mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29332 Even though we're statically typed, this can be useful, e.g. as shorthand when iterating through a module list. Test Plan: Imported from OSS Differential Revision: D18393097 Pulled By: suo fbshipit-source-id: aa42e955f88d1b8a876d0727055eb596453b9839
75 lines
2.4 KiB
Python
75 lines
2.4 KiB
Python
import os
|
|
import sys
|
|
from typing import List
|
|
|
|
import torch
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from jit_utils import JitTestCase
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
class TestBuiltins(JitTestCase):
|
|
"""
|
|
Tests for TorchScript support of Python builtin functions.
|
|
"""
|
|
def test_has_attr(self):
|
|
class HasA(torch.nn.Module):
|
|
def __init__(self):
|
|
super(HasA, self).__init__()
|
|
self.a = 0
|
|
|
|
class HasB(torch.nn.Module):
|
|
def __init__(self):
|
|
super(HasB, self).__init__()
|
|
self.b = 1
|
|
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Mod, self).__init__()
|
|
self.mods = torch.nn.ModuleList([HasA(), HasB()])
|
|
|
|
def forward(self):
|
|
# use a list to encode hasattr results
|
|
l = torch.jit.annotate(List[int], [])
|
|
for mod in self.mods:
|
|
l.append(int(hasattr(mod, "a")))
|
|
l.append(int(hasattr(mod, "b")))
|
|
# actually retrieve the attr to test static refinement
|
|
if hasattr(mod, "a"):
|
|
l.append(mod.a)
|
|
if hasattr(mod, "b"):
|
|
l.append(mod.b)
|
|
return l
|
|
|
|
self.checkModule(Mod(), ())
|
|
|
|
def test_has_attr_invalid_args(self):
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Mod, self).__init__()
|
|
self.mod = torch.nn.Linear(1, 1)
|
|
|
|
def forward(self, name):
|
|
# not allowed, `name` must be static.
|
|
return hasattr(self.mod, name)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "hasattr"):
|
|
torch.jit.script(Mod())
|
|
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Mod, self).__init__()
|
|
|
|
def forward(self, name):
|
|
# not allowed, `torch.rand` is not a class type
|
|
return hasattr(torch.rand(2, 3), name)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "hasattr"):
|
|
torch.jit.script(Mod())
|