mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Ideally, the method should be non-const since it changes the allocator state. Some const_casts are also removed in the way. Pull Request resolved: https://github.com/pytorch/pytorch/pull/120969 Approved by: https://github.com/albanD
3401 lines
117 KiB
C++
3401 lines
117 KiB
C++
#include <c10/cuda/CUDACachingAllocator.h>
|
|
|
|
#include <c10/core/impl/GPUTrace.h>
|
|
#include <c10/cuda/CUDAAllocatorConfig.h>
|
|
#include <c10/cuda/CUDAException.h>
|
|
#include <c10/cuda/CUDAFunctions.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
#include <c10/util/CallOnce.h>
|
|
#include <c10/util/ScopeExit.h>
|
|
#include <c10/util/UniqueVoidPtr.h>
|
|
#include <c10/util/flat_hash_map.h>
|
|
#include <c10/util/hash.h>
|
|
#include <c10/util/irange.h>
|
|
#include <c10/util/llvmMathExtras.h>
|
|
#include <c10/util/static_tracepoint.h>
|
|
|
|
#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
|
#include <c10/cuda/driver_api.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include <c10/util/Exception.h>
|
|
#include <cuda_runtime_api.h>
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <regex>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
TORCH_SDT_DEFINE_SEMAPHORE(malloc)
|
|
TORCH_SDT_DEFINE_SEMAPHORE(free)
|
|
|
|
namespace c10 {
|
|
|
|
C10_DEFINE_REGISTRY(FreeCudaMemoryCallbacksRegistry, FreeMemoryCallback);
|
|
|
|
namespace cuda::CUDACachingAllocator {
|
|
|
|
// Included here as this is externally used in CUDAAllocatorConfig
|
|
const size_t kLargeBuffer =
|
|
20971520; // "large" allocations may be packed in 20 MiB blocks
|
|
|
|
namespace Native {
|
|
|
|
//
|
|
// Yet another caching allocator for CUDA device allocations.
|
|
//
|
|
// - Allocations are associated with a stream. Once freed, blocks can be
|
|
// re-allocated on the same stream, but not on any other stream.
|
|
// - The allocator attempts to find the smallest cached block that will fit the
|
|
// requested size. If the block is larger than the requested size, it may be
|
|
// split. If no block is found, the allocator will delegate to cudaMalloc.
|
|
// - If the cudaMalloc fails, the allocator will attempt to free one cached
|
|
// block of sufficient size that is not split and retry the allocation.
|
|
// If this also fails, the allocator will attempt to free all cached blocks
|
|
// that are not split and retry the allocation.
|
|
// - Large (>1MB) and small allocations are stored in separate pools.
|
|
// Small requests are packed into 2MB buffers. Large requests will use the
|
|
// smallest available free block or allocate a new block using cudaMalloc.
|
|
// - To reduce fragmentation, requests between 1MB and 10MB will allocate and
|
|
// split a 20MB block, if no free block of sufficient size is available.
|
|
// - To further reduce fragmentation, blocks >= 200MB are not allowed to be
|
|
// split. These oversize cached blocks will still satisfy requests within
|
|
// 20MB of the oversize cached block size.
|
|
//
|
|
// With this allocator, allocations and frees should logically be considered
|
|
// "usages" of the memory segment associated with streams, just like kernel
|
|
// launches. The programmer must insert the proper synchronization if memory
|
|
// segments are used from multiple streams.
|
|
//
|
|
// The library provides a recordStream() function to help insert the correct
|
|
// synchronization when allocations are used on multiple streams. This will
|
|
// ensure that the block is not reused before each recorded stream completes
|
|
// work.
|
|
//
|
|
|
|
/**
|
|
* Note [Interaction with CUDA graph capture]
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* Graph capture performs a dry run of a region of execution, freezing all CUDA
|
|
* work (and virtual addresses used during that work) into a "graph." The graph
|
|
* may be "replayed" like a single giant kernel, with greatly reduced CPU
|
|
* overhead as well as modestly improved GPU performance.
|
|
*
|
|
* Because capture bakes in memory addresses, the memory used during capture
|
|
* must be available for the graph to use during replay. DeviceCachingAllocator
|
|
* assigns and frees memory eagerly and dynamically, so if we're not careful
|
|
* about managing graphs' memory, at replay time those memory addresses could be
|
|
* used by other tensors.
|
|
*
|
|
* To guarantee a graph's baked in addresses are safe to reuse in replay,
|
|
* DeviceAllocator satisfies allocations from a graph-private memory pool during
|
|
* capture, and doesn't begin cudaFreeing those addresses until the graph is
|
|
* destroyed.
|
|
*
|
|
* Within the private pool, allocations are freed and reassigned as usual during
|
|
* capture. Memory regions will be used in a consistent order during replay. So
|
|
* a private pool doesn't use memory more wastefully than the default pools
|
|
* during capture, but it does reserve its high-water mark of used memory away
|
|
* from the default pools as long as the capture(s) it served survive
|
|
* (regardless whether those captures are idle or replaying).
|
|
*
|
|
* CUDAGraph's requests for private pools are mediated by
|
|
* DeviceAllocator::notifyCaptureBegin,
|
|
* notifyCaptureAboutToEnd,
|
|
* notifyCaptureEnded,
|
|
* notifyCaptureDestroy.
|
|
*/
|
|
|
|
constexpr size_t kMinBlockSize =
|
|
512; // all sizes are rounded to at least 512 bytes
|
|
constexpr size_t kSmallSize = 1048576; // largest "small" allocation is 1 MiB
|
|
constexpr size_t kSmallBuffer =
|
|
2097152; // "small" allocations are packed in 2 MiB blocks
|
|
constexpr size_t kMinLargeAlloc =
|
|
10485760; // allocations between 1 and 10 MiB may use kLargeBuffer
|
|
constexpr size_t kRoundLarge = 2097152; // round up large allocations to 2 MiB
|
|
|
|
namespace {
|
|
|
|
using stream_set = ska::flat_hash_set<cuda::CUDAStream>;
|
|
|
|
using StatTypes = std::array<bool, static_cast<size_t>(StatType::NUM_TYPES)>;
|
|
|
|
void update_stat(Stat& stat, int64_t amount) {
|
|
stat.current += amount;
|
|
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
|
stat.current >= 0,
|
|
"Negative tracked stat in CUDA allocator (likely logic error).");
|
|
|
|
stat.peak = std::max(stat.current, stat.peak);
|
|
if (amount > 0) {
|
|
stat.allocated += amount;
|
|
}
|
|
if (amount < 0) {
|
|
stat.freed += -amount;
|
|
}
|
|
}
|
|
|
|
void reset_accumulated_stat(Stat& stat) {
|
|
stat.allocated = 0;
|
|
stat.freed = 0;
|
|
}
|
|
|
|
void reset_peak_stat(Stat& stat) {
|
|
stat.peak = stat.current;
|
|
}
|
|
|
|
template <typename Func>
|
|
void for_each_selected_stat_type(const StatTypes& stat_types, Func f) {
|
|
for (const auto stat_type : c10::irange(stat_types.size())) {
|
|
if (stat_types[stat_type]) {
|
|
f(stat_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
void update_stat_array(
|
|
StatArray& stat_array,
|
|
int64_t amount,
|
|
const StatTypes& stat_types) {
|
|
for_each_selected_stat_type(
|
|
stat_types, [&stat_array, amount](size_t stat_type) {
|
|
update_stat(stat_array[stat_type], amount);
|
|
});
|
|
}
|
|
|
|
struct Block;
|
|
struct PrivatePool;
|
|
typedef bool (*Comparison)(const Block*, const Block*);
|
|
static bool BlockComparatorSize(const Block* a, const Block* b);
|
|
static bool BlockComparatorAddress(const Block* a, const Block* b);
|
|
|
|
struct BlockPool {
|
|
BlockPool(bool small, PrivatePool* private_pool = nullptr)
|
|
: blocks(BlockComparatorSize),
|
|
unmapped(BlockComparatorAddress),
|
|
is_small(small),
|
|
owner_PrivatePool(private_pool) {}
|
|
|
|
// Do not insert a Block to blocks directly; use insert_into_blocks(),
|
|
// instead.
|
|
std::set<Block*, Comparison> blocks;
|
|
std::set<Block*, Comparison> unmapped;
|
|
const bool is_small;
|
|
PrivatePool* owner_PrivatePool;
|
|
int64_t get_free_blocks_call_count{0};
|
|
|
|
// Add a Block into blocks set with updating gc counter.
|
|
std::pair<std::set<Block*, Comparison>::iterator, bool> insert_into_blocks(
|
|
Block* block);
|
|
};
|
|
|
|
struct ExpandableSegment;
|
|
|
|
struct Block {
|
|
c10::DeviceIndex device; // gpu
|
|
cudaStream_t stream; // allocation stream
|
|
stream_set stream_uses; // streams on which the block was used
|
|
size_t size; // block size in bytes
|
|
size_t requested_size; // memory originally requested
|
|
BlockPool* pool{nullptr}; // owning memory pool
|
|
void* ptr{nullptr}; // memory address
|
|
bool allocated{false}; // in-use flag
|
|
bool mapped{true}; // is the virtual address range this Block references
|
|
// backed by physical pages. Always true when
|
|
// expandable_segment_ is null. When false
|
|
// This Block will be aligned to the segment size
|
|
// of its expandable_segment_.
|
|
Block* prev{nullptr}; // prev block if split from a larger allocation
|
|
Block* next{nullptr}; // next block if split from a larger allocation
|
|
int event_count{0}; // number of outstanding CUDA events
|
|
int64_t gc_count_base{0}; // get_free_blocks_call_count when Block is inserted
|
|
std::shared_ptr<GatheredContext> context_when_allocated;
|
|
// only set for the first block in the segment (when prev == null)
|
|
// this records the frame information when cudaMalloc was called
|
|
// whereas context_when_allocated records the last time we handed this
|
|
// memory out from our cache.
|
|
std::shared_ptr<GatheredContext> context_when_segment_allocated;
|
|
|
|
ExpandableSegment* expandable_segment_{nullptr};
|
|
|
|
Block(
|
|
c10::DeviceIndex device,
|
|
cudaStream_t stream,
|
|
size_t size,
|
|
BlockPool* pool,
|
|
void* ptr)
|
|
: device(device),
|
|
stream(stream),
|
|
stream_uses(),
|
|
size(size),
|
|
requested_size(0),
|
|
pool(pool),
|
|
ptr(ptr),
|
|
gc_count_base(0) {}
|
|
|
|
// constructor for search key
|
|
Block(c10::DeviceIndex device, cudaStream_t stream, size_t size)
|
|
: device(device),
|
|
stream(stream),
|
|
stream_uses(),
|
|
size(size),
|
|
requested_size(0) {}
|
|
|
|
size_t gc_count() {
|
|
TORCH_INTERNAL_ASSERT(pool);
|
|
return static_cast<int>(pool->get_free_blocks_call_count - gc_count_base);
|
|
}
|
|
|
|
bool is_split() const {
|
|
return (prev != nullptr) || (next != nullptr);
|
|
}
|
|
void splice(Block* before, Block* after) {
|
|
if (before) {
|
|
TORCH_INTERNAL_ASSERT(before->next == after);
|
|
before->next = this;
|
|
}
|
|
prev = before;
|
|
if (after) {
|
|
TORCH_INTERNAL_ASSERT(after->prev == before);
|
|
after->prev = this;
|
|
}
|
|
next = after;
|
|
}
|
|
};
|
|
|
|
std::pair<std::set<Block*, Comparison>::iterator, bool> BlockPool::
|
|
insert_into_blocks(Block* block) {
|
|
block->gc_count_base = get_free_blocks_call_count;
|
|
return blocks.insert(block);
|
|
}
|
|
|
|
struct SegmentRange {
|
|
char* ptr;
|
|
size_t size;
|
|
SegmentRange(void* p, size_t s) : ptr(static_cast<char*>(p)), size(s) {}
|
|
};
|
|
|
|
#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
|
|
|
/*
|
|
Note [Expandable Segments]
|
|
|
|
Rationale
|
|
|
|
For large (>2MB) allocations, the allocator calls cudaMalloc to get allocations
|
|
that are the same size as what the user requests. In the future, parts of these
|
|
allocations can be reused for other requests if they are free. This works well
|
|
when the program makes many requests of exactly the same size or of sizes that
|
|
even multiples of that size. Many deep learning models follow this behavior.
|
|
However, one common exception is when the batch size changes slightly from one
|
|
iteration to the next, e.g. in batched inference. When the program runs
|
|
initially with batch size N, it will make allocations appropriate for that size.
|
|
If in the future, it runs at size N - 1, the existing allocations will still be
|
|
big enough. However, if it runs at size N + 1, then it will have to make new
|
|
allocations that are slightly larger. Not all the tensors are the same size.
|
|
Some might be (N + 1)*A and others (N + 1)*A*B where A and B are some non-batch
|
|
dimensions in the model. Because the allocator reuses existing allocations when
|
|
they are big enough, some number of (N + 1)*A allocations will actually fit in
|
|
the already existing N*B*A segments, though not perfectly. As the model runs it
|
|
will partially fill up all of these segments leaving unusable free slices of
|
|
memory at the end of these segments. The allocator at some point will need to
|
|
cudaMalloc a new (N + 1)*A*B segment. If there is not enough memory, there is
|
|
now no way to recover the slices of memory that are free at the end of existing
|
|
segments. With models 50+ layers deep, this pattern might repeat 50+ times
|
|
creating many slivers.
