Files
pytorch/test/inductor/test_max_autotune.py
Aaron Gokaslan 53e5b8ac5b [BE]: Update flake8-comprehensions and enable C420 (#130699)
Uses `dict.fromkeys` whenever possible as covered by flake8-comprehensions rule C420. While the ruff rule RUF025 is still in preview, flake8-comprehensions have added a new rule which covers this. Use dict.fromkeys is faster when the value being added to the dictionary is the same at every iteration and is immutable, it also removes an unnecessary dict comprehension.

This rule will be enabled with our current ruleset in RUF in 0.6 as C420.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130699
Approved by: https://github.com/lezcano, https://github.com/ezyang
2024-07-16 13:47:49 +00:00

884 lines
31 KiB
Python

# Owner(s): ["module: inductor"]
import json
import os
import unittest
from typing import Callable, List, Optional
import torch
from torch import multiprocessing as mp, nn
from torch._dynamo import reset
from torch._dynamo.exc import BackendCompilerFailed
from torch._dynamo.testing import rand_strided, reset_rng_state
from torch._inductor import config
from torch._inductor.autotune_process import (
BenchmarkRequest,
CUDA_VISIBLE_DEVICES,
TuningProcessPool,
)
from torch._inductor.graph import GraphLowering
from torch._inductor.ir import Buffer, ChoiceCaller, FixedLayout
from torch._inductor.kernel.mm_plus_mm import aten_mm_plus_mm
from torch._inductor.select_algorithm import (
AlgorithmSelectorCache,
TritonTemplateCaller,
)
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import fresh_inductor_cache, run_and_get_code
from torch._inductor.virtualized import V
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfRocm,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
torch.set_float32_matmul_precision("high")
if HAS_CUDA:
torch.cuda.memory._set_allocator_settings("expandable_segments:False")
_CUTLASS_DIR = os.path.join(os.path.dirname(__file__), "../../third_party/cutlass/")
def _get_path_without_sccache() -> str:
"""
Get the PATH environment variable without sccache.
"""
path_envs = os.environ.get("PATH", "").split(":")
path_envs = [env for env in path_envs if "/opt/cache/bin" not in env]
return ":".join(path_envs)
def benchmark_choice(choice, args, out, expected_out, timings):
result = choice.benchmark(*args, out=out)
if expected_out is not None:
torch.testing.assert_close(out, expected_out)
timings.copy_(torch.tensor(result))
class FailChoiceCaller(ChoiceCaller):
def benchmark(self, *args, out):
raise RuntimeError("This choice caller will always throw")
@instantiate_parametrized_tests
class TestMaxAutotune(TestCase):
def _create_buffer(self, name, shape):
return Buffer(name, FixedLayout(torch.device("cuda:0"), torch.float32, shape))
def test_benchmark_choice_in_subproc(self):
gm = make_fx(
lambda: torch.zeros(2, 3)
)() # a dummy graph to construct the GraphLowering
graph = GraphLowering(gm)
# the graph handler is neede to create benchmark example value below
with V.set_graph_handler(graph):
buf1 = self._create_buffer("mat1", (2, 3))
buf2 = self._create_buffer("mat2", (3, 2))
buf3 = self._create_buffer("mat3", (2, 3))
buf4 = self._create_buffer("mat4", (3, 2))
layout = FixedLayout(torch.device("cuda:0"), torch.float32, (2, 2))
mat1 = AlgorithmSelectorCache.benchmark_example_value(buf1)
mat2 = AlgorithmSelectorCache.benchmark_example_value(buf2)
mat3 = AlgorithmSelectorCache.benchmark_example_value(buf3)
mat4 = AlgorithmSelectorCache.benchmark_example_value(buf4)
