Files
pytorch/test/onnx/exporter/test_api.py
Ti-Tai Wang 543ddbf44c [ONNX] Support renaming in dynamic axes to shapes conversion (#165769)
Discovered in ##165748

This PR also deprecates the conversion. ONNX exporter team does not intend to maintain the conversion in long term.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165769
Approved by: https://github.com/justinchuby
2025-10-18 01:11:20 +00:00

578 lines
20 KiB
Python

# Owner(s): ["module: onnx"]
"""Simple API tests for the ONNX exporter."""
from __future__ import annotations
import io
import logging
import os
from onnxscript import BOOL, FLOAT, opset18 as op
import torch
from torch.onnx._internal.exporter import _testing as onnx_testing
from torch.testing._internal import common_utils
class SampleModel(torch.nn.Module):
def forward(self, x):
y = x + 1
z = y.relu()
return (y, z)
class SampleModelTwoInputs(torch.nn.Module):
def forward(self, x, b):
y = x + b
z = y.relu()
return (y, z)
class SampleModelReduction(torch.nn.Module):
def forward(self, x):
return x.sum()
class SampleModelForDynamicShapes(torch.nn.Module):
def forward(self, x, b):
return x.relu(), b.sigmoid()
class NestedModelForDynamicShapes(torch.nn.Module):
def forward(
self,
x: torch.Tensor,
ys: list[torch.Tensor],
zs: dict[str, torch.Tensor],
c: torch.Tensor,
):
y = ys[0] + ys[1] + zs["a"] + zs["b"]
w = 5
if x.shape[0] < 3 and c.shape[0] != 4:
return x + w, x + y, c
else:
return x - w, x - y, c
class SampleModelForDimOne(torch.nn.Module):
def forward(self, x, y, z):
return torch.cat((x, y), axis=1) + z
class TestExportAPIDynamo(common_utils.TestCase):
"""Tests for the ONNX exporter API when dynamo=True."""
def assert_export(
self, *args, strategy: str | None = "TorchExportNonStrictStrategy", **kwargs
):
onnx_program = torch.onnx.export(
*args, **kwargs, dynamo=True, fallback=False, verbose=False
)
assert onnx_program is not None
onnx_testing.assert_onnx_program(onnx_program, strategy=strategy)
return onnx_program
def test_args_normalization_with_no_kwargs(self):
self.assert_export(
SampleModelTwoInputs(),
(torch.randn(1, 1, 2), torch.randn(1, 1, 2)),
)
def test_lower_opset_support(self):
# First test that opset 18 (torchlib opset works)
onnx_program = self.assert_export(
SampleModelReduction(), (torch.randn(1, 1, 2),), opset_version=18
)
self.assertEqual(onnx_program.model.opset_imports[""], 18)
onnx_program = self.assert_export(
SampleModelReduction(), (torch.randn(1, 1, 2),), opset_version=16
)
self.assertEqual(onnx_program.model.opset_imports[""], 16)
def test_symbolic_argument_user_input_is_supported_by_report_and_call(self):
class constant_plus_tensor_inputs(torch.nn.Module):
def forward(self, a, x):
return a + torch.tensor(1) + x
# Capture log output
log_capture = io.StringIO()
log_handler = logging.StreamHandler(log_capture)
log_handler.setLevel(logging.ERROR)
# Get the logger used in _core.py
logger = logging.getLogger("torch.onnx._internal.exporter._core")
original_level = logger.level
logger.addHandler(log_handler)
logger.setLevel(logging.ERROR)
try:
with common_utils.TemporaryDirectoryName() as temp_dir:
self.assert_export(
constant_plus_tensor_inputs(),
(
1,
torch.ones(2),
),
dynamic_shapes=(
torch.export.Dim.DYNAMIC,
{0: torch.export.Dim.DYNAMIC},
),
report=True,
artifacts_dir=temp_dir,
)
# Check if the expected error was logged
log_output = log_capture.getvalue()
self.assertNotIn("Failed to save report due to an error", log_output)
self.assertNotIn("KeyError: 'tensor_meta'", log_output)
# Note: We don't call assert_onnx_program here because it will fail
# due to the input name mismatch issue mentioned in your error
finally:
# Clean up logging
logger.removeHandler(log_handler)
logger.setLevel(original_level)
def test_constant_argument_user_input_is_omitted_in_onnx_graph(self):
class constant_plus_tensor_inputs(torch.nn.Module):
def forward(self, a, x):
return a + torch.tensor(1) + x
onnx_program = torch.onnx.export(
constant_plus_tensor_inputs(),
(
1,
torch.ones(2),
),
dynamic_shapes=(
None,
{0: torch.export.Dim.DYNAMIC},
),
dynamo=True,
)
self.assertEqual(len(onnx_program.model.graph.inputs), 1)
def test_dynamic_axes_enable_dynamic_shapes_with_fully_specified_axes(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
dynamic_axes={
"x": {0: "customx_dim_0", 1: "customx_dim_1", 2: "customx_dim_2"},
"b": {0: "customb_dim_0", 1: "customb_dim_1", 2: "customb_dim_2"},
},
)
def test_dynamic_axes_enable_dynamic_shapes_with_default_axe_names(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
dynamic_axes={
"x": [0, 1, 2],
"b": [0, 1, 2],
},
)
def test_dynamic_axes_supports_partial_dynamic_shapes(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
input_names=["x", "b"],
dynamic_axes={
"b": [0, 1, 2],
},
)
def test_dynamic_axes_supports_output_names(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
input_names=["x", "b"],
dynamic_axes={
"b": [0, 1, 2],
},
)
self.assert_export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
input_names=["x", "b"],
output_names=["x_out", "b_out"],
dynamic_axes={"b": [0, 1, 2], "b_out": [0, 1, 2]},
)
def test_from_dynamic_axes_to_dynamic_shapes_deprecation_warning(self):
with self.assertWarnsRegex(
DeprecationWarning,
"from_dynamic_axes_to_dynamic_shapes is deprecated and will be removed in a future release. "
"This function converts 'dynamic_axes' format \\(including custom axis names\\) to 'dynamic_shapes' format. "
"Instead of relying on this conversion, provide 'dynamic_shapes' directly with custom names.",
):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
dynamic_axes={
"x": [0, 1, 2],
"b": [0, 1, 2],
},
)
def test_from_dynamic_axes_to_dynamic_shapes_keeps_custom_axis_names(self):
model = SampleModelForDynamicShapes()
input = (
torch.randn(2, 2, 3),
{"b": torch.randn(2, 2, 3)},
)
dynamic_axes = {
"x": {0: "customx_x_0", 1: "customx_x_1", 2: "customx_x_2"},
"b": {0: "customb_b_0", 1: "customb_b_1", 2: "customb_b_2"},
"x_out": {0: "customx_out_x_0", 1: "customx_out_x_1", 2: "customx_out_x_2"},
"b_out": {0: "customb_out_b_0", 1: "customb_out_b_1", 2: "customb_out_b_2"},
}
onnx_program = torch.onnx.export(
model,
input,
dynamic_axes=dynamic_axes,
input_names=["x", "b"],
output_names=["x_out", "b_out"],
dynamo=True,
)
# Check whether the dynamic dimension names are preserved
self.assertIs(onnx_program.model.graph.inputs[0].shape[0].value, "customx_x_0")
self.assertIs(onnx_program.model.graph.inputs[0].shape[1].value, "customx_x_1")
self.assertIs(onnx_program.model.graph.inputs[0].shape[2].value, "customx_x_2")
self.assertIs(onnx_program.model.graph.inputs[1].shape[0].value, "customb_b_0")
self.assertIs(onnx_program.model.graph.inputs[1].shape[1].value, "customb_b_1")
self.assertIs(onnx_program.model.graph.inputs[1].shape[2].value, "customb_b_2")
def test_saved_f_exists_after_export(self):
with common_utils.TemporaryFileName(suffix=".onnx") as path:
_ = torch.onnx.export(
SampleModel(), (torch.randn(1, 1, 2),), path, dynamo=True
)
self.assertTrue(os.path.exists(path))
def test_dynamic_shapes_with_fully_specified_axes(self):
ep = torch.export.export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
dynamic_shapes={
"x": {
0: torch.export.Dim("customx_dim_0"),
1: torch.export.Dim("customx_dim_1"),