|
|
|
|
Approach
|
|
|
|
Expandable segments allows the allocator to create a segment initially and then
|
|
expand its size later when more memory is needed. Instead of making one segment
|
|
per allocation, it tries to make one segment (per stream) that grows as
|
|
necessary. Now when the N + 1 case runs, the allocations will tile nicely into
|
|
the one large segment until it fills up. Then more memory is requested and
|
|
appended to the end of the segment. This process does not create as many slivers
|
|
of unusable memory, so it is more likely to succeed at finding this memory.
|
|
|
|
Implementation
|
|
|
|
The expandable_segments:True option is used to enable/disable this behavior. We
|
|
use cuda's low-level memory APIs, which are similar to mmap, to extend the
|
|
memory segments. These APIs separate the allocation of physical memory
|
|
(cuMemCreate) from the allocation of virtual address space (cuMemAddressReserve)
|
|
and the associate between them cuMemMap/cuMemSetAccess.
|
|
|
|
When we allocate a new segment, we allocate enough address space to map
|
|
basically the entire physical memory of the GPU (there is 256TiB of address
|
|
space), but we only map enough physical memory to handle the current amount of
|
|
memory needed by the program. As more is requested, we add more physical memory
|
|
to the segment. This can work at the granularity of GPU pages which are 2MiB
|
|
currently.
|
|
|
|
If we end up out of memory, we can unmap all the memory in our segment
|
|
corresponding to empty physical pages, and return it to CUDA for use at another
|
|
address in the segment or in a segment for a different stream.
|
|
|
|
A current limitation of CUDA's API is that physical memory
|
|
(CUmemGenericAllocationHandle) cannot be split up after it is mapped even if the
|
|
handle holds multiple GPU pages. The cost to map/unmap memory is proportional to
|
|
the number of physical memory chunks that were allocated (mapping 10 separately
|
|
allocated 2MiB pages takes 10x time compared to mapping one 20MiB physical
|
|
allocation of 10 pages). Changing memory mappings also appears to involve at
|
|
least some synchronous actions with the GPU and so should be considered an
|
|
expensive operation. To limit overhead, we use 2MiB pages for our small pool and
|
|
20MiB pages for our large pool. Initially allocation using expandable_blocks
|
|
will be slower than cudaMalloc, though still in the milliseconds range for
|
|
mapping the entire memory.
|
|
|
|
When mapping new memory to expand the segment, we look for the lowest address at
|
|
which we can fit a new allocation by adding new pages. Normally this will be at
|
|
the end of the block. But if have previously unmapped blocks earlier in the
|
|
segment during an OOM, it will first try to fill in those gaps to keep the
|
|
segment as a single block. By allocating at the lowest address we encourage
|
|
the split up parts of the block to merge into a single block again, reducing
|
|
fragmentation potential.
|
|
|
|
Allocation of blocks in the segment uses the same best-fit heuristics of the
|
|
rest of the allocator.
|
|
|
|
Expandable blocks can be enabled/disabled throughout the run of a program. When
|
|
disabled, the allocator will not put new allocations in an expandable block.
|
|
|
|
Limitations
|
|
|
|
* Slightly slower initial memory allocation speed.
|
|
* IPC of cuda tensors (e.g. for multiprocess dataloaders) is not supported.
|
|
However, it is possible to temporarily disable (expandable_segments:False) the
|
|
bevhavior for allocator tensors that need to be used cross-process.
|
|
* CUDA runtime APIs related to sharing memory across process
|
|
(cudaDeviceEnablePeerAccess) do not work for memory allocated with cuMemMap.
|
|
Instead these mapping have to be done manually. The allocator now has an
|
|
`enablePeerAccess` method to do this.
|
|
*/
|
|
|
|
struct ExpandableSegment {
|
|
ExpandableSegment(
|
|
c10::DeviceIndex device,
|
|
cudaStream_t stream,
|
|
size_t size,
|
|
std::vector<c10::DeviceIndex> peers)
|
|
: device_(device),
|
|
stream_(stream),
|
|
max_handles_(0),
|
|
// 2MB for small pool, 20MB for large pool
|
|
segment_size_(size),
|
|
peers_(std::move(peers)) {
|
|
cudaDeviceProp prop{};
|
|
C10_CUDA_CHECK(cudaGetDeviceProperties(&prop, device_));
|
|
// we allocate enough address space for 1 1/8 the total memory on the GPU.
|
|
// This allows for some cases where we have to unmap pages earlier in the
|
|
// segment to put them at the end.
|
|
max_handles_ = numSegments(prop.totalGlobalMem + prop.totalGlobalMem / 8);
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemAddressReserve_(
|
|
&ptr_, segment_size_ * max_handles_, 0ULL, 0, 0ULL));
|
|
}
|
|
// begin must be aligned to segment_size_.
|
|
// returns the actual range mapped, which may be
|
|
// greater than requested if size is not aligned to segment_size_.
|
|
// return size of 0 indicates OOM
|
|
SegmentRange map(SegmentRange range) {
|
|
auto begin = segmentLeft(range.ptr);
|
|
auto end = segmentRight(range.ptr + range.size);
|
|
TORCH_INTERNAL_ASSERT(ptr() + begin * segment_size_ == range.ptr);
|
|
if (begin == end) {
|
|
return rangeFromHandles(begin, end);
|
|
}
|
|
while (end > handles_.size()) {
|
|
handles_.emplace_back(c10::nullopt);
|
|
}
|
|
for (auto i : c10::irange(begin, end)) {
|
|
TORCH_INTERNAL_ASSERT(!handles_.at(i));
|
|
CUmemGenericAllocationHandle handle = 0;
|
|
CUmemAllocationProp prop = {};
|
|
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
|
|
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
|
prop.location.id = static_cast<int>(device_);
|
|
auto status =
|
|
DriverAPI::get()->cuMemCreate_(&handle, segment_size_, &prop, 0);
|
|
if (status == CUDA_ERROR_OUT_OF_MEMORY) {
|
|
for (auto j : c10::irange(begin, i)) {
|
|
auto h = handles_.at(j).value();
|
|
handles_.at(j) = c10::nullopt;
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemRelease_(h));
|
|
}
|
|
trimHandles();
|
|
return rangeFromHandles(begin, begin);
|
|
}
|
|
C10_CUDA_DRIVER_CHECK(status);
|
|
handles_.at(i) = handle;
|
|
}
|
|
for (auto i : c10::irange(begin, end)) {
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemMap_(
|
|
ptr_ + i * segment_size_,
|
|
segment_size_,
|
|
0,
|
|
handles_.at(i).value(),
|
|
0ULL));
|
|
}
|
|
|
|
setAccess(device_, begin, end);
|
|
for (auto p : peers_) {
|
|
setAccess(p, begin, end);
|
|
}
|
|
return rangeFromHandles(begin, end);
|
|
}
|
|
|
|
// unmaps all the completely empty segment_size_ segments between
|
|
// [begin, begin + size), returns the offset where the range begin,
|
|
// and the actual size unmapped (multiple of segment_size_)
|
|
SegmentRange unmap(SegmentRange range) {
|
|
auto begin = segmentRight(range.ptr);
|
|
auto end = segmentLeft(range.ptr + range.size);
|
|
if (begin >= end) {
|
|
return SegmentRange{range.ptr, 0};
|
|
}
|
|
unmapHandles(begin, end);
|
|
return rangeFromHandles(begin, end);
|
|
}
|
|
|
|
char* ptr() const {
|
|
return (char*)ptr_;
|
|
}
|
|
size_t size() const {
|
|
return max_handles_ * segment_size_;
|
|
}
|
|
|
|
void addPeer(c10::DeviceIndex device) {
|
|
peers_.push_back(device);
|
|
forEachAllocatedRange(
|
|
[&](size_t begin, size_t end) { setAccess(device, begin, end); });
|
|
}
|
|
|
|
~ExpandableSegment() {
|
|
forEachAllocatedRange(
|
|
[&](size_t begin, size_t end) { unmapHandles(begin, end); });
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemAddressFree_(
|
|
ptr_, segment_size_ * max_handles_));
|
|
}
|
|
|
|
private:
|
|
void setAccess(c10::DeviceIndex device, size_t begin, size_t end) {
|
|
CUmemAccessDesc desc;
|
|
desc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
|
desc.location.id = static_cast<int>(device);
|
|
desc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemSetAccess_(
|
|
ptr_ + begin * segment_size_, (end - begin) * segment_size_, &desc, 1));
|
|
}
|
|
|
|
void unmapHandles(size_t begin, size_t end) {
|
|
// note: unlike cudaFree, MemUnmap and MemRelease do
|
|
// not appear to synchronize in all cases, so we have to wait for the
|
|
// stream to finish before this memory is truly free.
|
|
|
|
// cannot call c10::cuda::stream_synchronize because
|
|
// it might grab the GIL which can lead to a deadlock
|
|
// Locking order must be GIL -> Allocator Lock
|
|
C10_CUDA_CHECK(cudaStreamSynchronize(stream_));
|
|
for (auto i : c10::irange(begin, end)) {
|
|
CUmemGenericAllocationHandle h = handles_.at(i).value();
|
|
handles_.at(i) = c10::nullopt;
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemUnmap_(
|
|
ptr_ + segment_size_ * i, segment_size_));
|
|
C10_CUDA_DRIVER_CHECK(DriverAPI::get()->cuMemRelease_(h));
|
|
}
|
|
trimHandles();
|
|
}
|
|
void trimHandles() {
|
|
while (!handles_.empty() && !handles_.back()) {
|
|
handles_.pop_back();
|
|
}
|
|
}
|
|
void forEachAllocatedRange(std::function<void(size_t, size_t)> fn) {
|
|
auto start = 0;
|
|
for (auto i : c10::irange(handles_.size())) {
|
|
if (handles_.at(i) && (i == 0 || !handles_.at(i - 1))) {
|
|
start = i;
|
|
}
|
|
if (handles_.at(i) && (i + 1 == handles_.size() || !handles_.at(i + 1))) {
|
|
fn(start, i + 1);
|
|
}
|
|
}
|
|
}
|
|
size_t numSegments(size_t size) {
|
|
return (size + segment_size_ - 1) / segment_size_;
|
|
}
|
|
size_t segmentLeft(char* p) {
|
|
auto size = p - ptr();
|
|
return size / segment_size_;
|
|
}
|
|
size_t segmentRight(char* p) {
|
|
auto size = p - ptr();
|
|
return numSegments(size);
|
|
}
|
|
SegmentRange rangeFromHandles(size_t begin, size_t end) {
|
|
return SegmentRange(
|
|
ptr() + segment_size_ * begin, segment_size_ * (end - begin));
|
|
}
|
|
c10::DeviceIndex device_;
|
|
cudaStream_t stream_;
|
|
CUdeviceptr ptr_{};
|
|
size_t max_handles_;
|
|
size_t segment_size_;
|
|
std::vector<c10::optional<CUmemGenericAllocationHandle>> handles_;
|
|
// devices on which this memory should be mapped in addition
|
|
// to the device where the physical memory lives (device_).
