Files
pytorch/test/cpp_api_parity/sample_functional.py
Will Feng (FAIAR) 2fa3c1570d Refactor C++ API parity test mechanism and turn it on in CI again (#35190)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35190

The following are the main changes:
- The main logic of C++ API parity test mechanism is moved from `test/test_cpp_api_parity.py` to `test/cpp_api_parity/module_impl_check.py` and `test/cpp_api_parity/functional_impl_check.py`, so that there is a clear separation between module tests and functional tests, although they still share a lot of common utility functions which are all in `test/cpp_api_parity/utils.py`.
- Module init tests (i.e. testing whether C++ module accepts the same constructor options as the corresponding Python module) is removed and will be added again in the future.
- `cpp_constructor_args` / `cpp_options_args` / `cpp_function_call` are added as appropriate to all test params dict in `torch/testing/_internal/common_nn.py`, to indicate how to run C++ API parity test for this test params dict.

Test Plan: Imported from OSS

Differential Revision: D20588198

Pulled By: yf225

fbshipit-source-id: 11238c560c8247129584b9b49df73fff40c4d81d
2020-04-03 11:20:36 -07:00

70 lines
2.1 KiB
Python

import torch
import torch.nn.functional as F
from torch.testing._internal.common_nn import wrap_functional
'''
`sample_functional` is used by `test_cpp_api_parity.py` to test that Python / C++ API
parity test harness works for `torch.nn.functional` functions.
When `has_parity=true` is passed to `sample_functional`, behavior of `sample_functional`
is the same as the C++ equivalent.
When `has_parity=false` is passed to `sample_functional`, behavior of `sample_functional`
is different from the C++ equivalent.
'''
def sample_functional(x, has_parity):
if has_parity:
return x * 2
else:
return x * 4
torch.nn.functional.sample_functional = sample_functional
SAMPLE_FUNCTIONAL_CPP_SOURCE = """\n
namespace torch {
namespace nn {
namespace functional {
struct C10_EXPORT SampleFunctionalFuncOptions {
SampleFunctionalFuncOptions(bool has_parity) : has_parity_(has_parity) {}
TORCH_ARG(bool, has_parity);
};
Tensor sample_functional(Tensor x, SampleFunctionalFuncOptions options) {
return x * 2;
}
} // namespace functional
} // namespace nn
} // namespace torch
"""
functional_tests = [
dict(
constructor=wrap_functional(F.sample_functional, has_parity=True),
cpp_options_args='F::SampleFunctionalFuncOptions(true)',
input_size=(1, 2, 3),
fullname='sample_functional_has_parity',
has_parity=True,
),
dict(
constructor=wrap_functional(F.sample_functional, has_parity=False),
cpp_options_args='F::SampleFunctionalFuncOptions(false)',
input_size=(1, 2, 3),
fullname='sample_functional_no_parity',
has_parity=False,
),
# This is to test that setting the `test_cpp_api_parity=False` flag skips
# the C++ API parity test accordingly (otherwise this test would run and
# throw a parity error).
dict(
constructor=wrap_functional(F.sample_functional, has_parity=False),
cpp_options_args='F::SampleFunctionalFuncOptions(false)',
input_size=(1, 2, 3),
fullname='sample_functional_THIS_TEST_SHOULD_BE_SKIPPED',
test_cpp_api_parity=False,
),
]