2: torch.export.Dim("customx_dim_2"),
},
"b": {
0: torch.export.Dim("customb_dim_0"),
1: torch.export.Dim("customb_dim_1"),
2: torch.export.Dim("customb_dim_2"),
},
},
strict=True,
)
self.assert_export(ep, strategy=None)
def test_partial_dynamic_shapes(self):
self.assert_export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
dynamic_shapes={
"x": None,
"b": {
0: torch.export.Dim("customb_dim_0"),
1: torch.export.Dim("customb_dim_1"),
2: torch.export.Dim("customb_dim_2"),
},
},
)
def test_dynamic_shapes_supports_nested_input_model_with_input_names_assigned(self):
# kwargs can still be renamed as long as it's in order
input_names = ["input_x", "input_y", "input_z", "d", "e", "f"]
dynamic_axes = {
"input_x": {0: "dim"},
"input_y": {0: "dim"},
"input_z": {0: "dim"},
"d": {0: "dim"},
"e": {0: "dim"},
}
model = NestedModelForDynamicShapes()
input = (
torch.ones(5),
[torch.zeros(5), torch.ones(5)],
{"a": torch.zeros(5), "b": torch.ones(5)},
torch.ones(4),
)
self.assert_export(
model, input, dynamic_axes=dynamic_axes, input_names=input_names
)
# Check whether inputs are dynamically shaped
onnx_program = torch.onnx.export(
model,
input,
dynamic_axes=dynamic_axes,
input_names=input_names,
dynamo=True,
)
self.assertTrue(
all(
[
input.type.tensor_type.shape.dim[0].dim_param
for input in onnx_program.model_proto.graph.input
][:-1]
)
)
def test_upgraded_torchlib_impl(self):
class GeluModel(torch.nn.Module):
def forward(self, input):
# Use GELU activation function
return torch.nn.functional.gelu(input, approximate="tanh")
input = (torch.randn(1, 3, 4, 4),)
onnx_program_op18 = torch.onnx.export(
GeluModel(),
input,
opset_version=18,
dynamo=True,
)
all_nodes_op18 = [n.op_type for n in onnx_program_op18.model.graph]
self.assertIn("Tanh", all_nodes_op18)
self.assertNotIn("Gelu", all_nodes_op18)
onnx_program_op20 = torch.onnx.export(
GeluModel(),
input,
opset_version=20,
dynamo=True,
)
all_nodes_op20 = [n.op_type for n in onnx_program_op20.model.graph]
self.assertIn("Gelu", all_nodes_op20)
def test_refine_dynamic_shapes_with_onnx_export(self):
# NOTE: From test/export/test_export.py
# refine lower, upper bound
class TestRefineDynamicShapeModel(torch.nn.Module):
def forward(self, x, y):
if x.shape[0] >= 6 and y.shape[0] <= 16:
return x * 2.0, y + 1
inps = (torch.randn(16), torch.randn(12))
dynamic_shapes = {
"x": (torch.export.Dim("dx"),),
"y": (torch.export.Dim("dy"),),
}
self.assert_export(
TestRefineDynamicShapeModel(), inps, dynamic_shapes=dynamic_shapes
)
def test_zero_output_aten_node(self):
class Model(torch.nn.Module):
def forward(self, x):
torch.ops.aten._assert_async.msg(torch.tensor(True), "assertion failed")
return x + x
input = torch.randn(2)
self.assert_export(Model(), (input))
def test_export_successful_when_dynamic_dimension_is_one(self):
self.assert_export(
SampleModelForDimOne(),
(torch.randn(1, 3), torch.randn(1, 5), torch.randn(1, 8)),
dynamic_shapes=(
{0: "batch", 1: "sequence"},
{0: "batch", 1: "sequence"},
{0: "batch", 1: "sequence"},
),
)
def test_is_in_onnx_export(self):
class Mod(torch.nn.Module):
def forward(self, x):
def f(x):
return x.sin() if torch.onnx.is_in_onnx_export() else x.cos()
return f(x)
self.assertFalse(torch.onnx.is_in_onnx_export())
onnx_program = torch.onnx.export(
Mod(),
(torch.randn(3, 4),),
dynamo=True,
fallback=False,
)
self.assertFalse(torch.onnx.is_in_onnx_export())
node_names = [n.op_type for n in onnx_program.model.graph]
self.assertIn("Sin", node_names)
def test_torchscript_exporter_raises_deprecation_warning(self):
# Test that the deprecation warning is raised when using torchscript exporter
with self.assertWarnsRegex(
