mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This PR whitelists and simplifies graphs to help with development later on. Key to note in this PR is the use of both a pattern substitution and the registration of custom operators. This will likely be one of the main optimization types done in this folder. Pull Request resolved: https://github.com/pytorch/pytorch/pull/43024 Reviewed By: hlu1 Differential Revision: D23114262 Pulled By: bwasti fbshipit-source-id: e25aa3564dcc8a2b48cfd1561b3ee2a4780ae462
143 lines
4.8 KiB
Python
143 lines
4.8 KiB
Python
import torch
|
|
from torch import nn
|
|
import numpy as np
|
|
|
|
|
|
class StaticRuntime:
|
|
def __init__(self, scripted):
|
|
# this is an nn.Module
|
|
if hasattr(scripted, "_c"):
|
|
scripted._c = torch._C._freeze_module(scripted._c)
|
|
self.static_runtime = torch._C._jit_to_static_runtime(
|
|
scripted._c, scripted._c._get_method("forward").graph
|
|
)
|
|
else:
|
|
self.static_runtime = torch._C._jit_to_static_runtime(scripted.graph)
|
|
|
|
def __call__(self, *inps):
|
|
return self.static_runtime.run(inps)
|
|
|
|
def linear_shim(input, weight, bias=None):
|
|
# type: (Tensor, Tensor, Optional[Tensor]) -> Tensor
|
|
output = input.matmul(weight.t())
|
|
if bias is not None:
|
|
output += bias
|
|
ret = output
|
|
return ret
|
|
torch.nn.functional.linear = linear_shim
|
|
|
|
|
|
class MultiHeadAttentionLayer(nn.Module):
|
|
def __init__(self, hid_dim, n_heads, dropout, device):
|
|
super().__init__()
|
|
assert hid_dim % n_heads == 0
|
|
self.hid_dim = hid_dim
|
|
self.n_heads = n_heads
|
|
self.head_dim = hid_dim // n_heads
|
|
self.fc_q = nn.Linear(hid_dim, hid_dim)
|
|
self.fc_k = nn.Linear(hid_dim, hid_dim)
|
|
self.fc_v = nn.Linear(hid_dim, hid_dim)
|
|
self.fc_o = nn.Linear(hid_dim, hid_dim)
|
|
# self.dropout = nn.Dropout(dropout)
|
|
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
|
|
|
|
def forward(self, query, key, value, mask):
|
|
batch_size = query.shape[0]
|
|
Q = self.fc_q(query)
|
|
K = self.fc_k(key)
|
|
V = self.fc_v(value)
|
|
Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
|
|
K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
|
|
V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
|
|
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
|
|
# energy = energy.masked_fill(mask == 0, -1e10)
|
|
attention = torch.softmax(energy, dim=-1)
|
|
# x = torch.matmul(self.dropout(attention), V)
|
|
x = torch.matmul(attention, V)
|
|
x = x.permute(0, 2, 1, 3).contiguous()
|
|
x = x.view(batch_size, -1, self.hid_dim)
|
|
x = self.fc_o(x)
|
|
return x, attention
|
|
|
|
|
|
# Taken from https://github.com/facebookresearch/dlrm/blob/master/dlrm_s_pytorch.py
|
|
def create_mlp(ln, sigmoid_layer):
|
|
layers = nn.ModuleList()
|
|
for i in range(0, len(ln) - 1):
|
|
n = ln[i]
|
|
m = ln[i + 1]
|
|
|
|
LL = nn.Linear(int(n), int(m), bias=True)
|
|
|
|
mean = 0.0 # std_dev = np.sqrt(variance)
|
|
std_dev = np.sqrt(2 / (m + n)) # np.sqrt(1 / m) # np.sqrt(1 / n)
|
|
W = np.random.normal(mean, std_dev, size=(m, n)).astype(np.float32)
|
|
std_dev = np.sqrt(1 / m) # np.sqrt(2 / (m + 1))
|
|
bt = np.random.normal(mean, std_dev, size=m).astype(np.float32)
|
|
LL.weight.data = torch.tensor(W, requires_grad=True)
|
|
LL.bias.data = torch.tensor(bt, requires_grad=True)
|
|
layers.append(LL)
|
|
|
|
if i == sigmoid_layer:
|
|
layers.append(nn.Sigmoid())
|
|
else:
|
|
layers.append(nn.ReLU())
|
|
|
|
with torch.no_grad():
|
|
s = torch.jit.script(torch.nn.Sequential(*layers))
|
|
s.eval()
|
|
return s
|
|
|
|
|
|
def trivial_graph(a, b, c):
|
|
s = torch.tensor([[3, 3], [3, 3]])
|
|
return a + b * c + s
|
|
|
|
|
|
if __name__ == "__main__":
|
|
HID_DIM = 256
|
|
QUERY_LEN = 8
|
|
BATCH_SIZE = 128
|
|
LAYERS = 3
|
|
HEADS = 8
|
|
DROPOUT = 0.1
|
|
device = torch.device("cpu")
|
|
attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device)
|
|
src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device)
|
|
src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device)
|
|
|
|
attention.eval()
|
|
attention = torch.jit.script(attention)
|
|
attention.eval()
|
|
o_ref = attention(src, src, src, src_mask)
|
|
|
|
attention_a = StaticRuntime(attention)
|
|
o_test = attention_a(src, src, src, src_mask)
|
|
for a, b in zip(o_ref, o_test):
|
|
torch.testing.assert_allclose(a, b)
|
|
|
|
s = torch.full((2, 2), 2)
|
|
tg = torch.jit.script(trivial_graph)
|
|
o_ref = tg(s, s, s)
|
|
tg_a = StaticRuntime(tg)
|
|
o_test = tg_a(s, s, s)[0]
|
|
torch.testing.assert_allclose(o_ref, o_test)
|
|
|
|
# Arguments taken from benchmark script, ./bench/dlrm_s_benchmark.sh
|
|
ln_bot = [512, 512, 64]
|
|
sigmoid_bot = -1
|
|
ln_top = [100, 1024, 1024, 1024, 1]
|
|
sigmoid_top = 3
|
|
bot_l = create_mlp(ln_bot, sigmoid_bot)
|
|
bot_l_acc = StaticRuntime(bot_l)
|
|
top_l = create_mlp(ln_top, sigmoid_top)
|
|
top_l_acc = StaticRuntime(top_l)
|
|
bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512])
|
|
top_inp = torch.randn(2048, 100) # torch.Size([2048, 100])
|
|
ref_bot = bot_l(bot_inp)
|
|
acc_bot = bot_l_acc(bot_inp)[0]
|
|
torch.testing.assert_allclose(acc_bot, ref_bot)
|
|
ref_top = top_l(top_inp)
|
|
acc_top = top_l_acc(top_inp)[0]
|
|
torch.testing.assert_allclose(acc_top, ref_top)
|