|
|
std::vector<c10::DeviceIndex> peers_;
|
|
};
|
|
#else
|
|
struct ExpandableSegment {
|
|
ExpandableSegment(
|
|
c10::DeviceIndex device,
|
|
cudaStream_t stream,
|
|
size_t size,
|
|
const std::vector<c10::DeviceIndex>& peers) {
|
|
TORCH_INTERNAL_ASSERT(false, "expandable segment not supported");
|
|
}
|
|
SegmentRange map(SegmentRange range) {
|
|
return SegmentRange(nullptr, 0);
|
|
}
|
|
SegmentRange unmap(SegmentRange range) {
|
|
return SegmentRange(nullptr, 0);
|
|
}
|
|
char* ptr() const {
|
|
return nullptr;
|
|
}
|
|
size_t size() const {
|
|
return 0;
|
|
}
|
|
void addPeer(c10::DeviceIndex device) {}
|
|
};
|
|
#endif
|
|
|
|
// BlockState, BlockPoolState, and PrivatePoolState contain the information
|
|
// needed to reconstruct a private pool to a previous state. See note
|
|
// [Checkpointing PrivatePoolState]
|
|
struct BlockState {
|
|
c10::DeviceIndex device = 0;
|
|
cudaStream_t stream = nullptr;
|
|
stream_set stream_uses = {};
|
|
size_t size = 0;
|
|
void* ptr = nullptr;
|
|
bool allocated = false;
|
|
int gc_count_base = 0;
|
|
// maintain invariant that event_count == 0 ;
|
|
// history will be left alone in checkpoint
|
|
|
|
BlockState(Block* block);
|
|
};
|
|
|
|
struct SegmentState {
|
|
std::vector<BlockState> blocks;
|
|
bool is_small = false;
|
|
|
|
SegmentState(Block* head);
|
|
};
|
|
|
|
struct PrivatePoolState : AllocatorState {
|
|
// omitting use_count, and cudaMalloc_count as they remain the same
|
|
MempoolId_t owner_id = {0, 0};
|
|
|
|
std::vector<SegmentState> segments;
|
|
|
|
PrivatePoolState(
|
|
MempoolId_t pool_id,
|
|
const std::vector<Block*>& private_pool_head_blocks);
|
|
};
|
|
|
|
struct RestoreResult {
|
|
std::vector<void*> allocations_freed;
|
|
std::vector<Block*> allocations_created;
|
|
};
|
|
|
|
static bool BlockComparatorSize(const Block* a, const Block* b) {
|
|
if (a->stream != b->stream) {
|
|
return (uintptr_t)a->stream < (uintptr_t)b->stream;
|
|
}
|
|
if (a->size != b->size) {
|
|
return a->size < b->size;
|
|
}
|
|
return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
|
|
}
|
|
static bool BlockComparatorAddress(const Block* a, const Block* b) {
|
|
if (a->stream != b->stream) {
|
|
return (uintptr_t)a->stream < (uintptr_t)b->stream;
|
|
}
|
|
return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
|
|
}
|
|
|
|
struct AllocParams {
|
|
AllocParams(
|
|
c10::DeviceIndex device,
|
|
size_t size,
|
|
cudaStream_t stream,
|
|
BlockPool* pool,
|
|
size_t alloc_size,
|
|
DeviceStats& stats)
|
|
: search_key(device, stream, size),
|
|
pool(pool),
|
|
alloc_size(alloc_size),
|
|
block(nullptr),
|
|
err(cudaSuccess) {}
|
|
|
|
c10::DeviceIndex device() const {
|
|
return search_key.device;
|
|
}
|
|
cudaStream_t stream() const {
|
|
return search_key.stream;
|
|
}
|
|
size_t size() const {
|
|
return search_key.size;
|
|
}
|
|
|
|
Block search_key;
|
|
BlockPool* pool;
|
|
size_t alloc_size;
|
|
Block* block;
|
|
StatTypes stat_types = {false};
|
|
cudaError_t err;
|
|
};
|
|
|
|
// Note: cudaEventCreate when concurrently invoked from multiple threads can be
|
|
// very expensive (at least on certain device/driver combinations). Thus, we a)
|
|
// serialize event creation at a per-device level, and b) pool the events to
|
|
// avoid constantly calling cudaEventCreate/cudaEventDestroy. This results in
|
|
// significant improvements in multithreaded workloads with high allocation
|
|
// rates.
|
|
class EventPool {
|
|
public:
|
|
using Event = std::unique_ptr<cudaEvent_t, std::function<void(cudaEvent_t*)>>;
|
|
// TODO: Explicit device count
|
|
EventPool() : pools_(at::cuda::device_count()) {}
|
|
|
|
Event get(c10::DeviceIndex device) {
|
|
TORCH_INTERNAL_ASSERT(0 <= device);
|
|
TORCH_INTERNAL_ASSERT(device < static_cast<int>(pools_.size()));
|
|
auto& pool = pools_[device];
|
|
auto destructor = [&pool](cudaEvent_t* event) {
|
|
std::lock_guard<std::mutex> g(pool.mutex_);
|
|
pool.event_pool_.push_back(std::unique_ptr<cudaEvent_t>(event));
|
|
};
|
|
|
|
// Try to acquire an event from the per-device pool.
|
|
{
|
|
std::lock_guard<std::mutex> g(pool.mutex_);
|
|
if (!pool.event_pool_.empty()) {
|
|
auto* event = pool.event_pool_.back().release();
|
|
pool.event_pool_.pop_back();
|
|
return Event(event, destructor);
|
|
}
|
|
}
|
|
// otherwise, allocate a new event that will be returned to the pool on
|
|
// destruction.
|
|
auto new_ptr = std::make_unique<cudaEvent_t>();
|
|
C10_CUDA_CHECK(
|
|
cudaEventCreateWithFlags(new_ptr.get(), cudaEventDisableTiming));
|
|
|
|
return Event(new_ptr.release(), destructor);
|
|
}
|
|
|
|
void empty_cache() {
|
|
for (auto& pool : pools_) {
|
|
std::lock_guard<std::mutex> g(pool.mutex_);
|
|
pool.event_pool_.clear();
|
|
}
|
|
}
|
|
|
|
private:
|
|
struct PerDevicePool {
|
|
alignas(64) std::mutex mutex_;
|
|
std::vector<std::unique_ptr<cudaEvent_t>> event_pool_;
|
|
};
|
|
std::vector<PerDevicePool> pools_;
|
|
};
|
|
|
|
// CUDA graphs helper
|
|
struct PrivatePool {
|
|
PrivatePool()
|
|
: use_count(1),
|
|
cudaMalloc_count(0),
|
|
large_blocks(/*small=*/false, this),
|
|
small_blocks(/*small=*/true, this) {}
|
|
PrivatePool(const PrivatePool&) = delete;
|
|
PrivatePool(PrivatePool&&) = delete;
|
|
PrivatePool& operator=(const PrivatePool&) = delete;
|
|
// Number of live graphs using this pool
|
|
int use_count;
|
|
// Number of unfreed cudaMallocs made for this pool. When use_count and
|
|
// cudaMalloc_count drop to zero, we can delete this PrivatePool from
|
|
// graph_pools.
|
|
int cudaMalloc_count;
|
|
// Instead of maintaining private BlockPools here, I could stuff all blocks
|
|
// (private or no) into the top-level large_blocks and small_blocks, and
|
|
// distinguish private blocks by adding a "pool id" check above the stream
|
|
// check in BlockComparator. BlockComparator is performance- critical though,
|
|
// I'd rather not add more logic to it.
|
|
BlockPool large_blocks;
|
|
BlockPool small_blocks;
|
|
};
|
|
|
|
BlockState::BlockState(Block* block)
|
|
: stream(block->stream),
|
|
stream_uses(block->stream_uses),
|
|
size(block->size),
|
|
ptr(block->ptr),
|
|
allocated(block->allocated),
|
|
gc_count_base(block->gc_count_base) {
|
|
TORCH_CHECK(
|
|
block->event_count == 0,
|
|
"Events should have synchronized when checkpointing block");
|
|
};
|
|
|
|
SegmentState::SegmentState(Block* head) {
|
|
TORCH_INTERNAL_ASSERT(head->prev == nullptr && head->pool != nullptr);
|
|
is_small = head->pool->is_small;
|
|
|
|
for (Block* curr = head; curr != nullptr; curr = curr->next) {
|
|
blocks.emplace_back(curr);
|
|
}
|
|
}
|
|
|
|
PrivatePoolState::PrivatePoolState(
|
|
MempoolId_t pool_id,
|
|
const std::vector<Block*>& private_pool_head_blocks)
|
|
: owner_id(std::move(pool_id)) {
|
|
for (Block* head : private_pool_head_blocks) {
|
|
segments.emplace_back(head);
|
|
}
|
|
}
|
|
|
|
struct MempoolIdHash {
|
|
std::size_t operator()(const MempoolId_t& mempool_id) const noexcept {
|
|
return mempool_id.first != 0 ? mempool_id.first : mempool_id.second;
|
|
}
|
|
};
|
|
|
|
cudaError_t cudaMallocMaybeCapturing(void** p, size_t size) {
|
|
#if !defined(USE_ROCM) || ROCM_VERSION >= 50300
|
|
if (at::cuda::currentStreamCaptureStatusMayInitCtx() ==
|
|
at::cuda::CaptureStatus::None) {
|
|
#endif
|
|
return C10_CUDA_ERROR_HANDLED(cudaMalloc(p, size));
|
|
#if !defined(USE_ROCM) || ROCM_VERSION >= 50300
|
|
} else {
|
|
// It's ok to capture cudaMallocs, as long as we never cudaFree those
|
|
// addresses before replay.
|
|
// Capturing cudaMalloc behaves nicely: it gives the graph new VA,
|
|
// but is ignored (won't leakily allocate new memory) in replays.
|
|
at::cuda::CUDAStreamCaptureModeGuard g{cudaStreamCaptureModeRelaxed};
|
|
return C10_CUDA_ERROR_HANDLED(cudaMalloc(p, size));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} // anonymous namespace
|
|
} // namespace Native
|
|
|
|
static std::string reportProcessMemoryInfo(c10::DeviceIndex device) {
|
|
#ifdef PYTORCH_C10_DRIVER_API_SUPPORTED
|
|
void* nvml_handle = DriverAPI::get_nvml_handle();
|
|
if (!nvml_handle) {
|
|
return "";
|
|
}
|
|
static c10::once_flag nvml_init;
|
|
c10::call_once(nvml_init, [] {
|
|
TORCH_INTERNAL_ASSERT(NVML_SUCCESS == DriverAPI::get()->nvmlInit_v2_());
|
|
});
|
|
|
|
cudaDeviceProp prop{};
|
|
C10_CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
|
|
|
char pci_id[80];
|
|
snprintf(
|
|
pci_id,
|
|
sizeof(pci_id),
|
|
NVML_DEVICE_PCI_BUS_ID_FMT,
|
|
prop.pciDomainID,
|
|
prop.pciBusID,
|
|
prop.pciDeviceID);
|
|
|
|
nvmlDevice_t nvml_device = nullptr;
|
|
TORCH_INTERNAL_ASSERT(
|
|
NVML_SUCCESS ==
|
|
DriverAPI::get()->nvmlDeviceGetHandleByPciBusId_v2_(
|
|
pci_id, &nvml_device));
|
|
|
|
std::vector<nvmlProcessInfo_v1_t> procs(8);
|
|
unsigned int size = procs.size();
|
|
nvmlReturn_t r;
|
|
while ((r = DriverAPI::get()->nvmlDeviceGetComputeRunningProcesses_(
|
|
nvml_device, &size, procs.data())) ==
|
|
NVML_ERROR_INSUFFICIENT_SIZE) {
|
|
procs.resize(size);
|
|
}
|
|
unsigned int self_pid = getpid();
|
|
std::stringstream ss;
|
|
TORCH_INTERNAL_ASSERT(NVML_SUCCESS == r);
|
|
ss << "";
|
|
for (auto i : c10::irange(size)) {
|
|
auto& proc = procs[i];
|
|
if (self_pid == proc.pid) {
|
|
ss << "Including non-PyTorch memory, this process";
|
|
} else {
|
|
ss << "Process " << proc.pid;
|
|
}
|
|
ss << " has " << format_size(proc.usedGpuMemory) << " memory in use. ";
|
|
}
|
|
return ss.str();
|
|
#else
|
|
return "";
|
|
#endif
|
|
}
|
|
|
|
namespace Native {
|
|
|
|
class DeviceCachingAllocator {
|
|
private:
|
|
// lock around all operations
|
|
mutable std::recursive_mutex mutex;
|
|
|
|
// device statistics
|
|
DeviceStats stats;
|
|
|
|
// unallocated cached blocks larger than 1 MB
|
|
BlockPool large_blocks;
|
|
|
|
// unallocated cached blocks 1 MB or smaller
|
|
BlockPool small_blocks;
|
|
|
|
// allocated or in use by a stream. Holds all active allocations,
|
|
// whether they came from graph_pools or one of the BlockPools above.
|
|
ska::flat_hash_set<Block*> active_blocks;
|
|
|
|
// captures_underway tracks if we are diverting some
|
|
// allocations to a specific pool.
|
|
// Most of the time it's empty, in which case malloc can avoid calling
|
|
// cudaStreamGetCaptureInfo in the hot path.
|
|
std::vector<std::pair<MempoolId_t, std::function<bool(cudaStream_t)>>>
|
|
captures_underway;
|
|
|
|
// See free() for this thing's purpose
|
|
std::vector<Block*> needs_events_deferred_until_no_capture;
|
|
// outstanding cuda events
|
|
ska::flat_hash_map<
|
|
cuda::CUDAStream,
|
|
std::deque<std::pair<EventPool::Event, Block*>>>
|
|
cuda_events;
|
|
|
|
// record used memory.
|
|
size_t total_allocated_memory = 0;
|
|
|
|
size_t allowed_memory_maximum = 0;
|
|
|
|
// all live expandable segments
|
|
std::vector<ExpandableSegment*> expandable_segments_;
|
|
std::vector<c10::DeviceIndex> devices_with_peer_access_;
|
|
|
|
bool set_fraction = false;
|
|
|
|
bool record_history = false;
|
|
|
|
std::atomic<CreateContextFn> context_recorder_;
|
|
size_t alloc_trace_next = 0;
|
|
RecordContext record_context_ = RecordContext::NEVER;
|
|
size_t alloc_trace_max_entries_ = 1;
|
|
std::vector<TraceEntry>*
|
|
alloc_trace; // pointer because we need to intentionally leak this on
|
|
// deallocation it can hold references to Python state which
|
|
// will already be destroyed when we are in exit handlers
|
|
|
|
// Members specific to CUDA graphs
|
|
|
|
// Private pools for CUDA graphs
|
|
ska::flat_hash_map<MempoolId_t, std::unique_ptr<PrivatePool>, MempoolIdHash>
|
|
graph_pools;
|
|
// Pools no longer referenced by any graph. Their BlockPools are eligible for
|
|
// free_blocks. Can't be a vector or deque because we might erase entries in
|
|
// any order. Could be an std::list, but we don't care much, access and
|
|
// insert/erase are rare.
