Files
pytorch/test/onnx/test_pytorch_onnx_shape_inference.py
Justin Chu 524b78d4f6 [ONNX] Refactor torchscript based exporter (#161323)
Refactor torchscript based exporter logic to move them to a single (private) location for better code management. Original public module and method apis are preserved.

- Updated module paths in `torch/csrc/autograd/python_function.cpp` accordingly
- Removed `check_onnx_broadcast` from `torch/autograd/_functions/utils.py` because it is private&unused

@albanD / @soulitzer could you review changes in `torch/csrc/autograd/python_function.cpp` and
`torch/autograd/_functions/utils.py`? Thanks!

## BC Breaking
- **Deprecated members in `torch.onnx.verification` are removed**

Differential Revision: [D81236421](https://our.internmc.facebook.com/intern/diff/D81236421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161323
Approved by: https://github.com/titaiwangms, https://github.com/angelayi
2025-09-02 16:10:30 +00:00

539 lines
22 KiB
Python

# Owner(s): ["module: onnx"]
import io
import numpy as np
import onnx
import pytorch_test_common
from pytorch_test_common import skipIfUnsupportedMinOpsetVersion
import torch
from torch.onnx import _constants, utils
from torch.onnx._internal.torchscript_exporter import jit_utils
from torch.onnx._internal.torchscript_exporter._globals import GLOBALS
from torch.testing._internal import common_utils
def expect_tensor(scalar_type, shape=None):
def verify(actual_type):
np.testing.assert_equal(actual_type.scalarType(), scalar_type)
# if shape is not None:
# np.testing.assert_equal(actual_type.sizes(), shape)
if shape is not None:
np.testing.assert_equal(actual_type.varyingSizes(), shape)
return verify
def as_graphcontext(graph: torch.Graph) -> jit_utils.GraphContext:
return jit_utils.GraphContext(
graph=graph,
block=graph.block(),
opset=_constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET,
original_node=None, # type: ignore[arg-type]
params_dict={},
env={},
values_in_env=set(),
)
def g_op(graph: torch.Graph, op_name: str, *args, **kwargs):
return as_graphcontext(graph).op(op_name, *args, **kwargs)
class TestONNXShapeInference(pytorch_test_common.ExportTestCase):
def setUp(self):
self.opset_version = _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
GLOBALS.export_onnx_opset_version = self.opset_version
def run_test(self, g, n, type_assertion_funcs):
if not isinstance(type_assertion_funcs, list):
type_assertion_funcs = [type_assertion_funcs]
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
for out, type_assertion_func in zip(n.outputs(), type_assertion_funcs):
type_assertion_func(out.type())
def create_empty_graph(self):
g = torch._C.Graph()
# kick off initialization for ConstantMap.
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
return g
def insert_tensor_constant(self, g, tensor):
return g_op(g, "Constant", value_t=tensor)
def test_cast(self):
# Test cast with input of unknown scalar type.
g = self.create_empty_graph()
input = g.addInput()
cast_out = g_op(g, "Cast", input, to_i=1)
self.run_test(g, cast_out.node(), expect_tensor("Float"))
def test_constant_of_shape(self):
# Test ConstantOfShape with input of onnx::Shape node.
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(1, 2, 3, 4))
shape = g_op(g, "Shape", constant)
constant_of_shape = g_op(
g, "ConstantOfShape", shape, value_t=torch.tensor([2.0])
)
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_static(self):
# Test ConstantOfShape with input of prim::ListConstruct of static tensor
rank = 4
g = self.create_empty_graph()
constants = [
self.insert_tensor_constant(g, torch.tensor(i + 1)) for i in range(rank)
]
shape = g_op(g, "prim::ListConstruct", *constants)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g_op(
g, "ConstantOfShape", shape, value_t=torch.tensor([2.0])
)
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_dynamic(self):
# Test ConstantOfShape with input of prim::ListConstruct of dynamic tensor
rank = 4
g = self.create_empty_graph()
inputs = [g.addInput() for i in range(rank)]
shape = g_op(g, "prim::ListConstruct", *inputs)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g_op(
g, "ConstantOfShape", shape, value_t=torch.tensor([2.0])
)
self.run_test(
g,
constant_of_shape.node(),
expect_tensor("Float", shape=(None, None, None, None)),
)
def test_gather_dynamic_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = g.addInput()
indices.setType(indices.type().with_dtype(torch.int64).with_sizes([None]))
output = g_op(g, "Gather", input, indices, axis_i=1)
self.run_test(
g, output.node(), expect_tensor("Float", shape=([None, None, 16, 16]))
)
def test_gather_scalar_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = self.insert_tensor_constant(g, torch.tensor(1))
output = g_op(g, "Gather", input, indices, axis_i=1)
self.run_test(g, output.node(), expect_tensor("Float", shape=([None, 16, 16])))
def test_reshape(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 5))
constant_2 = self.insert_tensor_constant(g, torch.tensor([2, 0, -1]))
shape = g_op(g, "Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(2, 16, 25)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 4]))