out = AlgorithmSelectorCache.benchmark_example_value(layout)
# expected_out = (mat1 @ mat2) + (mat3 @ mat4)
expected_out = None
choice = aten_mm_plus_mm.bind((buf1, buf2, buf3, buf4), layout)
# use a tensor since the mutation to a python list in a sub process
# is not synced back to the parent process
timings = torch.zeros(3, dtype=torch.float32)
ctx = mp.get_context("spawn")
child = ctx.Process(
target=benchmark_choice,
args=(choice, (mat1, mat2, mat3, mat4), out, expected_out, timings),
)
child.start()
child.join()
self.assertEqual(0, child.exitcode)
print(f"timings is {timings}, out {out}, expected_out {expected_out}")
def test_benchmark_choice_fail_in_subproc(self):
gm = make_fx(
lambda: torch.zeros(2, 3)
)() # a dummy graph to construct the GraphLowering
graph = GraphLowering(gm)
# the graph handler is neede to create benchmark example value below
with V.set_graph_handler(graph):
buf1 = self._create_buffer("mat1", (2, 3))
buf2 = self._create_buffer("mat2", (3, 2))
buf3 = self._create_buffer("mat3", (2, 3))
buf4 = self._create_buffer("mat4", (3, 2))
layout = FixedLayout(torch.device("cuda:0"), torch.float32, (2, 2))
mat1 = AlgorithmSelectorCache.benchmark_example_value(buf1)
mat2 = AlgorithmSelectorCache.benchmark_example_value(buf2)
mat3 = AlgorithmSelectorCache.benchmark_example_value(buf3)
mat4 = AlgorithmSelectorCache.benchmark_example_value(buf4)
out = AlgorithmSelectorCache.benchmark_example_value(layout)
expected_out = (mat1 @ mat2) + (mat3 @ mat4)
choice = FailChoiceCaller("fail_choice_caller", [], None)
# use a tensor since python list is not synced back
timings = torch.zeros(3, dtype=torch.float32)
ctx = mp.get_context("spawn")
child = ctx.Process(
target=benchmark_choice,
args=(choice, (mat1, mat2, mat3, mat4), out, expected_out, timings),
)
child.start()
child.join()
self.assertNotEqual(0, child.exitcode)
@parametrize("autotune_in_subproc", (True, False))
@parametrize("autotune_multi_device", (True, False))
def test_max_autotune_mm_plus_mm(self, autotune_in_subproc, autotune_multi_device):
"""
This crash previously due to a triton issue: https://github.com/openai/triton/issues/1298 .
With autotuning in subprocess, we don't crash anymore.
"""
m, n, k = 2048, 1536, 64
def mm_plus_mm(a, b, c, d):
return a @ b + c @ d
a = torch.randn(m, k).cuda()
b = torch.randn(k, n).cuda()
c = torch.randn(m, k).cuda()
d = torch.randn(k, n).cuda()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": autotune_in_subproc,
"autotune_multi_device": autotune_multi_device,
}
):
torch.compile(mm_plus_mm)(a, b, c, d)
@parametrize("dynamic", (False, True))
def test_max_autotune_mm_plus_mm_zero_size_input(self, dynamic):
"""
Make sure autotuning mm_plus_mm with zero-size input works without crashes.
"""
m, n, k = 0, 1536, 64
def mm_plus_mm(a, b, c, d):
return a @ b + c @ d
a = torch.randn(m, k).cuda()
b = torch.randn(k, n).cuda()
c = torch.randn(m, k).cuda()
d = torch.randn(k, n).cuda()
with config.patch({"max_autotune": True}):
torch.compile(mm_plus_mm, dynamic=dynamic)(a, b, c, d)
@parametrize("dynamic", (False, True))
def test_max_autotune_regular_mm(self, dynamic: bool):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True, "autotune_in_subproc": True}):
torch.compile(mm, dynamic=dynamic)(a, b)
@parametrize("dynamic", (False, True))
def test_max_autotune_regular_mm_zero_size_input(self, dynamic: bool):
"""
Make sure autotuning mm with zero-size input works without crashes.