|
|
ska::flat_hash_map<MempoolId_t, PrivatePool*, MempoolIdHash>
|
|
graph_pools_freeable;
|
|
|
|
// XXX - maybe we should generalize and have multiple events
|
|
std::vector<OutOfMemoryObserver> oom_observers_;
|
|
|
|
std::vector<AllocatorTraceTracker> trace_trackers_;
|
|
|
|
public:
|
|
DeviceCachingAllocator()
|
|
: large_blocks(/*small=*/false),
|
|
small_blocks(/*small=*/true),
|
|
alloc_trace(new std::vector<TraceEntry>()) {
|
|
stats.max_split_size = CUDAAllocatorConfig::max_split_size();
|
|
context_recorder_.store(nullptr);
|
|
}
|
|
|
|
void recordHistory(
|
|
bool enabled,
|
|
CreateContextFn context_recorder,
|
|
size_t alloc_trace_max_entries,
|
|
RecordContext when) {
|
|
std::unique_lock<std::recursive_mutex> lock(mutex);
|
|
TORCH_CHECK(when == RecordContext::NEVER || context_recorder);
|
|
record_history = enabled;
|
|
context_recorder_.store(record_history ? context_recorder : nullptr);
|
|
alloc_trace_max_entries_ = std::max(size_t(1), alloc_trace_max_entries);
|
|
record_context_ = enabled ? when : RecordContext::NEVER;
|
|
if (!enabled) {
|
|
alloc_trace_next = 0;
|
|
alloc_trace->clear();
|
|
}
|
|
}
|
|
|
|
bool isHistoryEnabled() {
|
|
return record_history;
|
|
}
|
|
|
|
bool checkPoolLiveAllocations(
|
|
MempoolId_t mempool_id,
|
|
const std::unordered_set<void*>& expected_live_allocations) {
|
|
std::unique_lock<std::recursive_mutex> lock(mutex);
|
|
|
|
PrivatePool* pool = nullptr;
|
|
auto pool_it = graph_pools.find(mempool_id);
|
|
TORCH_CHECK(pool_it != graph_pools.end(), "Could not find pool of id");
|
|
pool = pool_it->second.get();
|
|
|
|
size_t allocated_pool_blocks = 0;
|
|
|
|
for (Block* b : active_blocks) {
|
|
if (b->allocated && b->pool->owner_PrivatePool == pool) {
|
|
if (!expected_live_allocations.count(b->ptr)) {
|
|
return false;
|
|
}
|
|
|
|
allocated_pool_blocks += 1;
|
|
}
|
|
}
|
|
|
|
return allocated_pool_blocks == expected_live_allocations.size();
|
|
}
|
|
|
|
void attachOutOfMemoryObserver(OutOfMemoryObserver observer) {
|
|
oom_observers_.emplace_back(std::move(observer));
|
|
}
|
|
|
|
void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) {
|
|
std::unique_lock<std::recursive_mutex> lock(mutex);
|
|
trace_trackers_.emplace_back(std::move(tracker));
|
|
}
|
|
|
|
// Must be called outside of `mutex` or deadlocks are possible with Python
|
|
std::shared_ptr<GatheredContext> maybeGatherContext(RecordContext level) {
|
|
if (record_context_ < level) {
|
|
return nullptr;
|
|
}
|
|
return context_recorder_.load()();
|
|
}
|
|
|
|
// All public methods (except the above) acquire the allocator mutex.
|
|
// Thus, do not call a public method from another public method.
|
|
|
|
Block* malloc(
|
|
c10::DeviceIndex device,
|
|
size_t orig_size,
|
|
cudaStream_t stream) {
|
|
// done outside the lock because we don't know what locks the recorder needs
|
|
// to have...
|
|
auto context = maybeGatherContext(RecordContext::STATE);
|
|
|
|
std::unique_lock<std::recursive_mutex> lock(mutex);
|
|
|
|
if (C10_LIKELY(captures_underway.size() == 0)) {
|
|
// Processes end-of-life events for outstanding allocations used on
|
|
// multiple streams (checks if their GPU-side uses are complete and
|
|
// recycles their memory if so)
|
|
//
|
|
// Q. Why skip process_events if a capture might be underway?
|
|
// A. process_events involves cudaEventQueries, illegal during CUDA graph
|
|
// capture.
|
|
// Dumb simple solution: defer reclaiming these allocations until after
|
|
// capture. Cross-stream memory use is uncommon, so the deferral's
|
|
// effect on memory use during capture should be small.
|
|
process_events(context);
|
|
}
|
|
size_t size = round_size(orig_size);
|
|
auto& pool = get_pool(size, stream);
|
|
const size_t alloc_size = get_allocation_size(size);
|
|
AllocParams params(device, size, stream, &pool, alloc_size, stats);
|
|
params.stat_types = get_stat_types_for_pool(pool);
|
|
|
|
// First, try to get a block from the existing pool.
|
|
bool block_found =
|
|
// Search pool
|
|
get_free_block(params)
|
|
// Trigger callbacks and retry search
|
|
|| (trigger_free_memory_callbacks(params) && get_free_block(params));
|
|
|
|
// Can't reuse an existing block; try to get a new one.
|
|
if (!block_found) {
|
|
// Do garbage collection if the flag is set.
|
|
if (C10_UNLIKELY(
|
|
set_fraction &&
|
|
CUDAAllocatorConfig::garbage_collection_threshold() > 0.0)) {
|
|
garbage_collect_cached_blocks(context);
|
|
}
|
|
// Attempt allocate
|
|
// WARNING: alloc_block may release the allocator lock when calling
|
|
// cudaMalloc. So far this function has not modified allocator state, but
|
|
// keep in mind that any observed allocator state may change across calls
|
|
// to alloc_block since it may release the lock.
|
|
block_found = alloc_block(params, false, context, lock)
|
|
// Free enough available cached blocks to satisfy alloc and retry
|
|
// alloc.
|
|
|| (release_available_cached_blocks(params, context) &&
|
|
alloc_block(params, false, context, lock))
|
|
// Free all non-split cached blocks and retry alloc.
|
|
|| (C10_LIKELY(captures_underway.size() == 0) &&
|
|
release_cached_blocks(context) &&
|
|
alloc_block(params, true, context, lock));
|
|
}
|
|
|
|
if (!block_found) {
|
|
// For any error code other than cudaErrorMemoryAllocation,
|
|
// alloc_block should have thrown an exception already.
|
|
TORCH_INTERNAL_ASSERT(params.err == cudaErrorMemoryAllocation);
|
|
|
|
size_t device_free = 0;
|
|
size_t device_total = 0;
|
|
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
|
std::string allowed_info;
|
|
|
|
if (set_fraction) {
|
|
allowed_info = format_size(allowed_memory_maximum) + " allowed; ";
|
|
}
|
|
|
|
std::string proc_info = reportProcessMemoryInfo(device);
|
|
|
|
record_trace(
|
|
TraceEntry::OOM,
|
|
device_free,
|
|
params.size(),
|
|
params.stream(),
|
|
params.device(),
|
|
std::move(context));
|
|
stats.num_ooms += 1;
|
|
|
|
c10::reportOutOfMemoryToProfiler(
|
|
size,
|
|
stats.allocated_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
|
|
.current,
|
|
stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
|
|
.current,
|
|
c10::Device(c10::DeviceType::CUDA, device));
|
|
|
|
auto allocated_bytes =
|
|
stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)]
|
|
.current;
|
|
auto reserved_bytes =
|
|
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
|
|
.current;
|
|
auto observers_local = oom_observers_;
|
|
|
|
// Make sure we do not have the device lock before calling our
|
|
// observers which might need hold the GIL
|
|
// It is safe to release at this point because will no longer
|
|
// be reading any allocator state.
|
|
|
|
lock.unlock();
|
|
|
|
for (const auto& obs : observers_local) {
|
|
obs(device,
|
|
alloc_size,
|
|
set_fraction ? allowed_memory_maximum : device_total,
|
|
device_free);
|
|
}
|
|
|
|
// "total capacity": total global memory on GPU
|
|
// "allowed": memory is allowed to use, which set by fraction.
|
|
// "already allocated": memory allocated by the program using the
|
|
// caching allocator
|
|
// "free": free memory as reported by the CUDA API
|
|
// "cached": memory held by the allocator but not used by the program
|
|
//
|
|
// The "allocated" amount does not include memory allocated outside
|
|
// of the caching allocator, such as memory allocated by other programs
|
|
// or memory held by the driver.
|
|
//
|
|
// The sum of "allocated" + "free" + "cached" may be less than the
|
|
// total capacity due to memory held by the driver and usage by other
|
|
// programs.
|
|
//
|
|
// Note that at this point free_cached_blocks has already returned all
|
|
// possible "cached" memory to the driver. The only remaining "cached"
|
|
// memory is split from a larger block that is partially in-use.
|
|
TORCH_CHECK_WITH(
|
|
OutOfMemoryError,
|
|
false,
|
|
"CUDA out of memory. Tried to allocate ",
|
|
format_size(alloc_size),
|
|
". GPU ",
|
|
device,
|
|
" has a total capacity of ",
|
|
format_size(device_total),
|
|
" of which ",
|
|
format_size(device_free),
|
|
" is free. ",
|
|
proc_info,
|
|
"Of the allocated memory ",
|
|
format_size(allocated_bytes),
|
|
" is allocated by PyTorch, and ",
|
|
format_size(reserved_bytes - allocated_bytes),
|
|
" is reserved by PyTorch but unallocated.",
|
|
" If reserved but unallocated memory is large try setting",
|
|
" PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid"
|
|
" fragmentation. See documentation for Memory Management "
|
|
" (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)");
|
|
}
|
|
|
|
bool split_remainder = should_split(params.block, params.size());
|
|
return alloc_found_block(
|
|
std::move(params), orig_size, std::move(context), split_remainder);
|
|
}
|
|
|
|
Block* alloc_found_block(
|
|
AllocParams params,
|
|
size_t orig_size,
|
|
std::shared_ptr<GatheredContext> context,
|
|
bool split_remainder) {
|
|
auto size = params.size();
|
|
auto device = params.device();
|
|
auto pool = params.pool;
|
|
auto stream = params.stream();
|
|
|
|
TORCH_INTERNAL_ASSERT(
|
|
params.err == cudaSuccess && params.block != nullptr &&
|
|
params.block->ptr != nullptr);
|
|
Block* block = params.block;
|
|
Block* remaining = nullptr;
|
|
|
|
const bool already_split = block->is_split();
|
|
if (split_remainder) {
|
|
remaining = block;
|
|
|
|
block = new Block(device, stream, size, pool, block->ptr);
|
|
block->expandable_segment_ = remaining->expandable_segment_;
|
|
block->prev = remaining->prev;
|
|
if (block->prev) {
|
|
block->prev->next = block;
|
|
}
|
|
block->next = remaining;
|
|
|
|
remaining->prev = block;
|
|
remaining->ptr = static_cast<char*>(remaining->ptr) + size;
|
|
remaining->size -= size;
|
|
bool inserted = pool->insert_into_blocks(remaining).second;
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(inserted);
|
|
|
|
if (already_split && !block->expandable_segment_) {
|
|
// An already-split inactive block is being shrunk by size bytes.
|
|
update_stat_array(
|
|
stats.inactive_split_bytes,
|
|
-static_cast<std::int64_t>(block->size),
|
|
params.stat_types);
|
|
} else if (!block->expandable_segment_) {
|
|
// A new split inactive block is being created from a previously unsplit
|
|
// block, size remaining->size bytes.
