Files
pytorch/docs/source/notes/mkldnn.rst
haozhe.zhu 53e0b9c393 refine fp32 precision api (#125888)
Based on the [conversation](https://github.com/pytorch/pytorch/issues/121791), we plan to drop the "highest, high, medium" to represent fp32  internal computation data types . Instead, we will directly use the algorithm to represent it.

### Design Choice: Directly use algorithms name like "TF32", "BF16".
#### Pros
 - The names are more informative. 'tf32' is more informative than a simple "high".
 - Easier to extend new algorithm like `tf32x3`
#### Cons
 - "HIGHEST, HIGH, MEDIUM" indicated the relative precision between different algorithms. However, we can have more documents to discuss them.

### We provide a layered structure for backends/operators.
('f32' is short for 'fp32_precision')
![image](https://github.com/user-attachments/assets/f89143e5-d6a1-4865-9351-9a50439f5067)

### We provide 3 fp32 compute precision can be set:
 - **"ieee"**: Not allowed to use any other internal computation data types .
 - **"tf32"**: Allowed to use tf32 as internal computation data types.
 - **"bf16"**: Allowed to use bf16 as internal computation data types.
 - **"none"**:  Precision's are not set. Can be override by its father node.

### Overriding Precision Settings
Child node can be override by its father node if it is set to default.
For current default settings:
```
backend = generic, op = all, precision setting = none
    backend = cuda, op = all, precision setting = none
        backend = cuda, op = conv, precision setting = tf32
        backend = cuda, op = rnn, precision setting = tf32
        backend = cuda, op = matmul, precision setting = none
    backend = matmul, op = all, precision setting = none
        backend = matmul, op = conv, precision setting = none
        backend = matmul, op = rnn, precision setting = none
        backend = matmul, op = matmul, precision setting = none
```
 - If the user set `torch.backends.mkldnn.fp32_precision="bf16"`, his child nodes `torch.backends.mkldnn.matmul.fp32_precision` / `torch.backends.mkldnn.conv.fp32_precision` / `torch.backends.mkldnn.rnn.fp32_precision` will also be override to "bf16".
 - If the user set `torch.backends.fp32_precision="bf16"`,  `torch.backends.mkldnn.fp32_precision` and his child nodes will also we override to "bf16".

### Backward Compatible
Since new API allow user to have more fine-grained control. There will be some conflict. For example, previous `torch.backends.cudnn.allow_tf32` are not enough to represent the status for `torch.backends.cudnn.rnn.fp32_precision="ieee"` and `torch.backends.cudnn.conv.fp32_precision="tf32"`. Therefore, our goal for backward compatible is
 - If the user only uses previous APIs, it will work as previous expectations.
 - If the user use **new** API to change the status to an **un-representable** status for old API, and try to access the status by **old** API. We will raise Runtime Error and point the document for user.

### Test Plan
```
python test/test_cuda.py -k test_fp32_precision_with_tf32
python test/test_cuda.py -k test_fp32_precision_with_float32_matmul_precision
python test/test_cuda.py -k test_invalid_status_for_legacy_api
python test/test_mkldnn.py -k test_mlkdnn_get_set
python test/test_mkldnn.py -k test_generic_precision
python test/test_mkldnn.py -k test_invalid
python test/test_mkldnn.py -k test_default_use_parent
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125888
Approved by: https://github.com/jgong5, https://github.com/albanD

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-06-26 10:32:20 +00:00

103 lines
3.6 KiB
ReStructuredText

.. meta::
:description: A guide to torch.backends.mkldnn, a PyTorch backend to run MKLDNN operations
:keywords: optimize PyTorch, MKLDNN
.. _mkldnn_backend:
MKLDNN backend
---------------------------------------------------
MKLDNN is an open-source cross-platform performance library of basic building blocks
for deep learning applications.
.. code:: python
# The flag below controls whether enable MKLDNN backend in Pytorch.
torch.backends.mkldnn.enabled = True
Users can disable MKLDNN backend by:
.. code:: python
torch.backends.mkldnn.enabled = False
.. _bf16_on_mkldnn:
Bfloat16 (BF16) on MKLDNN backend
---------------------------------------------------
Starting in PyTorch 2.4, there is a set of APIs to control the internal computation precision
for `float32` operators.
.. code:: python
# The flag below controls the internal computation precision for mkldnn matmul. Default ieee is float32.
torch.backends.mkldnn.matmul.fp32_precision = "ieee"
# The flag below controls the internal computation precision for mkldnn conv. Default ieee is float32.
torch.backends.mkldnn.conv.fp32_precision = "ieee"
# The flag below controls the internal computation precision for mkldnn rnn. Default ieee is float32.
torch.backends.mkldnn.rnn.fp32_precision = "ieee"
Note that besides matmuls and convolutions themselves, functions and nn modules that internally uses
matmuls or convolutions are also affected. These include :class:`torch.nn.Linear`, :class:`torch.nn._ConvNd`, :func:`torch.cdist`,
:func:`torch.tensordot`, :func:`torch.nn.functional.affine_grid` and :func:`torch.nn.functional.grid_sample`,
:class:`torch.nn.AdaptiveLogSoftmaxWithLoss`, :class:`torch.nn.GRU` and :class:`torch.nn.LSTM`.
To get an idea of the precision and speed, see the example code and benchmark data (on SPR) below:
.. code:: python
torch.manual_seed(0)
a_full = torch.randn(10240, 10240, dtype=torch.double)
b_full = torch.randn(10240, 10240, dtype=torch.double)
ab_full = a_full @ b_full
mean = ab_full.abs().mean() # 80.7451
a = a_full.float()
b = b_full.float()
# Do matmul at BF16 mode.
torch.backends.mkldnn.matmul.fp32_precision = 'bf16'
ab_bf16 = a @ b # expected speedup with BF16 dot-product acceleration
error = (ab_bf16 - ab_full).abs().max() # 1.3704
relative_error = error / mean # 0.0170
print(error, relative_error)
# Do matmul FP32 mode.
torch.backends.mkldnn.matmul.fp32_precision = 'ieee'
ab_fp32 = a @ b
error = (ab_fp32 - ab_full).abs().max() # 0.0003
relative_error = error / mean # 0.00000317
print(error, relative_error)
From the above example, we can see that with BF16, the speed is ~7x faster on SPR, and that
relative error compared to double precision is approximately 2 orders of magnitude larger.
If full FP32 precision is needed, users can disable BF16 by:
.. code:: python
torch.backends.mkldnn.matmul.fp32_precision = 'ieee'
torch.backends.mkldnn.conv.fp32_precision = 'ieee'
torch.backends.mkldnn.rnn.fp32_precision = 'ieee'
To toggle the BF16 flags off in C++, you can do
.. code:: C++
at::globalContext().setFloat32Precision("ieee", "mkldnn", "matmul");
at::globalContext().setFloat32Precision("ieee", "mkldnn", "conv");
at::globalContext().setFloat32Precision("ieee", "mkldnn", "rnn");
We can override a generic setting for a specific operator or backend if the fp32_precision is set to `ieee`.
.. code:: python
torch.backends.fp32_precision = "bf16"
torch.backends.mkldnn.fp32_precision = "ieee"
torch.backends.mkldnn.matmul.fp32_precision = "ieee"
For such case, both `torch.backends.mkldnn.fp32_precision` and `torch.backends.mkldnn.matmul.fp32_precision`
is overridden to bf16.