DeprecationWarning, "You are using the legacy TorchScript-based ONNX export"
):
torch.onnx.export(
SampleModel(), (torch.randn(1, 1, 2),), io.BytesIO(), dynamo=False
)
def test_model_output_can_be_none(self):
class ModelWithNoneOutput(torch.nn.Module):
def forward(self, x):
return x + 1, None
onnx_program = torch.onnx.export(
ModelWithNoneOutput(),
(torch.randn(1, 1, 2),),
dynamo=True,
)
onnx_testing.assert_onnx_program(onnx_program)
class TestCustomTranslationTable(common_utils.TestCase):
def test_custom_translation_table_overrides_ops(self):
from onnxscript import opset18 as op
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
def custom_add(self, other):
# Replace add with sub
return op.Sub(self, other)
custom_translation_table = {torch.ops.aten.add.Tensor: custom_add}
onnx_program = torch.onnx.export(
Model(),
(torch.randn(2, 2), torch.randn(2, 2)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
def test_custom_translation_table_supports_overloading_ops(self):
class Model(torch.nn.Module):
def forward(self, x, y):
return torch.ops.aten.logical_and.default(x, y)
def custom_add_bool(self: BOOL, other: BOOL) -> BOOL:
# Replace add with sub
return op.Sub(self, other)
def custom_add(self: FLOAT, other: FLOAT) -> FLOAT:
# Replace add with mul
return op.Mul(self, other)
custom_translation_table = {
torch.ops.aten.logical_and.default: [custom_add, custom_add_bool],
}
onnx_program = torch.onnx.export(
Model(),
(torch.tensor(1, dtype=torch.bool), torch.tensor(1, dtype=torch.bool)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
# The dispatcher should pick the correct overload based on the input types
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
self.assertNotIn("Mul", all_nodes)
def test_custom_translation_table_supports_custom_op_as_target(self):
# Define the custom op and use it in the model
@torch.library.custom_op("custom::add", mutates_args=())
def custom_add(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
@custom_add.register_fake
def _(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return torch.empty_like(a) + torch.empty_like(b)
class Model(torch.nn.Module):
def forward(self, x, y):
return custom_add(x, y)
def onnx_add(self: FLOAT, other: FLOAT) -> FLOAT:
# Replace add with Sub
return op.Sub(self, other)
custom_translation_table = {
torch.ops.custom.add.default: onnx_add,
}
onnx_program = torch.onnx.export(
Model(),
(torch.tensor(1, dtype=torch.bool), torch.tensor(1, dtype=torch.bool)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
def test_custom_translation_table_supports_custom_op_with_its_decomp(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo", "CompositeImplicitAutograd", lib=lib)
@torch.library.register_fake("mylib::foo")
def foo_impl(a, b):
return a + b
class M(torch.nn.Module):
def forward(self, x, y):
return torch.ops.mylib.foo(x, y)
def onnx_add(self: FLOAT, other: FLOAT) -> FLOAT:
# Replace add with Sub
return op.Sub(self, other)
# With the custom op defined, we can use it in the model
# and replace it with a custom translation table
custom_translation_table = {
torch.ops.mylib.foo.default: onnx_add,
}
onnx_program = torch.onnx.export(
M(),
(torch.ones(3, 3), torch.ones(3, 3)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
# Without the custom op defined, it's going to be decomposed
onnx_program_decomp = torch.onnx.export(
M(), (torch.ones(3, 3), torch.ones(3, 3)), dynamo=True
)
all_nodes_decomp = [n.op_type for n in onnx_program_decomp.model.graph]
self.assertIn("Add", all_nodes_decomp)
self.assertNotIn("Sub", all_nodes_decomp)
if __name__ == "__main__":
common_utils.run_tests()