|
|
for_each_selected_stat_type(params.stat_types, [&](size_t stat_type) {
|
|
update_stat(
|
|
stats.inactive_split_bytes[stat_type],
|
|
static_cast<std::int64_t>(remaining->size));
|
|
update_stat(stats.inactive_split[stat_type], 1);
|
|
});
|
|
}
|
|
|
|
} else if (already_split && !block->expandable_segment_) {
|
|
// An already-split block is becoming active
|
|
for_each_selected_stat_type(params.stat_types, [&](size_t stat_type) {
|
|
update_stat(
|
|
stats.inactive_split_bytes[stat_type],
|
|
-static_cast<std::int64_t>(block->size));
|
|
update_stat(stats.inactive_split[stat_type], -1);
|
|
});
|
|
}
|
|
|
|
block->allocated = true;
|
|
block->requested_size = orig_size;
|
|
|
|
block->context_when_allocated = std::move(context);
|
|
record_trace(
|
|
TraceEntry::ALLOC,
|
|
int64_t(block->ptr),
|
|
orig_size,
|
|
block->stream,
|
|
block->device,
|
|
block->context_when_allocated);
|
|
|
|
bool inserted = active_blocks.insert(block).second;
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(inserted);
|
|
|
|
for_each_selected_stat_type(params.stat_types, [&](size_t stat_type) {
|
|
update_stat(stats.allocation[stat_type], 1);
|
|
update_stat(
|
|
stats.allocated_bytes[stat_type],
|
|
static_cast<std::int64_t>(block->size));
|
|
update_stat(stats.active[stat_type], 1);
|
|
update_stat(
|
|
stats.active_bytes[stat_type],
|
|
static_cast<std::int64_t>(block->size));
|
|
update_stat(
|
|
stats.requested_bytes[stat_type],
|
|
static_cast<std::int64_t>(block->requested_size));
|
|
});
|
|
if (block->size >= CUDAAllocatorConfig::max_split_size())
|
|
update_stat(stats.oversize_allocations, 1);
|
|
|
|
c10::reportMemoryUsageToProfiler(
|
|
block->ptr,
|
|
block->size,
|
|
stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
|
|
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
|
|
c10::Device(c10::DeviceType::CUDA, device));
|
|
|
|
return block;
|
|
}
|
|
|
|
void free(Block* block) {
|
|
std::shared_ptr<GatheredContext> context =
|
|
maybeGatherContext(RecordContext::ALL);
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
|
|
block->allocated = false;
|
|
|
|
// following logic might modifying underlaying Block, causing the size
|
|
// changed. We store ahead for reporting
|
|
auto orig_block_ptr = block->ptr;
|
|
auto orig_block_size = block->size;
|
|
|
|
StatTypes stat_types = get_stat_types_for_pool(*block->pool);
|
|
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
|
update_stat(stats.allocation[stat_type], -1);
|
|
update_stat(
|
|
stats.allocated_bytes[stat_type],
|
|
-static_cast<std::int64_t>(block->size));
|
|
});
|
|
|
|
record_trace(
|
|
TraceEntry::FREE_REQUESTED,
|
|
int64_t(block->ptr),
|
|
block->requested_size,
|
|
block->stream,
|
|
block->device,
|
|
context ? context : block->context_when_allocated);
|
|
|
|
if (block->size >= CUDAAllocatorConfig::max_split_size())
|
|
update_stat(stats.oversize_allocations, -1);
|
|
|
|
if (!block->stream_uses.empty()) {
|
|
if (C10_UNLIKELY(captures_underway.size())) {
|
|
// It's forbidden to cudaEventQuery an event recorded during CUDA graph
|
|
// capture. We conservatively defer recording end-of-life events until
|
|
// the next call to process_events() (which won't happen until no
|
|
// captures are underway)
|
|
needs_events_deferred_until_no_capture.push_back(block);
|
|
} else {
|
|
insert_events(block);
|
|
}
|
|
} else {
|
|
free_block(block, context);
|
|
}
|
|
|
|
c10::reportMemoryUsageToProfiler(
|
|
orig_block_ptr,
|
|
-orig_block_size,
|
|
stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
|
|
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current,
|
|
c10::Device(c10::DeviceType::CUDA, block->device));
|
|
}
|
|
|
|
void* getBaseAllocation(Block* block, size_t* outSize) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
TORCH_CHECK(
|
|
!block->expandable_segment_,
|
|
"Tensors allocated with expandable_segments:True cannot be shared between processes. Consider using expandable_segments:False in data loading workers via torch.cuda.memory._set_allocator_settings('expandable_segments:False')");
|
|
while (block->prev) {
|
|
block = block->prev;
|
|
}
|
|
void* basePtr = block->ptr;
|
|
if (outSize) {
|
|
size_t size = 0;
|
|
while (block) {
|
|
size += block->size;
|
|
block = block->next;
|
|
}
|
|
*outSize = size;
|
|
}
|
|
return basePtr;
|
|
}
|
|
|
|
void recordStream(Block* block, cuda::CUDAStream stream) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
if (stream.stream() == block->stream) {
|
|
// ignore uses on the allocation stream, since those don't require any
|
|
// special synchronization
|
|
return;
|
|
}
|
|
block->stream_uses.insert(stream);
|
|
}
|
|
|
|
/** set memory fraction to limit maximum allocated memory **/
|
|
void setMemoryFraction(double fraction) {
|
|
size_t device_free = 0;
|
|
size_t device_total = 0;
|
|
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
|
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
|
|
set_fraction = true;
|
|
}
|
|
|
|
/** returns cached blocks to the system allocator **/
|
|
void emptyCache() {
|
|
auto context = maybeGatherContext(RecordContext::ALL);
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
release_cached_blocks(context);
|
|
}
|
|
|
|
/** Retrieves size of largest unused block held by the memory cache **/
|
|
void cacheInfo(size_t* largest) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
if (*largest ==
|
|
0) { // make an initial guess if a zero *largest is passed in
|
|
size_t tmp_bytes = 0;
|
|
C10_CUDA_CHECK(cudaMemGetInfo(
|
|
largest, // Use free memory as an optimistic initial guess of *largest
|
|
&tmp_bytes));
|
|
}
|
|
cache_info_aux(large_blocks, largest);
|
|
cache_info_aux(small_blocks, largest);
|
|
for (const auto& gp : graph_pools) {
|
|
cache_info_aux(gp.second->large_blocks, largest);
|
|
cache_info_aux(gp.second->small_blocks, largest);
|
|
}
|
|
}
|
|
|
|
/** Returns a copy of the memory allocator stats **/
|
|
DeviceStats getStats() {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
return stats;
|
|
}
|
|
|
|
/** Resets the historical accumulation stats for the device **/
|
|
void resetAccumulatedStats() {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
|
|
for (const auto statType :
|
|
c10::irange(static_cast<size_t>(StatType::NUM_TYPES))) {
|
|
reset_accumulated_stat(stats.allocation[statType]);
|
|
reset_accumulated_stat(stats.segment[statType]);
|
|
reset_accumulated_stat(stats.active[statType]);
|
|
reset_accumulated_stat(stats.inactive_split[statType]);
|
|
reset_accumulated_stat(stats.allocated_bytes[statType]);
|
|
reset_accumulated_stat(stats.reserved_bytes[statType]);
|
|
reset_accumulated_stat(stats.active_bytes[statType]);
|
|
reset_accumulated_stat(stats.inactive_split_bytes[statType]);
|
|
reset_accumulated_stat(stats.requested_bytes[statType]);
|
|
}
|
|
|
|
stats.num_alloc_retries = 0;
|
|
stats.num_ooms = 0;
|
|
stats.num_sync_all_streams = 0;
|
|
stats.num_device_alloc = 0;
|
|
stats.num_device_free = 0;
|
|
reset_accumulated_stat(stats.oversize_allocations);
|
|
reset_accumulated_stat(stats.oversize_segments);
|
|
}
|
|
|
|
/** Resets the historical peak stats for the device **/
|
|
void resetPeakStats() {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
|
|
for (const auto statType :
|
|
c10::irange(static_cast<size_t>(StatType::NUM_TYPES))) {
|
|
reset_peak_stat(stats.allocation[statType]);
|
|
reset_peak_stat(stats.segment[statType]);
|
|
reset_peak_stat(stats.active[statType]);
|
|
reset_peak_stat(stats.inactive_split[statType]);
|
|
reset_peak_stat(stats.allocated_bytes[statType]);
|
|
reset_peak_stat(stats.reserved_bytes[statType]);
|
|
reset_peak_stat(stats.active_bytes[statType]);
|
|
reset_peak_stat(stats.inactive_split_bytes[statType]);
|
|
reset_peak_stat(stats.requested_bytes[statType]);
|
|
}
|
|
reset_peak_stat(stats.oversize_allocations);
|
|
reset_peak_stat(stats.oversize_segments);
|
|
}
|
|
|
|
/* Checkpoint the state of a private pool necessary to return it to its
|
|
* current state */
|
|
std::unique_ptr<PrivatePoolState> getCheckpointState(MempoolId_t id) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
|
|
auto pool = graph_pools.find(id);
|
|
if (pool != graph_pools.end()) {
|
|
auto private_pool_head_blocks =
|
|
get_private_pool_head_blocks(pool->second.get());
|
|
return std::make_unique<PrivatePoolState>(id, private_pool_head_blocks);
|
|
} else if (graph_pools_freeable.count(id)) {
|
|
TORCH_CHECK(false, "Not expected to checkpoint freeable graph");
|
|
} else {
|
|
TORCH_CHECK(false, "Could not find pool of id");
|
|
}
|
|
}
|
|
|
|
void freeBlocksAllocatedToPool(PrivatePool* private_pool, RestoreResult& rr) {
|
|
std::unordered_map<void*, Block*> orig_ptrs_to_blocks;
|
|
|
|
auto pool_blocks = get_private_pool_head_blocks(private_pool);
|
|
|
|
std::vector<Block*> head_blocks;
|
|
for (Block* block : pool_blocks) {
|
|
if (block->prev == nullptr) {
|
|
head_blocks.push_back(block);
|
|
}
|
|
}
|
|
|
|
for (Block* block : head_blocks) {
|
|
Block* curr = block;
|
|
|
|
while (curr) {
|
|
// When we free a block, its pointer should never change
|
|
// only its adjacent blocks, so free, then look at pointer
|
|
if (curr->allocated) {
|
|
TORCH_CHECK(
|
|
curr->event_count == 0,
|
|
"Events should have synchronized when setting checkpointed block");
|
|
rr.allocations_freed.push_back(curr->ptr);
|
|
free(curr);
|
|
TORCH_CHECK(!curr->allocated)
|
|
}
|
|
curr = curr->next;
|
|
}
|
|
}
|
|
|
|
for (Block* b : get_private_pool_head_blocks(private_pool)) {
|
|
Block* curr = b;
|
|
while (curr) {
|
|
TORCH_CHECK(!curr->allocated);
|
|
curr = curr->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
// checkpoint the state of an allocation that may have been
|
|
// split into multiple blocks
|
|
void setSegmentStateToCheckpoint(
|
|
Block* block,
|
|
SegmentState& segment,
|
|
std::shared_ptr<GatheredContext> context,
|
|
RestoreResult& rr) {
|
|
Block* curr_block = block;
|
|
Block* last_block = block;
|
|
|
|
TORCH_INTERNAL_ASSERT(block->pool);
|
|
BlockPool& pool = *block->pool;
|
|
const auto segment_len = segment.blocks.size();
|
|
|
|
// allocate all blocks in the segment
|
|
for (size_t i = 0; i < segment_len; ++i) {
|
|
auto& block_state = segment.blocks.at(i);
|
|
AllocParams params(
|
|
block_state.device,
|
|
block_state.size,
|
|
block_state.stream,
|
|
&pool,
|
|
block_state.size,
|
|
stats);
|
|
pool.blocks.erase(curr_block);
|
|
params.block = curr_block;
|
|
params.stat_types = get_stat_types_for_pool(pool);
|
|
|
|
// splitting a block depends on `max_split_size`, which may have changed
|
|
// between whe checkpoint was taken and now, so we make sure to recreate
|
|
// the behavior from the checkpoint.
|
|
bool split = (i + 1) < segment.blocks.size();
|
|
|
|
// curr_block will become next pointer if it is split, so reassign with
|
|
// the returned value
|
|
curr_block = alloc_found_block(
|
|
std::move(params), block_state.size, context, split);
|
|
|
|
TORCH_CHECK(curr_block->ptr == block_state.ptr);
|
|
TORCH_CHECK(curr_block->size == block_state.size);
|
|
|
|
last_block = curr_block;
|
|
curr_block = curr_block->next;
|
|
|
|
TORCH_CHECK((curr_block != nullptr) == ((i + 1) < (segment_len)));
|
|
}
|
|
|
|
while (last_block->prev) {
|
|
last_block = last_block->prev;
|
|
}
|
|
|
|
// free blocks that are not allocated in the checkpoint
|
|
curr_block = last_block;
|
|
|
|
for (size_t i = 0; i < segment_len; ++i, curr_block = curr_block->next) {
|
|
auto& block_state = segment.blocks.at(i);
|
|
TORCH_INTERNAL_ASSERT(curr_block != nullptr);
|
|
|
|
if (block_state.allocated) {
|
|
rr.allocations_created.push_back(curr_block);
|
|
continue;
|
|
}
|
|
|
|
free(curr_block);
|
|
|
|
TORCH_CHECK(curr_block->ptr == block_state.ptr);
|
|
TORCH_CHECK(curr_block->allocated == block_state.allocated);
|
|
TORCH_CHECK(curr_block->size == block_state.size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Note [Checkpointing PrivatePoolState]
|
|
*
|
|
* Refer above to Note [Interaction with CUDA graph capture]. Allocations made
|
|
* during graph capture are made from a separate private pool. During graph
|
|
* capture allocations behave as usual. During graph replay the allocator
|
|
* state does not change even as new tensors are created. The private pool
|
|
* will not free its blocks to the main caching allocator until cuda graph use
|
|
* is finished to prevent an allocation from eager clobbering the memory from
|
|
* a live but unaccounted for tensor that was created during replay.
|
|
*
|
|
* `make_graphed_callables`, a series of separate callables chained in
|
|
* successive cuda graphs, can share a memory pool because after a cuda graph
|
|
* recording the allocations in the shared private pool exactly reflect the
|
|
* tensors that are allocated.
|
|
*
|
|
* We would like to extend callable chaining to support a graphed callable
|
|
* tree. In this scenario, we have a tree of callable chains which will be
|
|
* captured with cuda graphs. In the diagram below, we have a tree with four
|
|
* callables, A, B, C, and D. Suppose we have captured, and subsequently
|
|
* replayed, A, B, and C. Then on a new invocation, we replay A and B, but
|
|
* would now like to record D. At this point the private pool will not reflect
|
|
* any of the live tensors created during graph replay. Allocations made
|
|
* during a new recording with the pool could overwrite those live tensors.
|
|
*
|
|
* In order to record a new graph capture after replaying prior callables in
|
|
* the tree, we need the allocator to reflect the state of the live tensors.
