mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The general strategy is there is a new module, torch.onnx.symbolic, which contains a function for every ATen method name with the ONNX translation. While implementing this, I took the opportunity to expunge all references of 'g' from the public API; instead, it is managed by a global variable in torch.onnx which tracks the "current graph". Other changes: - If you pass a Tensor to op as an argument, it will now automatically be converted into a Constant ONNX node. This lets us remove needing to implement ONNX - Rename value to other, wherever there is both a Scalar and Tensor overload. This way, keyword dispatch can work uniformly in both cases. - Deleted any autograd Function classes that both had a symbolic and were ported to the new C++ autograd implementation. There may still be some straggling classes that didn't have symbolic. Signed-off-by: Edward Z. Yang <ezyang@fb.com>
169 lines
5.4 KiB
Python
169 lines
5.4 KiB
Python
from .nested_dict import nested_dict
|
|
from tools.shared.module_loader import import_module
|
|
|
|
CodeTemplate = import_module('code_template', 'torch/lib/ATen/code_template.py').CodeTemplate
|
|
|
|
|
|
PY_VARIABLE_METHOD_VARARGS = CodeTemplate("""\
|
|
static PyObject * ${pycname}(PyObject* self, PyObject* args, PyObject* kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
${prototypes}
|
|
});
|
|
${unpack_self}
|
|
PyObject* parsed_args[${max_args}];
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
${dispatch}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
|
|
static PyObject * ${pycname}(PyObject* self, PyObject* args)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
${unpack_self}
|
|
return wrap(${dispatch_name}(${actuals}));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_CASE = CodeTemplate("""\
|
|
${cond} (r.idx == ${i}) {
|
|
return wrap(${dispatch_name}(${actuals}));
|
|
""")
|
|
|
|
PY_VARIABLE_DISPATCH = CodeTemplate("""\
|
|
inline ${return_type} ${dispatch_name}(${formal_args}) {
|
|
${AutoNoGIL}
|
|
${AutoGPU}
|
|
return ${dispatch_call}(${dispatch_args});
|
|
}
|
|
""")
|
|
|
|
PY_VARIABLE_METHOD_DEF = CodeTemplate("""\
|
|
{"${name}", (PyCFunction)${pycname}, ${flags}, NULL},""")
|
|
|
|
UNPACK_SELF = "auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;"
|
|
|
|
|
|
def create_python_bindings(
|
|
python_functions, py_methods, py_method_defs, py_method_dispatch,
|
|
is_class):
|
|
"""python_variable_methods.cpp
|
|
|
|
Generates Python bindings to Variable methods
|
|
"""
|
|
|
|
unpack_methods = {
|
|
'const Tensor &': 'tensor',
|
|
'Generator *': 'generator',
|
|
'Storage &': 'storage',
|
|
'int64_t': 'toInt64',
|
|
'bool': 'toBool',
|
|
'double': 'toDouble',
|
|
}
|
|
|
|
def first_tensor_arg(arguments):
|
|
for arg in arguments:
|
|
if arg['simple_type'] in {'Tensor', 'TensorList'}:
|
|
return arg['name']
|
|
return None
|
|
|
|
def auto_gpu(option):
|
|
tensor_arg = first_tensor_arg(option['arguments'])
|
|
if tensor_arg is None:
|
|
return ''
|
|
return 'AutoGPU auto_gpu({});'.format(tensor_arg)
|
|
|
|
def emit_dispatch(i, function):
|
|
env = {}
|
|
|
|
actuals = []
|
|
formal_args = []
|
|
arg_idx = 0
|
|
for arg in function['arguments']:
|
|
if 'Tensor' in function['method_of'] and arg['name'] == 'self':
|
|
formal_args.append('Tensor & {}'.format(arg['name']))
|
|
actuals.append('self_')
|
|
continue
|
|
|
|
typename = arg['type']
|
|
if typename.startswith('IntList['):
|
|
typename = 'IntList'
|
|
if typename.startswith('LongTensor'):
|
|
typename = 'Tensor'
|
|
|
|
unpack = unpack_methods.get(typename, typename.lower())
|
|
actuals.append('r.{}({})'.format(unpack, arg_idx))
|
|
dispatch_type = typename
|
|
dispatch_type = 'const Tensor &' if dispatch_type == 'Tensor' else dispatch_type
|
|
formal_args.append('{} {}'.format(dispatch_type, arg['name']))
|
|
arg_idx += 1
|
|
|
|
env['i'] = i
|
|
env['actuals'] = actuals
|
|
env['formal_args'] = formal_args
|
|
if 'call_args' in function:
|
|
env['dispatch_args'] = function['call_args']
|
|
else:
|
|
env['dispatch_args'] = [arg['name'] for arg in function['arguments']]
|
|
if 'Tensor' in function['method_of']:
|
|
env['dispatch_args'] = [arg for arg in env['dispatch_args'] if arg != 'self']
|
|
env['dispatch_call'] = 'self.{}'.format(function['name'])
|
|
else:
|
|
env['dispatch_call'] = 'at::{}'.format(function['name'])
|
|
env['AutoNoGIL'] = 'AutoNoGIL no_gil;'
|
|
env['AutoGPU'] = auto_gpu(function)
|
|
env['cond'] = 'if' if i == 0 else '} else if'
|
|
env = nested_dict(env, function)
|
|
py_method_dispatch.append(PY_VARIABLE_DISPATCH.substitute(env))
|
|
return PY_VARIABLE_CASE.substitute(env)
|
|
|
|
def process_function(name, functions):
|
|
env = {
|
|
'name': name,
|
|
'dispatch_name': 'dispatch_{}'.format(name),
|
|
'pycname': 'THPVariable_{}'.format(name),
|
|
'prototypes': [],
|
|
'max_args': max(len(o['arguments']) for o in functions),
|
|
'unpack_self': [],
|
|
'dispatch': [],
|
|
}
|
|
|
|
is_method = 'Tensor' in functions[0]['method_of']
|
|
if is_method:
|
|
env['unpack_self'] = [UNPACK_SELF]
|
|
|
|
for o in functions:
|
|
prototype = o['prototype']
|
|
if is_method:
|
|
prototype = prototype.replace('Tensor self, ', '')
|
|
prototype = prototype.replace('Tensor self', '')
|
|
if 'deprecated' in o:
|
|
prototype += '|deprecated'
|
|
env['prototypes'].append('"{}",'.format(prototype))
|
|
|
|
for i, option in enumerate(functions):
|
|
env['dispatch'].append(emit_dispatch(i, nested_dict(env, option)))
|
|
env['dispatch'].append('}')
|
|
|
|
if len(functions) == 1 and len(functions[0]['args']) == 1 and is_method:
|
|
tmpl = PY_VARIABLE_METHOD_NOARGS
|
|
env['actuals'] = ['self_']
|
|
env['flags'] = 'METH_NOARGS'
|
|
else:
|
|
tmpl = PY_VARIABLE_METHOD_VARARGS
|
|
env['flags'] = 'METH_VARARGS | METH_KEYWORDS'
|
|
|
|
if is_class and not is_method:
|
|
env['flags'] += ' | METH_STATIC'
|
|
|
|
py_methods.append(tmpl.substitute(env))
|
|
py_method_defs.append(PY_VARIABLE_METHOD_DEF.substitute(env))
|
|
|
|
for name in sorted(python_functions.keys()):
|
|
process_function(name, python_functions[name])
|