 1, -1, inf, -inf
dim0, dim1 = dim
if abs_ord == float("inf"):
dim0, dim1 = dim1, dim0
if not keepdim and (dim0 < dim1):
dim1 -= 1
return max_min(
vector_norm(A, 1.0, dim=dim0, keepdim=keepdim, dtype=dtype), dim1
)
# CompositeImplicitAutograd
@out_wrapper(exact_dtype=True)
def norm(
A: TensorLikeType,
ord: Optional[Union[float, str]] = None,
dim: Optional[DimsType] = None,
keepdim: bool = False,
*,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
if dim is not None:
if isinstance(dim, Dim):
dim = (dim,) # type: ignore[assignment]
torch._check(
len(dim) in (1, 2),
lambda: "linalg.norm: If dim is specified, it must be of length 1 or 2. Got {dim}",
)
elif ord is not None:
torch._check(
A.ndim in (1, 2),
lambda: "linalg.norm: If dim is not specified but ord is, the input must be 1D or 2D. Got {A.ndim}D",
)
if ord is not None and (
(dim is not None and len(dim) == 2) or (dim is None and A.ndim == 2)
):
if dim is None:
dim = (0, 1)
return matrix_norm(A, ord, dim, keepdim, dtype=dtype)
else:
if ord is None:
ord = 2.0
return vector_norm(A, ord, dim, keepdim, dtype=dtype) # type: ignore[arg-type]
# CompositeImplicitAutograd
@out_wrapper("U", "S", "Vh", exact_dtype=True)
def svd(A: TensorLikeType, full_matrices: bool = True) -> tuple[Tensor, Tensor, Tensor]:
return prims.svd(A, full_matrices=full_matrices)
# CompositeImplicitAutograd
@out_wrapper(exact_dtype=True)
def svdvals(A: TensorLikeType) -> Tensor:
return svd(A, full_matrices=False)[1]
# CompositeImplicitAutograd
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("x", "y"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def vecdot(x: Tensor, y: Tensor, dim: int = -1) -> Tensor:
check_fp_or_complex(x.dtype, "linalg.vecdot")
return (x.conj() * y).sum(dim=dim)