|
|
* We checkpoint the state of the private pool after each recording, and then
|
|
* reapply it when we are starting a new recording chain. Additionally, we
|
|
* must free the allocations for any tensors that died between the end of our
|
|
* previous graph replaying and our new recording. All of the allocated
|
|
* segments that existed in the checkpointed state must still exist in the
|
|
* pool. There may also exist new allocated blocks.
|
|
* (TODO : link note [live tensors between iterations] when it exists). For
|
|
* every block that is currently allocated but no allocated in the snapshot,
|
|
* we will return a pointer to their block.
|
|
*.
|
|
*
|
|
*
|
|
* ---------------> A ---------------> B ---------------> C
|
|
* |
|
|
* |
|
|
* |
|
|
* |
|
|
* ╰ ---------------> D
|
|
*/
|
|
RestoreResult setCheckpointPoolState(PrivatePoolState& pps) {
|
|
// To reset the caching allocator state we will
|
|
// - Free all the blocks currently allocated to the pool (see [live tensors
|
|
// between iterations])
|
|
// - Allocate all the blocks in a checkpointed segment, whether they are
|
|
// live or not
|
|
// - Free the blocks in a checkpointed segment which are not live
|
|
// This could be optimized, but it nicely reuses exiting apis, and this
|
|
// is not on the hot path.
|
|
|
|
// following `done outside the lock because we don't know what locks the
|
|
// recorder needs to have...`
|
|
|
|
std::shared_ptr<GatheredContext> context =
|
|
maybeGatherContext(RecordContext::STATE);
|
|
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
|
|
RestoreResult rr;
|
|
|
|
TORCH_CHECK(
|
|
!graph_pools_freeable.count(pps.owner_id),
|
|
"Not expected to checkpoint freeable graph");
|
|
|
|
auto pool = graph_pools.find(pps.owner_id);
|
|
TORCH_CHECK(pool != graph_pools.end(), "Could not find private pool id");
|
|
|
|
PrivatePool* private_pool = pool->second.get();
|
|
|
|
freeBlocksAllocatedToPool(private_pool, rr);
|
|
|
|
std::unordered_map<void*, Block*> ptrs_to_blocks;
|
|
// at this point, all of the blocks should be free, so they will all be in
|
|
// the block set
|
|
for (Block* block : private_pool->small_blocks.blocks) {
|
|
ptrs_to_blocks[block->ptr] = block;
|
|
}
|
|
for (Block* block : private_pool->large_blocks.blocks) {
|
|
ptrs_to_blocks[block->ptr] = block;
|
|
}
|
|
|
|
for (auto& segment : pps.segments) {
|
|
auto ptr = segment.blocks.at(0).ptr;
|
|
TORCH_CHECK(ptrs_to_blocks.count(ptr), " could not find ", ptr)
|
|
auto block = ptrs_to_blocks[ptr];
|
|
|
|
setSegmentStateToCheckpoint(block, segment, context, rr);
|
|
}
|
|
return rr;
|
|
}
|
|
|
|
/** Dump a complete snapshot of the memory held by the allocator. Potentially
|
|
* VERY expensive. **/
|
|
std::vector<SegmentInfo> snapshot() {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
|
|
std::unordered_map<PrivatePool*, MempoolId_t> pool_to_id;
|
|
pool_to_id.reserve(graph_pools.size() + graph_pools_freeable.size());
|
|
for (const auto& pair : graph_pools) {
|
|
pool_to_id[pair.second.get()] = pair.first;
|
|
}
|
|
for (const auto& pair : graph_pools_freeable) {
|
|
pool_to_id[pair.second] = pair.first;
|
|
}
|
|
|
|
size_t total_active = 0;
|
|
std::vector<SegmentInfo> result;
|
|
const auto all_blocks = get_all_blocks();
|
|
|
|
for (const Block* const head_block : all_blocks) {
|
|
// For expandable segments, we report one segment for each contiguous
|
|
// mapped range of memory
|
|
if (head_block->prev && head_block->prev->mapped) {
|
|
continue;
|
|
}
|
|
result.emplace_back();
|
|
SegmentInfo& segment_info = result.back();
|
|
segment_info.device = head_block->device;
|
|
segment_info.address = reinterpret_cast<int64_t>(head_block->ptr);
|
|
segment_info.stream = head_block->stream;
|
|
segment_info.is_large = (!head_block->pool->is_small);
|
|
segment_info.is_expandable = head_block->expandable_segment_;
|
|
segment_info.context_when_allocated =
|
|
head_block->context_when_segment_allocated;
|
|
auto mempool_id = pool_to_id.find(head_block->pool->owner_PrivatePool);
|
|
if (mempool_id != pool_to_id.end()) {
|
|
segment_info.owner_private_pool_id = mempool_id->second;
|
|
}
|
|
|
|
const Block* block = head_block;
|
|
while (block != nullptr && block->mapped) {
|
|
segment_info.blocks.emplace_back();
|
|
BlockInfo& block_info = segment_info.blocks.back();
|
|
|
|
block_info.size = block->size;
|
|
block_info.requested_size = block->requested_size;
|
|
block_info.allocated = block->allocated;
|
|
block_info.active = block->allocated || (block->event_count > 0) ||
|
|
!block->stream_uses.empty();
|
|
|
|
segment_info.total_size += block_info.size;
|
|
if (block_info.allocated) {
|
|
segment_info.allocated_size += block_info.size;
|
|
}
|
|
if (block_info.active) {
|
|
segment_info.active_size += block_info.size;
|
|
segment_info.requested_size += block_info.requested_size;
|
|
}
|
|
block_info.context_when_allocated = block->context_when_allocated;
|
|
block = block->next;
|
|
}
|
|
total_active += segment_info.active_size;
|
|
}
|
|
|
|
std::sort(
|
|
result.begin(),
|
|
result.end(),
|
|
[](const SegmentInfo& a, const SegmentInfo& b) {
|
|
return a.address < b.address;
|
|
});
|
|
|
|
record_trace(TraceEntry::SNAPSHOT, 0, total_active, nullptr, 0, nullptr);
|
|
return result;
|
|
}
|
|
|
|
std::vector<TraceEntry> trace(
|
|
std::function<time_t(approx_time_t)> tsc_to_us) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
std::vector<TraceEntry> result;
|
|
result.reserve(alloc_trace->size());
|
|
result.insert(
|
|
result.end(),
|
|
alloc_trace->begin() + alloc_trace_next,
|
|
alloc_trace->end());
|
|
result.insert(
|
|
result.end(),
|
|
alloc_trace->begin(),
|
|
alloc_trace->begin() + alloc_trace_next);
|
|
|
|
// Convert all the timestamps from tsc to epoch time in microseconds.
|
|
for (auto& te : result) {
|
|
te.time_.t_ = tsc_to_us(te.time_.approx_t_);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// This function takes the size and number of divisions argument and rounds
|
|
// up the size argument for the nearest power-of-2 division.
|
|
// For example, if we need to round-up 1200 and number of divisions is 4,
|
|
// the size 1200 lies between 1024 and 2048 and if we do 4 divisions between
|
|
// them, the values are 1024, 1280, 1536, and 1792. So the function will
|
|
// return 1280 as the nearest ceiling of power-2 divison.
|
|
static size_t roundup_power2_next_division(size_t size, size_t divisions) {
|
|
if (C10_UNLIKELY(size <= 4 || divisions <= 1)) {
|
|
return size;
|
|
}
|
|
if (llvm::isPowerOf2_64(size)) {
|
|
return size;
|
|
}
|
|
|
|
// divide the space between these 2's power into equal divisions
|
|
// If division is zero, return the power-of-2 ceiling.
|
|
size_t power2_floor = llvm::PowerOf2Floor(size);
|
|
size_t power2_divison =
|
|
power2_floor >> (63 - llvm::countLeadingZeros(divisions));
|
|
if (C10_UNLIKELY(power2_divison == 0)) {
|
|
return (power2_floor << 1);
|
|
}
|
|
size_t round_size_floor = size & (~(power2_divison - 1));
|
|
return (round_size_floor == size) ? size
|
|
: round_size_floor + power2_divison;
|
|
}
|
|
|
|
static size_t round_size(size_t size) {
|
|
if (size < kMinBlockSize) {
|
|
return kMinBlockSize;
|
|
} else {
|
|
auto divisions = CUDAAllocatorConfig::roundup_power2_divisions(size);
|
|
if (divisions > 0 && size > (kMinBlockSize * divisions)) {
|
|
return roundup_power2_next_division(size, divisions);
|
|
} else {
|
|
return kMinBlockSize * ((size + kMinBlockSize - 1) / kMinBlockSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
// See Note [Interaction with CUDA graph capture]
|
|
|
|
// Called by CUDAGraph::capture_begin
|
|
void beginAllocateToPool(
|
|
MempoolId_t mempool_id,
|
|
std::function<bool(cudaStream_t)> filter) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
auto it = graph_pools.find(mempool_id);
|
|
if (it == graph_pools.end()) {
|
|
// mempool_id does not reference an existing pool. Make a new pool for
|
|
// this capture.
|
|
graph_pools.emplace(mempool_id, std::make_unique<PrivatePool>());
|
|
} else {
|
|
// mempool_id references an existing pool, which the current capture will
|
|
// share. Check this pool is live (at least one other capture already
|
|
// references it).
|
|
TORCH_INTERNAL_ASSERT(it->second->use_count > 0);
|
|
it->second->use_count++;
|
|
}
|
|
for (auto it2 = captures_underway.begin(); it2 != captures_underway.end();
|
|
++it2) {
|
|
TORCH_CHECK(
|
|
it2->first != mempool_id,
|
|
"beginAllocateToPool: already recording to mempool_id");
|
|
}
|
|
captures_underway.emplace_back(mempool_id, std::move(filter));
|
|
}
|
|
|
|
// Called by CUDAGraph::capture_end
|
|
void endAllocateToPool(MempoolId_t mempool_id) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
for (auto it = captures_underway.begin(); it != captures_underway.end();
|
|
++it) {
|
|
if (it->first == mempool_id) {
|
|
captures_underway.erase(it);
|
|
return;
|
|
}
|
|
}
|
|
TORCH_CHECK(
|
|
false, "endAllocatePool: not currently recording to mempool_id");
|
|
}
|
|
|
|
// Called by CUDAGraph::reset
|
|
void releasePool(MempoolId_t mempool_id) {
|
|
std::lock_guard<std::recursive_mutex> lock(mutex);
|
|
// The instantiated cudaGraphExec_t has been destroyed. We can't blindly
|
|
// delete and cudaFree the mempool its capture used, because
|
|
// 1. other graph(s) might share the same pool
|
|
// 2. the user might still hold references to output tensors allocated
|
|
// during capture.
|
|
// To handle 1 and 2, we track the number of graphs using this particular
|
|
// mempool. When the count reaches 0, we tell free_cached_blocks it may now
|
|
// cudaFree blocks from this graph's pool when it discovers they're unused
|
|
// (unsplit).
|
|
auto it = graph_pools.find(mempool_id);
|
|
TORCH_INTERNAL_ASSERT(it != graph_pools.end());
|
|
auto uc = --(it->second->use_count);
|
|
TORCH_INTERNAL_ASSERT(uc >= 0);
|
|
if (uc == 0) {
|
|
// Allows free_cached_blocks to begin cudaFreeing this pool's memory,
|
|
// and makes sure this pool wasn't somehow made freeable already.
|
|
bool inserted =
|
|
graph_pools_freeable.insert({mempool_id, it->second.get()}).second;
|
|
TORCH_INTERNAL_ASSERT(inserted);
|
|
}
|
|
}
|
|
|
|
void addPeerAccess(c10::DeviceIndex dev_to_access) {
|
|
if (std::find(
|
|
devices_with_peer_access_.begin(),
|
|
devices_with_peer_access_.end(),
|
|
dev_to_access) != devices_with_peer_access_.end()) {
|
|
return;
|
|
}
|
|
devices_with_peer_access_.push_back(dev_to_access);
|
|
for (auto& es : expandable_segments_) {
|
|
es->addPeer(dev_to_access);
|
|
}
|
|
}
|
|
|
|
bool hasAllocatedExpandableSegments() const {
|
|
return !expandable_segments_.empty();
|
|
}
|
|
|
|
private:
|
|
// All private methods do not acquire the allocator mutex.