shape = g_op(g, "Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(10, 16, 4)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 0]))
shape = g_op(g, "Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(8, 16, 5)))
def test_reshape_symbolic(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None, 2, 8]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 0, -1]))
output = g_op(g, "Reshape", input, constant)
self.run_test(g, output.node(), expect_tensor(None, shape=(None, None, 16)))
@skipIfUnsupportedMinOpsetVersion(14)
def test_reshape_allowzero(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([3, 4, 0]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 4, 3]))
output = g_op(g, "Reshape", input, constant, allowzero_i=1)
self.run_test(g, output.node(), expect_tensor(None, shape=(0, 4, 3)))
def test_slice(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None]))
start_input = g.addInput()
start_input.setType(start_input.type().with_sizes([None]))
end = self.insert_tensor_constant(g, torch.tensor([3]))
axis = self.insert_tensor_constant(g, torch.tensor([0]))
step = self.insert_tensor_constant(g, torch.tensor([1]))
slice = g_op(g, "Slice", input, start_input, end, axis, step)
self.run_test(g, slice.node(), expect_tensor(None, shape=(None, None)))
def test_slice_with_dynamic_start_index(self):
g = self.create_empty_graph()
input = self.insert_tensor_constant(g, torch.ones(2, 3, 4, 5))
start_input = g.addInput()
start_input.setType(start_input.type().with_sizes([2]))
end = self.insert_tensor_constant(g, torch.tensor([3, 4]))
axis = self.insert_tensor_constant(g, torch.tensor([1, -1]))
slice = g_op(g, "Slice", input, start_input, end, axis)
self.run_test(g, slice.node(), expect_tensor(None, shape=(2, None, 4, None)))
def test_broadcast_matmul(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 5, 1, 1)))
# test when first input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 1, 1)))
# test when second input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(5, 1)))
# test when both inputs are of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=()))
def test_expand(self):
g = self.create_empty_graph()
input = g.addInput()
constant = self.insert_tensor_constant(g, torch.ones(2, 4))
input.setType(constant.type().with_sizes([None, None]))
shape = g_op(g, "Shape", input)
expand = g_op(g, "Expand", constant, shape)
self.run_test(g, expand.node(), expect_tensor("Float", shape=(None, None)))
def test_pad(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
pad = g_op(g, "Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(5, 322, 102)))
def test_pad_with_dynamic_input_shape(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, None, None]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
pad = g_op(g, "Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(5, None, None)))
def test_pad_with_dynamic_pad_size(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
pad_size = g.addInput()
pad_size.setType(pad_size.type().with_dtype(torch.long).with_sizes([6]))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
pad = g_op(g, "Pad", input, pad_size, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(None, None, None)))
def test_resize(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 32, 64, 64]))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
scales = self.insert_tensor_constant(
g, torch.tensor([1, 1, 2, 2], dtype=torch.float)
)
resize = g_op(
g,
"Resize",
input,
none,
scales,
coordinate_transformation_mode_s="align_corners",
cubic_coeff_a_f=-0.75,
mode_s="linear",
nearest_mode_s="floor",
)
self.run_test(g, resize.node(), expect_tensor("Float", shape=(4, 32, 128, 128)))
def test_resize_after_concat(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 32, 64, 64]))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
scale_1 = self.insert_tensor_constant(
g, torch.tensor([1, 1], dtype=torch.float)
)
scale_2 = self.insert_tensor_constant(
g, torch.tensor([2, 2], dtype=torch.float)
)
# `scales` values should be statically known due to constant folding in shape inference.
scales = g_op(g, "Concat", scale_1, scale_2, axis_i=0)
resize = g_op(
g,
"Resize",
input,
none,
scales,
coordinate_transformation_mode_s="align_corners",
cubic_coeff_a_f=-0.75,
mode_s="linear",
nearest_mode_s="floor",
)
self.run_test(g, resize.node(), expect_tensor("Float", shape=(4, 32, 128, 128)))
def test_reduce_prod_with_axes(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.long).with_sizes([2]))
reduce_prod = g_op(g, "ReduceProd", input, axes_i=[0])
self.run_test(g, reduce_prod.node(), expect_tensor("Long", shape=(1,)))
def test_reduce_prod_without_axes(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.long).with_sizes([2]))
reduce_prod = g_op(g, "ReduceProd", input)
self.run_test(g, reduce_prod.node(), expect_tensor("Long", shape=(1,)))
def test_proceeding_nodes_use_prim_pack_padded_output_dtype_correctly(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 16]))
length = g.addInput()
length.setType(length.type().with_dtype(torch.long).with_sizes([4]))
padded, batch_size = g_op(g, "prim::PackPadded", input, length, outputs=2)
# `prim::PackPadded` only occurs in tracing mode. Hence its outputs inherits
# shape and data type from traced graph.
padded.setType(padded.type().with_dtype(torch.float).with_sizes([None, None]))