"""
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(0, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True}):
torch.compile(mm, dynamic=dynamic)(a, b)
@skipIfRocm
@parametrize("dynamic", (False, True))
def test_max_autotune_remote_caching(self, dynamic: bool):
from unittest.mock import patch
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
def f(x, y):
return Model()(x, y)
x = torch.randn(100, 100).cuda()
y = torch.randn(100, 100).cuda()
cache = {}
num_get = 0
num_put = 0
class MyCache:
def __init__(self, key, is_autotune=False):
pass
def get(self, filename):
nonlocal cache
nonlocal num_get
if filename not in cache:
return None
ret = json.loads(cache[filename])
num_get += 1
return ret
def put(self, filename, data):
nonlocal cache
nonlocal num_put
cache[filename] = json.dumps(data)
num_put += 1
cache_module = (
"triton.fb.fb_memcache.FbMemcacheRemoteAutotuneCacheBackend"
if config.is_fbcode()
else "torch._inductor.remote_cache.RedisRemoteCacheBackend"
)
with config.patch(
{
"autotune_local_cache": False,
"autotune_remote_cache": True,
}
), patch.dict(os.environ), patch(cache_module, MyCache, create=True):
os.environ.pop("TRITON_CACHE_MANAGER", None)
with config.patch({"max_autotune": True}):
for _ in range(4):
with fresh_inductor_cache():
torch.compile(mm, dynamic=dynamic)(a, b)
reset()
self.assertEqual(num_get, 3)
self.assertEqual(num_put, 1)
num_get = 0
num_put = 0
for _ in range(4):
with fresh_inductor_cache():
torch.compile(f, dynamic=dynamic)(x, y)
reset()
self.assertEqual(num_get, 3)
self.assertEqual(num_put, 1)
@skipIfRocm
def test_precompilation_threads(self):
import threading
from typing import Any, Dict
from unittest.mock import Mock, patch
class FakeChoiceCaller(ChoiceCaller):
def __init__(self):
super().__init__("none", [], Mock())
self.thread_id = None
def precompile(self):
self.thread_id = threading.get_ident()
def call_name(self) -> str:
return None
def to_callable(self):
return None
def hash_key(self) -> str:
return str(hash(self))
def output_node(self) -> "TensorBox": # noqa: F821
return None
fake_choices = [FakeChoiceCaller() for i in range(10)]
fake_lookup_result = dict.fromkeys(fake_choices, 0.123)
def no_lookup(
choices: List[ChoiceCaller],
op: str,
inputs: str,
benchmark: Callable[[Any], Dict[ChoiceCaller, float]],
) -> Dict[ChoiceCaller, float]:
if benchmark is not None:
return benchmark(choices)
asc = AlgorithmSelectorCache()
def fake_benchmark_fn(*args, **kwargs):
return fake_lookup_result
main_thread_id = threading.get_ident()
mock_debug_handler = Mock()
old_debug_handler = V.debug
try:
V.set_debug_handler(mock_debug_handler)
with patch.object(asc, "lookup", new=no_lookup):
with patch.object(
asc, "make_benchmark_fn", return_value=fake_benchmark_fn
):
with config.patch(
{
"autotune_in_subproc": False,
"compile_threads": len(fake_choices),
}
):
asc("test_call", fake_choices, [], Mock())
for fake_choice in fake_choices:
assert (
fake_choice.thread_id is not None
), "Expected all ChoiceCaller's precompile method to have been called"
assert (
fake_choice.thread_id != main_thread_id
), "Expected all ChoiceCaller's precompile method to have been called on separate thread"
finally:
V.set_debug_handler(old_debug_handler)
@parametrize("dynamic", (False, True))
def test_max_autotune_addmm(self, dynamic=False):
"""
Make sure autotuning addmm in sub processes work without crashes.
"""
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def addmm(x, a, b):
return torch.addmm(x, a, b)
x = torch.randn(100).cuda()
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True, "autotune_in_subproc": True}):
Y_compiled = torch.compile(addmm, dynamic=dynamic)(x, a, b)
Y = addmm(x, a, b)
torch.testing.assert_close(Y_compiled, Y, atol=1e-2, rtol=1e-2)
@parametrize("dynamic", (False, True))
def test_max_autotune_addmm_zero_size_input(self, dynamic):
"""
Make sure autotuning addmm with zero-size input works without crashes.
"""
def addmm(x, a, b):
return torch.addmm(x, a, b)
x = torch.randn(100).cuda()
a = torch.randn(0, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True}):
torch.compile(addmm, dynamic=dynamic)(x, a, b)
@skipIfRocm
def test_autotune_conv1x1(self):
# Assuming input has 3 channels and we want to produce 16 channels as output
conv1x1 = (
torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=1)
.to(memory_format=torch.channels_last)
.cuda()
)
# Example input tensor: batch size = 4, channels = 3, height = 32, width = 32
# The memory format is set to `channels_last`
input_tensor = (
torch.randn(4, 3, 32, 32)
.contiguous(memory_format=torch.channels_last)
.cuda()
)
with config.patch(
{"max_autotune": True, "max_autotune_gemm_backends": "TRITON"}
):
@torch.compile()
def foo(mod, x):
return mod(x)
with torch.no_grad():
out, code = run_and_get_code(foo, conv1x1, input_tensor)
FileCheck().check_not("extern_kernels.convolution").run(code[0])
self.assertEqual(conv1x1(input_tensor), out, atol=1e-2, rtol=0)
@skipIfRocm
def test_filled_cache_precompile(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
from torch._dynamo.utils import counters
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
torch._dynamo.reset()
counters.clear()
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 0)
@skipIfRocm
@fresh_inductor_cache()
@config.patch(search_autotune_cache=True)
def test_search_autotune_cache(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile()(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
from torch._dynamo.utils import counters
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 0)
@skipIfRocm
@fresh_inductor_cache()
@config.patch(max_autotune=True, max_fusion_size=2)
def test_jit_fusion_matches_aot_fusion(self):