|
|
|
|
std::vector<const Block*> get_all_blocks() const {
|
|
std::vector<const Block*> blocks;
|
|
blocks.insert(
|
|
blocks.end(), small_blocks.blocks.begin(), small_blocks.blocks.end());
|
|
blocks.insert(
|
|
blocks.end(), large_blocks.blocks.begin(), large_blocks.blocks.end());
|
|
for (const auto& gp : graph_pools) {
|
|
blocks.insert(
|
|
blocks.end(),
|
|
gp.second->small_blocks.blocks.begin(),
|
|
gp.second->small_blocks.blocks.end());
|
|
blocks.insert(
|
|
blocks.end(),
|
|
gp.second->large_blocks.blocks.begin(),
|
|
gp.second->large_blocks.blocks.end());
|
|
}
|
|
blocks.insert(blocks.end(), active_blocks.begin(), active_blocks.end());
|
|
return blocks;
|
|
}
|
|
|
|
std::vector<Block*> get_private_pool_head_blocks(PrivatePool* pool) const {
|
|
std::vector<Block*> blocks;
|
|
for (Block* b : active_blocks) {
|
|
if ((b->pool == &pool->small_blocks || b->pool == &pool->large_blocks) &&
|
|
b->prev == nullptr) {
|
|
blocks.push_back(b);
|
|
}
|
|
}
|
|
|
|
for (Block* b : pool->small_blocks.blocks) {
|
|
if (b->prev == nullptr) {
|
|
blocks.push_back(b);
|
|
}
|
|
}
|
|
for (Block* b : pool->large_blocks.blocks) {
|
|
if (b->prev == nullptr) {
|
|
blocks.push_back(b);
|
|
}
|
|
}
|
|
|
|
return blocks;
|
|
}
|
|
|
|
// returns the smallest possible address in any segment
|
|
// where there is enough free address space to fit size
|
|
// may be composed of free and unmapped segments
|
|
Block* find_expandable_block(
|
|
c10::DeviceIndex device,
|
|
cudaStream_t stream,
|
|
BlockPool* pool,
|
|
size_t size) {
|
|
Block key(device, stream, 0);
|
|
|
|
auto allocatable = [](Block* b) {
|
|
return b && !b->allocated && b->event_count == 0 &&
|
|
b->stream_uses.empty();
|
|
};
|
|
auto has_available_address_space = [&](Block* b) {
|
|
size_t bytes = 0;
|
|
while (bytes < size && allocatable(b)) {
|
|
bytes += b->size;
|
|
b = b->next;
|
|
}
|
|
return bytes >= size;
|
|
};
|
|
for (auto it = pool->unmapped.lower_bound(&key);
|
|
it != pool->unmapped.end() && (*it)->stream == stream;
|
|
++it) {
|
|
Block* c = *it;
|
|
// we found the lowest address of an unmapped segment
|
|
// but there might be a free segment we can also use
|
|
// right before it
|
|
if (allocatable(c->prev)) {
|
|
c = c->prev;
|
|
}
|
|
if (has_available_address_space(c)) {
|
|
return c;
|
|
}
|
|
}
|
|
auto segment_size = pool->is_small ? kSmallBuffer : kLargeBuffer;
|
|
expandable_segments_.emplace_back(new ExpandableSegment(
|
|
device, stream, segment_size, devices_with_peer_access_));
|
|
|
|
ExpandableSegment* es = expandable_segments_.back();
|
|
Block* candidate = new Block(device, stream, es->size(), pool, es->ptr());
|
|
candidate->mapped = false;
|
|
candidate->expandable_segment_ = es;
|
|
pool->unmapped.insert(candidate);
|
|
return candidate;
|
|
}
|
|
|
|
bool map_block(
|
|
Block* to_map,
|
|
size_t size,
|
|
const std::shared_ptr<GatheredContext>& ctx) {
|
|
TORCH_INTERNAL_ASSERT(!to_map->mapped && size <= to_map->size);
|
|
TORCH_INTERNAL_ASSERT(
|
|
!to_map->context_when_allocated); // unmapped blocks should not keep
|
|
// history
|
|
auto mapped_range =
|
|
to_map->expandable_segment_->map(SegmentRange{to_map->ptr, size});
|
|
// failed to map the memory
|
|
if (mapped_range.size == 0) {
|
|
return false;
|
|
}
|
|
TORCH_INTERNAL_ASSERT(
|
|
mapped_range.ptr == to_map->ptr && mapped_range.size >= size);
|
|
|
|
BlockPool& pool = *to_map->pool;
|
|
pool.unmapped.erase(to_map);
|
|
to_map->mapped = true;
|
|
|
|
if (mapped_range.size < to_map->size) {
|
|
// to_map -> remaining -> to_map->next(?)
|
|
Block* remaining = new Block(
|
|
to_map->device,
|
|
to_map->stream,
|
|
to_map->size - mapped_range.size,
|
|
&pool,
|
|
static_cast<char*>(to_map->ptr) + mapped_range.size);
|
|
remaining->mapped = false;
|
|
remaining->expandable_segment_ = to_map->expandable_segment_;
|
|
remaining->splice(to_map, to_map->next);
|
|
pool.unmapped.insert(remaining);
|
|
to_map->size = mapped_range.size;
|
|
}
|
|
|
|
try_merge_blocks(to_map, to_map->prev, pool);
|
|
try_merge_blocks(to_map, to_map->next, pool);
|
|
|
|
pool.insert_into_blocks(to_map);
|
|
|
|
// update statistics
|
|
total_allocated_memory += mapped_range.size;
|
|
StatTypes stat_types = get_stat_types_for_pool(*to_map->pool);
|
|
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
|
update_stat(stats.reserved_bytes[stat_type], mapped_range.size);
|
|
});
|
|
|
|
stats.num_device_alloc++;
|
|
record_trace(
|
|
TraceEntry::SEGMENT_MAP,
|
|
int64_t(mapped_range.ptr),
|
|
mapped_range.size,
|
|
to_map->stream,
|
|
to_map->device,
|
|
ctx);
|
|
if (!to_map->prev && !to_map->context_when_segment_allocated) {
|
|
to_map->context_when_segment_allocated = ctx;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Block* try_allocate_expandable_block(
|
|
c10::DeviceIndex device,
|
|
cudaStream_t stream,
|
|
BlockPool* pool,
|
|
size_t size,
|
|
const std::shared_ptr<GatheredContext>& ctx) {
|
|
Block* candidate = find_expandable_block(device, stream, pool, size);
|
|
// Candidate is now a list free/unmapped blocks with at least size room:
|
|
// unmapped -> null
|
|
// unmapped -> free -> *
|
|
// free -> unmapped -> *
|
|
|
|
if (!candidate->mapped &&
|
|
!map_block(candidate, std::min(candidate->size, size), ctx)) {
|
|
return nullptr;
|
|
}
|
|
TORCH_INTERNAL_ASSERT(candidate->mapped);
|
|
|
|
while (candidate->size < size) {
|
|
// invariant: free -> unmapped -> *
|
|
// map_block will map some of unmapped and merge with free
|
|
auto remaining = size - candidate->size;
|
|
auto new_candidate = candidate->next;
|
|
if (!map_block(
|
|
new_candidate, std::min(remaining, candidate->next->size), ctx)) {
|
|
return nullptr;
|
|
}
|
|
candidate = new_candidate;
|
|
}
|
|
pool->blocks.erase(candidate);
|
|
return candidate;
|
|
}
|
|
|
|
/** moves a block into a pool of cached free blocks */
|
|
void free_block(
|
|
Block* block,
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
!block->allocated && block->event_count == 0 &&
|
|
block->stream_uses.empty());
|
|
|
|
record_trace(
|
|
TraceEntry::FREE_COMPLETED,
|
|
int64_t(block->ptr),
|
|
block->requested_size,
|
|
block->stream,
|
|
block->device,
|
|
context ? context : block->context_when_allocated);
|
|
|
|
block->context_when_allocated = nullptr;
|
|
size_t original_block_size = block->size;
|
|
size_t requested_size = block->requested_size;
|
|
|
|
auto& pool = *block->pool;
|
|
int64_t net_change_inactive_split_blocks = 0;
|
|
int64_t net_change_inactive_split_size = 0;
|
|
|
|
const std::array<Block*, 2> merge_candidates = {block->prev, block->next};
|
|
for (Block* merge_candidate : merge_candidates) {
|
|
const int64_t subsumed_size =
|
|
try_merge_blocks(block, merge_candidate, pool);
|
|
if (subsumed_size > 0) {
|
|
net_change_inactive_split_blocks -= 1;
|
|
net_change_inactive_split_size -= subsumed_size;
|
|
}
|
|
}
|
|
|
|
active_blocks.erase(block);
|
|
// Makes sure the Block* isn't already present in the pool we're freeing it
|
|
// back into.
|
|
bool inserted = pool.insert_into_blocks(block).second;
|
|
TORCH_INTERNAL_ASSERT(inserted);
|
|
|
|
if (block->is_split()) {
|
|
net_change_inactive_split_blocks += 1;
|
|
net_change_inactive_split_size += block->size;
|
|
}
|
|
|
|
StatTypes stat_types = get_stat_types_for_pool(pool);
|
|
|
|
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
|
// inactive_split tries to capture the idea that blocks
|
|
// cannot be freed when requested, but fully free pages
|
|
// of expandable blocks can always be freed.
|
|
// The logic to track this as statistic is pretty involved,
|
|
// so we simply just exclude expandable segments from
|
|
// inactive_split
|
|
if (!block->expandable_segment_) {
|
|
update_stat(
|
|
stats.inactive_split[stat_type], net_change_inactive_split_blocks);
|
|
update_stat(
|
|
stats.inactive_split_bytes[stat_type],
|
|
net_change_inactive_split_size);
|
|
}
|
|
update_stat(stats.active[stat_type], -1);
|
|
update_stat(
|
|
stats.active_bytes[stat_type],
|
|
-static_cast<std::int64_t>(original_block_size));
|
|
update_stat(
|
|
stats.requested_bytes[stat_type],
|
|
-static_cast<std::int64_t>(requested_size));
|
|
});
|
|
}
|
|
|
|
/** combine previously split blocks. returns the size of the subsumed block,
|
|
* or 0 on failure. */
|
|
size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool) {
|
|
if (!src || src->allocated || src->event_count > 0 ||
|
|
!src->stream_uses.empty() || dst->mapped != src->mapped) {
|
|
return 0;
|
|
}
|
|
|
|
AT_ASSERT(dst->is_split() && src->is_split());
|
|
|
|
if (dst->prev == src) { // [src dst]
|
|
dst->ptr = src->ptr;
|
|
dst->prev = src->prev;
|
|
if (dst->prev) {
|
|
dst->prev->next = dst;
|
|
}
|
|
dst->context_when_segment_allocated =
|
|
std::move(src->context_when_segment_allocated);
|
|
} else { // [dest src]
|
|
dst->next = src->next;
|
|
if (dst->next) {
|
|
dst->next->prev = dst;
|
|
}
|
|
}
|
|
const size_t subsumed_size = src->size;
|
|
dst->size += subsumed_size;
|
|
auto erased =
|
|
src->mapped ? pool.blocks.erase(src) : pool.unmapped.erase(src);
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(erased == 1);
|
|
delete src;
|
|
|
|
return subsumed_size;
|
|
}
|
|
|
|
BlockPool& get_pool(size_t size, cudaStream_t stream) {
|
|
#if !defined(USE_ROCM) || ROCM_VERSION >= 50300
|
|
// captures_underway is a conservative guess that the current stream may be
|
|
// capturing. It's only non-empty if some thread has begun and not yet ended
|
|
// a capture, so it's usually 0, and we can short-circuit
|
|
// cudaStreamCaptureStatus (which does a TLS lookup).
|
|
if (C10_UNLIKELY(captures_underway.size())) {
|
|
for (auto& entry : captures_underway) {
|
|
if (entry.second(stream)) {
|
|
auto it1 = graph_pools.find(entry.first);
|
|
TORCH_INTERNAL_ASSERT(it1 != graph_pools.end());
|
|
if (size <= kSmallSize) {
|
|
return it1->second->small_blocks;
|
|
} else {
|
|
return it1->second->large_blocks;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (size <= kSmallSize) {
|
|
return small_blocks;
|
|
} else {
|
|
return large_blocks;
|
|
}
|
|
}
|
|
|
|
StatTypes get_stat_types_for_pool(const BlockPool& pool) {
|
|
StatTypes stat_types = {false};
|
|
stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
|
|
stat_types[static_cast<size_t>(
|
|
pool.is_small ? StatType::SMALL_POOL : StatType::LARGE_POOL)] = true;
|
|
return stat_types;
|
|
}
|
|
|
|
bool should_split(const Block* block, size_t size) {
|
|
size_t remaining = block->size - size;
|
|
if (block->pool->is_small || CUDAAllocatorConfig::expandable_segments()) {
|
|
return remaining >= kMinBlockSize;
|
|
} else {
|
|
return (size < CUDAAllocatorConfig::max_split_size()) &&
|
|
(remaining > kSmallSize);
|
|
}
|
|
}
|
|
|
|
static size_t get_allocation_size(size_t size) {
|
|
if (size <= kSmallSize) {
|
|
return kSmallBuffer;
|
|
} else if (size < kMinLargeAlloc) {
|
|
return kLargeBuffer;
|
|
} else {
|
|
return kRoundLarge * ((size + kRoundLarge - 1) / kRoundLarge);
|
|
}
|
|
}
|
|
|
|
bool get_free_block(AllocParams& p) {
|
|
BlockPool& pool = *p.pool;
|
|
|
|
if (C10_UNLIKELY(
|
|
set_fraction &&
|
|
CUDAAllocatorConfig::garbage_collection_threshold() > 0.0)) {
|
|
// Track block reuse interval only when garbage collection is enabled.
|
|
++pool.get_free_blocks_call_count;
|
|
}
|
|
auto it = pool.blocks.lower_bound(&p.search_key);
|
|
if (it == pool.blocks.end() || (*it)->stream != p.stream())
|
|
return false;
|
|
|
|
if ((*it)->expandable_segment_) {
|
|
if (CUDAAllocatorConfig::expandable_segments()) {
|
|
// if we are allocated to the part of the block that is expandable
|
|
// for the purposes of "best fit" we consider its size to be the size it
|
|
// can expand to, not the size it currently is. This means that we
|
|
// sometimes have to search for blocks with bigger 'size' before
|
|
// choosing this segment.