batch_size.setType(batch_size.type().with_dtype(torch.long).with_sizes([None]))
# `Gather` should use the data type of `batch_size` as the data type of its output.
gather_idx = self.insert_tensor_constant(g, torch.tensor([0], dtype=torch.long))
gather = g_op(g, "Gather", batch_size, gather_idx, axis_i=0)
self.run_test(g, gather.node(), expect_tensor("Long", shape=(None,)))
def test_squeeze_after_dynamic_if(self):
from torch.onnx.symbolic_opset11 import squeeze as squeeze11
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([1, None, 5]))
# Type is intentionally not bool to test that
# the added "Cast" node doesn't stop shape inference.
cond = g.addInput()
cond.setType(input.type().with_dtype(torch.int32).with_sizes([1]))
_, (if_context, else_context), new_node = jit_utils.add_op_with_blocks(
as_graphcontext(g), "If", cond, n_blocks=2
)
block1_output = if_context.op("Add", input, input)
block2_output = else_context.op("Identity", input)
utils._add_output_to_block(if_context.block, block1_output)
utils._add_output_to_block(else_context.block, block2_output)
if_output = torch._C._jit_pass_fixup_onnx_controlflow_node(
new_node, _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
)[0]
torch._C._jit_pass_onnx_node_shape_type_inference(
new_node, {}, _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
)
# Exporter will add "If" instead of raw "Squeeze" if it does not know
# that if the dimension it is squeezing has size 1.
squeezed = squeeze11(as_graphcontext(g), if_output, dim=0)
assert squeezed.node().kind() == "onnx::Squeeze"
self.run_test(g, squeezed.node(), expect_tensor("Float", shape=(None, 5)))
class TestONNXCustomOpShapeInference(pytorch_test_common.ExportTestCase):
def setUp(self):
super().setUp()
self.opset_version = _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
def test_setType_maintains_output_shape_for_single_custom_op(self):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x):
return torch.inverse(x) + x
def linalg_inv_settype(g, self):
return g.op("com.microsoft::Inverse", self).setType(self.type())
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 3)
f = io.BytesIO()
torch.onnx.export(
model,
(x,),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
dims = model_value_info[0].type.tensor_type.shape.dim
for i in range(len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_value"))
for dim, rank in zip(dims, x.size()):
self.assertEqual(dim.dim_value, rank)
def test_no_setType_for_single_custom_op(self):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x):
return torch.inverse(x) + x
def linalg_inv_no_settype(g, self):
return g.op("com.microsoft::Inverse", self)
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_no_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 3)
f = io.BytesIO()
torch.onnx.export(
model,
(x,),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
dims = model_value_info[0].type.tensor_type.shape.dim
for i in range(len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_param"))
def test_setType_maintains_output_shape_for_single_custom_op_with_dynamic_axes(
self,
):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x):
return torch.inverse(x) + x
def linalg_inv_settype(g, self):
return g.op("com.microsoft::Inverse", self).setType(
self.type().with_dtype(torch.float).with_sizes([None, 3, 3])
)
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 3)
f = io.BytesIO()
torch.onnx.export(
model,
(x,),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
input_names=["x"],
dynamic_axes={"x": {0: "batch"}},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
dims = model_value_info[0].type.tensor_type.shape.dim
# The first axe should be dynamic as we defined when exporting
self.assertTrue(dims[0].HasField("dim_param"))
for i in range(1, len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_value"))
self.assertEqual(dims[i].dim_value, x.size()[i])
def test_setType_maintains_output_shape_for_single_custom_op_with_onnx_ops(self):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x, y, z):
x = torch.inverse(x)
return x + y + z
def linalg_inv_settype(g, self):
return g.op("com.microsoft::Inverse", self).setType(
self.type().with_dtype(torch.float).with_sizes([2, 3, 10, 10])
)
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 10, 10)
y = torch.randn(2, 3, 10, 10)
z = torch.randn(2, 3, 10, 10)
f = io.BytesIO()
torch.onnx.export(
model,
(x, y, z),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
# To validate the shape of inverse Op, we need to find inverse output name,
# and then use it to identify its value_info for the shape.
output_name = ""
for node in model_proto.graph.node:
if node.op_type == "Inverse":
output_name = node.output[0]
break
assert output_name
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
for value_info in model_value_info:
assert value_info.name
if value_info.name == output_name:
dims = value_info.type.tensor_type.shape.dim
for i in range(len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_value"))
for dim, rank in zip(dims, x.size()):
self.assertEqual(dim.dim_value, rank)
if __name__ == "__main__":
common_utils.run_tests()