# In this example, AOTInductor's JIT-compile will fuse(buf1, buf2) due
# to proximity, we want to make sure AOT-compile pass does the same.
# AOT could do fuse(buf2, buf4) instead if buf3 was pushed to the end
# of the V.graph.buffers list because fuse(buf2, buf4) would have a
# better proximity score than fuse(buf1, buf2). This scenario is possible
# since finalizing MultiTemplateBuffers needs to replace buffers.
def fn(x, number):
buf0 = x + x
buf1 = number.item()
buf2 = x * x
buf3 = x @ x # MultiTemplateBuffer
buf4 = x**2
return buf0, buf1, buf2, buf3, buf4
inputs = (torch.rand([256, 256], device="cuda"), torch.tensor(3, device="cuda"))
torch._export.aot_compile(fn, args=inputs)
@config.patch(autotune_local_cache=False, autotune_remote_cache=False)
@skipIfRocm
def test_precompilations(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
from torch._dynamo.utils import counters
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 2)
def test_cat_addmm(self):
def fn(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor):
return torch.cat(
[
torch.addmm(a, b, c),
torch.addmm(b, c, a),
],
1,
)
args = [
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
]
with config.patch(
{
"max_autotune": True,
"max_autotune_gemm_backends": "Triton",
}
):
expected = fn(*args)
actual = torch.compile(fn)(*args)
torch.testing.assert_close(actual, expected, atol=1e-2, rtol=1e-2)
def test_triton_template_with_epilogues_and_dynamic_shape(self):
def fn(
x: torch.Tensor, w: torch.Tensor, bias: torch.Tensor, mul: torch.Tensor
) -> torch.Tensor:
return (
torch.nn.functional.relu(
torch.matmul(torch.transpose(x, 0, 1), torch.transpose(w, 0, 1))
+ bias
)
* mul
)
M0 = 5
M1 = 8
K = 4
N = 3
w = torch.rand(N, K).cuda().half()
b = torch.rand(N).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": "Triton",
}
):
compiled_fn = torch.compile(
fn, fullgraph=True, dynamic=True, mode="max-autotune-no-cudagraphs"
)
x0 = torch.rand(K, M0).cuda().half()
mul0 = torch.rand(M0, N).cuda().half()
y0 = compiled_fn(x0, w, b, mul0)
y0_expected = fn(x0, w, b, mul0)
torch.testing.assert_close(y0, y0_expected)
x1 = torch.rand(K, M1).cuda().half()
mul1 = torch.rand(M1, N).cuda().half()
y1 = compiled_fn(x1, w, b, mul1)
y1_expected = fn(x1, w, b, mul1)
torch.testing.assert_close(y1, y1_expected)
@config.patch(
benchmark_kernel=True,
fallback_random=True,
max_autotune_gemm=True,
)
@parametrize("device", ("cpu", "cuda"))
def test_matmul_dropout(self, device):
def fwd(a, b):
x = a @ b
x = torch.nn.functional.dropout(x, 0.1)
return x
def fn(a, b):
x = fwd(a, b).sum()
x.backward()
return a.grad
N = 128
a = torch.randn(N, N, device=device, requires_grad=True)
b = torch.randn(N, N, device=device)
opt_fn = torch.compile(fn)
reset_rng_state()
ref = fn(a, b)
reset_rng_state()
act = opt_fn(a, b)
if N <= 8:
print(f"ref\n{ref}\nact\n{act}")
torch.testing.assert_close(ref, act, atol=1e-1, rtol=1e-1)
@config.patch(
max_autotune_gemm=True,
)
@unittest.skipIf(
torch.cuda.device_count() < 2, "Need at least 2 devices for this test"
)
def test_autotune_device_guard(self):
x = torch.randn(1024, 1024, device="cuda:1")
y = torch.randn(1024, 1024, device="cuda:1")
def f(x, y):
return x @ y
with fresh_inductor_cache():
act = torch.compile(f)(x, y)
ref = f(x, y)
self.assertTrue(torch.allclose(act, ref, atol=4 * 1e-3, rtol=4 * 1e-3))
@config.patch(max_autotune=True)
def test_empty_conv_input(self, kernel_size=3):
x = torch.randn(0, 256, 14, 14, device="cuda")
weight = torch.randn(256, 256, kernel_size, kernel_size, device="cuda")
def f(x, weight):
return torch.convolution(
x,
weight,
bias=None,
stride=[1, 1],
padding=[0, 0],
dilation=[1, 1],
transposed=False,
output_padding=[0, 0],
groups=1,
)
opt_f = torch.compile(f)
ref = f(x, weight)
act = opt_f(x, weight)
self.assertTrue(torch.allclose(ref, act, atol=4 * 1e-3, rtol=4 * 1e-3))
@config.patch(max_autotune=True)
def test_empty_conv_input_with_1x1_kernel(self):
self.test_empty_conv_input(kernel_size=1)
@config.patch(max_autotune=True)
def test_conv1x1_with_free_symbols(self):
"""
Make sure there is no exception due to free symbols.
