mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 06:11:27 +08:00
Summary: Anywhere we used #include "foo.h", we now say #include <foo.h> Paths are adjusted to be rooted out of aten/src, torch/lib, or the root level directory. I modified CMakeLists.txt by hand to remove TH and THC from the include paths. I used the following script to do the canonicalization: ``` import subprocess import re import os.path files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n') for fn in files: if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']): continue if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]): continue with open(fn, 'r') as f: c = f.read() def fmt(p): return "#include <{}>".format(p) def repl(m): p = m.group(1) if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]: return fmt(p) if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]): return fmt(p) for root in ["aten/src", "torch/lib", ""]: for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]: new_p = os.path.relpath(os.path.join(bad_root, p), root) if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))): return fmt(new_p) print("ERROR: ", fn, p) return m.group(0) new_c = re.sub(r'#include "([^"]+)"', repl, c) if new_c != c: print(fn) with open(fn, 'w') as f: f.write(new_c) ``` Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849 Reviewed By: dzhulgakov Differential Revision: D13363445 Pulled By: ezyang fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
134 lines
5.2 KiB
C++
134 lines
5.2 KiB
C++
#include <torch/csrc/autograd/python_legacy_variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/python_function.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
|
|
using namespace at;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
static PyObject *THPVariable_pynew(PyTypeObject* type, PyObject *args, PyObject *kwds) {
|
|
HANDLE_TH_ERRORS
|
|
THPObjectPtr _data;
|
|
PyObject *data = nullptr;
|
|
PyObject *grad_fn = nullptr;
|
|
char is_volatile = 0;
|
|
char requires_grad = 0;
|
|
const char* name = nullptr;
|
|
|
|
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", "name", nullptr};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbOz", (char**)accepted_args,
|
|
&data, &requires_grad, &is_volatile, &grad_fn, &name))
|
|
return nullptr;
|
|
|
|
if (grad_fn == Py_None)
|
|
grad_fn = nullptr;
|
|
|
|
if (is_volatile) {
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"volatile was removed and now has no effect. Use `with torch.no_grad():` "
|
|
"instead.", 1);
|
|
}
|
|
|
|
if (is_volatile && requires_grad) {
|
|
throw ValueError("Variable can't be volatile and require_grad at the same time!");
|
|
}
|
|
if (grad_fn && !THPFunction_Check(grad_fn)) {
|
|
throw TypeError("_grad_fn has to be a Function object or None, but got %s",
|
|
Py_TYPE(grad_fn)->tp_name);
|
|
}
|
|
Tensor tensor;
|
|
if (!data || data == Py_None) {
|
|
// For legacy serialization code, create an empty tensor. This is also used
|
|
// by nn.Parameter() with no arguments.
|
|
auto var = at::empty({0}, torch::tensors::get_default_tensor_type().options());
|
|
tensor = static_cast<Variable&>(var).data();
|
|
} else if (THPVariable_Check(data)) {
|
|
tensor = ((THPVariable*)data)->cdata.data();
|
|
} else {
|
|
throw torch::TypeError("Variable data has to be a tensor, but got %s",
|
|
Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
Variable var;
|
|
if (grad_fn) {
|
|
auto grad_fn_ = THPFunction_asFunction((THPFunction*)grad_fn);
|
|
Edge edge(grad_fn_, grad_fn_->add_input_metadata(tensor));
|
|
var = make_variable(std::move(tensor), std::move(edge));
|
|
} else {
|
|
var = make_variable(std::move(tensor), requires_grad);
|
|
}
|
|
|
|
if (name) {
|
|
var.set_name(name);
|
|
}
|
|
|
|
if (jit::tracer::isTracing() && data && data != Py_None && THPVariable_Check(data)) {
|
|
if (auto *v = jit::tracer::getValueTrace(((THPVariable*)data)->cdata)) {
|
|
jit::tracer::setValueTrace(var, v);
|
|
}
|
|
}
|
|
|
|
return THPVariable_Wrap(std::move(var));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyTypeObject THPLegacyVariableType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C._LegacyVariableBase", /* tp_name */
|
|
0, /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
nullptr, /* tp_dealloc */
|
|
nullptr, /* tp_print */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
nullptr, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
nullptr, /* tp_traverse */
|
|
nullptr, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
nullptr, /* tp_methods */
|
|
nullptr, /* tp_members */
|
|
nullptr, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPVariable_pynew /* tp_new */
|
|
};
|
|
|
|
void init_legacy_variable(PyObject *module) {
|
|
if (PyType_Ready(&THPLegacyVariableType) < 0) {
|
|
throw python_error();
|
|
}
|
|
auto obj = (PyObject*)&THPLegacyVariableType;
|
|
Py_INCREF(obj);
|
|
if (PyModule_AddObject(module, "_LegacyVariableBase", obj) < 0) {
|
|
throw python_error();
|
|
}
|
|
}
|
|
|
|
}} // namespace torch::autograd
|