"""
conv = nn.Conv2d(
3, 64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False
).to(device="cuda")
@torch.compile
def f(x, y, z):
h = y.nonzero().size(0)
w = z.nonzero().size(0)
x = x[:, :, :h, :w]
x = conv(x)
return x
x = torch.randn(4, 3, 224, 224).to(
memory_format=torch.channels_last, device="cuda"
)
for _ in range(2):
y = torch.randint(0, 10, (224,)).to(device="cuda")
z = torch.randint(0, 10, (224,)).to(device="cuda")
f(x, y, z)
def test_conv3d(self):
fn = torch.nn.functional.conv3d
image = torch.randn([1, 3, 8, 16, 32])
filt = torch.randn([3, 3, 7, 7, 7])
with config.patch({"max_autotune": True}):
expected = fn(image, filt)
actual = torch.compile(fn)(image, filt)
torch.testing.assert_close(actual, expected, atol=6e-5, rtol=0.001)
def test_non_contiguous_input_mm(self):
"""
Make sure the triton template can work with non-contiguous inputs without crash.
Check https://github.com/pytorch/pytorch/issues/125437 for more details.
"""
x = rand_strided(
(50257, 32768), (1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided((32768, 768), (768, 1), dtype=torch.bfloat16, device="cuda")
@torch.compile(mode="max-autotune")
def f(x, y):
return x @ y
ref = x @ y
act = f(x, y)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
def test_non_contiguous_input_addmm(self):
b = torch.randn((768), dtype=torch.bfloat16, device="cuda")
x = rand_strided(
(50257, 32768), (1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided((32768, 768), (768, 1), dtype=torch.bfloat16, device="cuda")
@torch.compile(mode="max-autotune")
def f(x, y):
return torch.addmm(b, x, y)
ref = torch.addmm(b, x, y)
act = f(x, y)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
def test_non_contiguous_input_bmm(self):
x = rand_strided(
(1, 50257, 32768), (0, 1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided(
(1, 32768, 768), (0, 768, 1), dtype=torch.bfloat16, device="cuda"
)
@torch.compile(mode="max-autotune")
def f(x, y):
return torch.bmm(x, y)
ref = torch.bmm(x, y)
act = f(x, y)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
def test_non_contiguous_input_mm_plus_mm(self):
x1 = rand_strided((50257, 32768), (1, 50304), device="cuda")
y1 = rand_strided((32768, 768), (768, 1), device="cuda")
x2 = rand_strided((50257, 32768), (1, 50304), device="cuda")
y2 = rand_strided((32768, 768), (768, 1), device="cuda")
@torch.compile(mode="max-autotune")
def f(x1, y1, x2, y2):
return x1 @ y1 + x2 @ y2
ref = x1 @ y1 + x2 @ y2
act = f(x1, y1, x2, y2)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
@config.patch(
max_autotune=True,
max_autotune_gemm_backends="",
autotune_fallback_to_aten=False,
)
def test_no_valid_choices(self):
a = torch.zeros([2, 2], device="cuda")
b = torch.zeros([2, 2], device="cuda")
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(lambda a, b: a.matmul(b))(a, b)
self.assertIn("NoValidChoicesError", str(context.exception))
@parametrize("multi_template", (True, False))
@config.patch(
max_autotune=True,
max_autotune_gemm_backends="TRITON",
autotune_fallback_to_aten=False,
)
def test_inf_timing(self, multi_template):
from unittest.mock import patch
lookup = AlgorithmSelectorCache.lookup
def mock_lookup(self, *args, **kwargs):
timings = lookup(self, *args, **kwargs)
return {choice: float("inf") for choice in timings.keys()}
a = torch.zeros([16, 16], device="cuda")
b = torch.zeros([16, 16], device="cuda")
with patch.object(AlgorithmSelectorCache, "lookup", mock_lookup), config.patch(
benchmark_epilogue_fusion=multi_template
):
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(lambda a, b: a.matmul(b))(a, b)
self.assertIn("NoValidChoicesError", str(context.exception))
class TestBenchmarkRequest(BenchmarkRequest):
def __init__(
self, value: float, multi_device: bool, parent_visible_devices: Optional[str]
) -> None:
self.value = value
self.multi_device = multi_device
self.parent_visible_devices = parent_visible_devices
def benchmark(
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
) -> float:
# Verify that the visible devices env var is set correctly. If multi-device
# auto-tuning is disabled, the visible devices should be unmanipulated from
# the parent process. If multi-device auto-tuning is enabled, the visible
# devices should be a _single_ valid device number. Note that we can't perform
# this validation directly from the test body because benchmarks execute in a
# separate process. If the check fails, however, the test will detect the
# failure by virtue of not receiving the expected result back.
visible_devices = os.environ.get(CUDA_VISIBLE_DEVICES)
if not self.multi_device:
assert visible_devices == self.parent_visible_devices
else:
valid_devices = self.parent_visible_devices.split(",")
assert visible_devices in valid_devices
return self.value
class TestTritonTemplateCaller(TritonTemplateCaller):
def __init__(self, bmreq: TestBenchmarkRequest):
self.bmreq = bmreq
def __str__(self) -> str:
return "test"
class TestTuningProcess(TestCase):
def test_tuning_pool_crash(self):
# Use only one device/subprocess so we test the process restarts
# and is usable after a "crash".
with config.patch({"autotune_multi_device": False}):
tuning_pool = TuningProcessPool()
tuning_pool.initialize()
# First force the tuning process to "crash" by setting a bogus
# string for the expected visible devices.
bmreq = TestBenchmarkRequest(3.14, False, "invalid")
choice = TestTritonTemplateCaller(bmreq)
timings = tuning_pool.benchmark([choice])
self.assertTrue(choice in timings)
self.assertEqual(timings[choice], float("inf"))
# Then send another request and make sure the sub-process
# has restarted and is operational. 'valid_devices' expected
# to be None because autotune_multi_device is off.
choice.bmreq.parent_visible_devices = os.environ.get(CUDA_VISIBLE_DEVICES)
timings = tuning_pool.benchmark([choice])
self.assertTrue(choice in timings)
self.assertEqual(timings[choice], bmreq.value)
tuning_pool.terminate()
def test_tuning_pool_multiple_devices(self):
with config.patch({"autotune_multi_device": True}):
# Adapt the test to the available devices (and whether CUDA_VISIBLE_DEVICES
# is already set in the environment); use a subset of the available devices
# to ensure only the subset are visible to the sub-processes.
if CUDA_VISIBLE_DEVICES in os.environ:
visible_devices = os.environ[CUDA_VISIBLE_DEVICES].split(",")
else:
visible_devices = [str(d) for d in range(torch.cuda.device_count())]
parent_visible_devices = ",".join(visible_devices[-2:])
os.environ[CUDA_VISIBLE_DEVICES] = parent_visible_devices
tuning_pool = TuningProcessPool()
tuning_pool.initialize()
choice1 = TestTritonTemplateCaller(
TestBenchmarkRequest(3.14, True, parent_visible_devices),
)
choice2 = TestTritonTemplateCaller(
TestBenchmarkRequest(2.718, True, parent_visible_devices),
)
timings = tuning_pool.benchmark([choice1, choice2])
self.assertEqual(timings[choice1], choice1.bmreq.value)
self.assertEqual(timings[choice2], choice2.bmreq.value)
tuning_pool.terminate()
if __name__ == "__main__":
from torch._inductor.utils import is_big_gpu
# Set env to make it work in CI.
if HAS_CUDA and HAS_CPU and is_big_gpu(0):
run_tests()