|
|
auto expandable_size = [](Block* b) {
|
|
return b->size + (b->next && !b->next->mapped ? b->next->size : 0);
|
|
};
|
|
auto next = it;
|
|
next++;
|
|
while ((*it)->expandable_segment_ && next != pool.blocks.end() &&
|
|
(*next)->stream == p.stream() &&
|
|
expandable_size(*next) < expandable_size(*it)) {
|
|
it = next++;
|
|
}
|
|
} else {
|
|
// Rarely expandable segments has been turned off after we have
|
|
// already allocated some blocks as expandable. For instance,
|
|
// since we cannot share expandable memory via IPC, someone might
|
|
// temporarily disable it. In this case we need to honor this request
|
|
// by only finding non-expandable blocks
|
|
do {
|
|
it++;
|
|
} while (it != pool.blocks.end() && (*it)->expandable_segment_ &&
|
|
(*it)->stream == p.stream());
|
|
if (it == pool.blocks.end() || (*it)->stream != p.stream()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do not return an oversized block for a large request
|
|
if ((p.size() < CUDAAllocatorConfig::max_split_size()) &&
|
|
((*it)->size >= CUDAAllocatorConfig::max_split_size()))
|
|
return false;
|
|
// Allow oversized block size to be rounded up but within a limit
|
|
if ((p.size() >= CUDAAllocatorConfig::max_split_size()) &&
|
|
((*it)->size >= p.size() + kLargeBuffer))
|
|
return false;
|
|
p.block = *it;
|
|
pool.blocks.erase(it);
|
|
return true;
|
|
}
|
|
|
|
bool trigger_free_memory_callbacks(AllocParams& p) {
|
|
bool freed_memory = false;
|
|
for (const auto& name : FreeCudaMemoryCallbacksRegistry()->Keys()) {
|
|
freed_memory |=
|
|
FreeCudaMemoryCallbacksRegistry()->Create(name)->Execute();
|
|
}
|
|
return freed_memory;
|
|
}
|
|
|
|
void garbage_collect_cached_blocks(
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
// Free unused cached blocks to reclaim GPU memory.
|
|
// Unlike release_cached_blocks(), this does not enforce synchronization and
|
|
// therefore should be of less overheads.
|
|
|
|
size_t gc_threshold = static_cast<size_t>(
|
|
CUDAAllocatorConfig::garbage_collection_threshold() *
|
|
allowed_memory_maximum);
|
|
// No need to trigger GC yet
|
|
if (total_allocated_memory <= gc_threshold) {
|
|
return;
|
|
}
|
|
const auto target_size = total_allocated_memory - gc_threshold;
|
|
size_t gc_reclaimed = 0;
|
|
|
|
// Calculate the total age of the free-able blocks. We'll use it later to
|
|
// get "avg age" threshold.
|
|
double total_age = 0.0;
|
|
int freeable_block_count = 0;
|
|
for (auto& b : large_blocks.blocks) {
|
|
if (!b->is_split()) {
|
|
total_age += b->gc_count();
|
|
++freeable_block_count;
|
|
}
|
|
}
|
|
// No free-able blocks?
|
|
if (freeable_block_count == 0) {
|
|
return;
|
|
}
|
|
|
|
// Repeat GC until we reach reclaim > target size.
|
|
bool block_freed = true;
|
|
while (gc_reclaimed < target_size && block_freed == true &&
|
|
freeable_block_count > 0) {
|
|
// Free blocks exceeding this age threshold first.
|
|
double age_threshold = total_age / freeable_block_count;
|
|
// Stop iteration if we can no longer free a block.
|
|
block_freed = false;
|
|
|
|
// Free blocks of > avg age. Don't stop upon reaching the target_size,
|
|
// we don't want this GC to be triggered frequently.
|
|
auto it = large_blocks.blocks.begin();
|
|
while (it != large_blocks.blocks.end()) {
|
|
Block* block = *it;
|
|
++it;
|
|
if (!block->is_split() && block->gc_count() >= age_threshold) {
|
|
block_freed = true;
|
|
gc_reclaimed += block->size;
|
|
total_age -= block->gc_count(); // Decrement the age
|
|
freeable_block_count--; // One less block that can be freed
|
|
release_block(block, context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function assumes that global lock has been taken whle calling into
|
|
// this function. We do cudaMalloc sync call in this function which
|
|
// can be expensive while holding the lock. Hence, we pass-in the lock to the
|
|
// function to temporarily release the lock before cudaMalloc call and acquire
|
|
// it back again after the call so that other threads dont get blocked.
|
|
bool alloc_block(
|
|
AllocParams& p,
|
|
bool isRetry,
|
|
const std::shared_ptr<GatheredContext>& ctx,
|
|
std::unique_lock<std::recursive_mutex>& lock) {
|
|
// Defensively checks for preexisting CUDA error state.
|
|
C10_CUDA_CHECK(cudaGetLastError());
|
|
|
|
size_t size = p.alloc_size;
|
|
void* ptr = nullptr;
|
|
|
|
if (isRetry) {
|
|
stats.num_alloc_retries += 1;
|
|
}
|
|
|
|
if (set_fraction &&
|
|
total_allocated_memory + size > allowed_memory_maximum) {
|
|
p.err = cudaErrorMemoryAllocation;
|
|
return false;
|
|
} else if (
|
|
CUDAAllocatorConfig::expandable_segments() &&
|
|
// our checkpointing logic for private pools doesn't support
|
|
// the expandable_segments_ structure yet
|
|
!p.pool->owner_PrivatePool) {
|
|
p.block = try_allocate_expandable_block(
|
|
p.device(), p.stream(), p.pool, p.size(), ctx);
|
|
if (p.block) {
|
|
p.err = cudaSuccess;
|
|
} else {
|
|
p.err = cudaErrorMemoryAllocation;
|
|
}
|
|
return bool(p.block);
|
|
} else {
|
|
if (CUDAAllocatorConfig::release_lock_on_cudamalloc()) {
|
|
// At scope exit, acquire the lock again. This provides safety against
|
|
// any potential exceptions in the cudaMallocMaybeCapturing function.
|
|
auto sg = c10::make_scope_exit([&]() { lock.lock(); });
|
|
lock.unlock();
|
|
p.err = cudaMallocMaybeCapturing(&ptr, size);
|
|
} else {
|
|
p.err = cudaMallocMaybeCapturing(&ptr, size);
|
|
}
|
|
if (CUDAAllocatorConfig::release_lock_on_cudamalloc()) {
|
|
TORCH_CHECK(
|
|
lock.owns_lock(), "Failed to acquire lock after cudaMalloc");
|
|
}
|
|
|
|
if (p.err != cudaSuccess) {
|
|
if (p.err == cudaErrorMemoryAllocation) {
|
|
// If this is the first attempt (!isRetry), we can forgive and clear
|
|
// CUDA's internal error state.
|
|
//
|
|
// If this is the second attempt (isRetry), malloc's TORCH_CHECK_WITH
|
|
// will take over to throw a helpful exception. The user can choose
|
|
// to catch the exception, free some stuff in their script, and
|
|
// attempt the allocation again. In this case, we can also forgive and
|
|
// clear CUDA's internal error state.
|
|
(void)cudaGetLastError();
|
|
} else {
|
|
// If the error's unrelated to memory allocation, we should throw
|
|
// immediately.
|
|
C10_CUDA_CHECK(p.err);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (p.pool->owner_PrivatePool) {
|
|
// The block is for a CUDA graph's PrivatePool.
|
|
p.pool->owner_PrivatePool->cudaMalloc_count++;
|
|
}
|
|
|
|
total_allocated_memory += size;
|
|
p.block = new Block(p.device(), p.stream(), size, p.pool, (char*)ptr);
|
|
for_each_selected_stat_type(p.stat_types, [&](size_t stat_type) {
|
|
update_stat(stats.segment[stat_type], 1);
|
|
update_stat(stats.reserved_bytes[stat_type], size);
|
|
});
|
|
if (size >= CUDAAllocatorConfig::max_split_size())
|
|
update_stat(stats.oversize_segments, 1);
|
|
|
|
// p.block came from new, not cudaMalloc. It should not be nullptr here.
|
|
TORCH_INTERNAL_ASSERT(p.block != nullptr && p.block->ptr != nullptr);
|
|
stats.num_device_alloc++;
|
|
record_trace(
|
|
TraceEntry::SEGMENT_ALLOC,
|
|
int64_t(p.block->ptr),
|
|
p.block->size,
|
|
p.stream(),
|
|
p.device(),
|
|
ctx);
|
|
p.block->context_when_segment_allocated = ctx;
|
|
return true;
|
|
}
|
|
|
|
/** Free one or more oversize blocks to the system allocator. But only enough
|
|
* **/
|
|
/** to satisfy the target size **/
|
|
bool release_available_cached_blocks(
|
|
const AllocParams& p,
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
if (CUDAAllocatorConfig::max_split_size() ==
|
|
std::numeric_limits<size_t>::max())
|
|
return false;
|
|
BlockPool& pool = *p.pool;
|
|
|
|
// because of std::unique_ptr, block cannot be trivially copied
|
|
// Use constructor for search key.
|
|
Block key(p.search_key.device, p.search_key.stream, p.search_key.size);
|
|
key.size = (key.size < CUDAAllocatorConfig::max_split_size())
|
|
? CUDAAllocatorConfig::max_split_size()
|
|
: key.size;
|
|
auto it = pool.blocks.lower_bound(&key);
|
|
if (it == pool.blocks.end() || (*it)->stream != p.stream()) {
|
|
// No single block is large enough; free multiple oversize blocks,
|
|
// starting with the largest
|
|
if (it == pool.blocks.begin())
|
|
return false;
|
|
size_t totalReleased = 0;
|
|
--it; // Back up one item. Now on the largest block for the correct
|
|
// stream
|
|
while ((totalReleased < key.size) &&
|
|
((*it)->size >= CUDAAllocatorConfig::max_split_size()) &&
|
|
((*it)->stream == p.stream())) {
|
|
auto cur = it;
|
|
totalReleased += (*it)->size;
|
|
if (it != pool.blocks.begin()) {
|
|
--it;
|
|
release_block(*cur, context);
|
|
} else {
|
|
release_block(*cur, context);
|
|
break;
|
|
}
|
|
}
|
|
if (totalReleased < key.size)
|
|
return false;
|
|
} else {
|
|
release_block(*it, context);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool release_cached_blocks(const std::shared_ptr<GatheredContext>& context) {
|
|
// First ensure that all blocks that can't currently be allocated due to
|
|
// outstanding events are returned to the pool.
|
|
synchronize_and_free_events(context);
|
|
|
|
// Free all non-split cached blocks to system allocator
|
|
release_blocks(large_blocks, context);
|
|
release_blocks(small_blocks, context);
|
|
|
|
for (auto it = graph_pools_freeable.begin();
|
|
it != graph_pools_freeable.end();) {
|
|
// See notifyCaptureDestroy for the strategy here.
|
|
TORCH_INTERNAL_ASSERT(it->second->use_count == 0);
|
|
release_blocks(it->second->small_blocks, context);
|
|
release_blocks(it->second->large_blocks, context);
|
|
if (it->second->cudaMalloc_count == 0) {
|
|
auto erase_count = graph_pools.erase(it->first);
|
|
TORCH_INTERNAL_ASSERT(erase_count == 1);
|
|
it = graph_pools_freeable.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void release_expandable_segment(Block* block) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
block->size == block->expandable_segment_->size(),
|
|
"block disagrees with segment");
|
|
TORCH_INTERNAL_ASSERT(!block->mapped);
|
|
auto it = std::find(
|
|
expandable_segments_.begin(),
|
|
expandable_segments_.end(),
|
|
block->expandable_segment_);
|
|
TORCH_INTERNAL_ASSERT(it != expandable_segments_.end());
|
|
expandable_segments_.erase(it);
|
|
block->pool->unmapped.erase(block);
|
|
delete block->expandable_segment_;
|
|
delete block;
|
|
}
|
|
|
|
void release_block(
|
|
Block* block,
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
TORCH_INTERNAL_ASSERT(!block->expandable_segment_);
|
|
stats.num_device_free++;
|
|
record_trace(
|
|
TraceEntry::SEGMENT_FREE,
|
|
int64_t(block->ptr),
|
|
block->size,
|
|
block->stream,
|
|
block->device,
|
|
context ? context : block->context_when_segment_allocated);
|
|
|
|
C10_CUDA_CHECK(cudaFree((void*)block->ptr));
|
|
total_allocated_memory -= block->size;
|
|
|
|
auto* pool = block->pool;
|
|
if (pool->owner_PrivatePool) {
|
|
// The cudaFreed block belonged to a CUDA graph's PrivatePool.
|
|
TORCH_INTERNAL_ASSERT(pool->owner_PrivatePool->cudaMalloc_count > 0);
|
|
pool->owner_PrivatePool->cudaMalloc_count--;
|
|
}
|
|
|
|
StatTypes stat_types = get_stat_types_for_pool(*pool);
|
|
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
|
update_stat(stats.segment[stat_type], -1);
|
|
update_stat(
|
|
stats.reserved_bytes[stat_type],
|
|
-static_cast<std::int64_t>(block->size));
|
|
});
|
|
|
|
if (block->size >= CUDAAllocatorConfig::max_split_size())
|
|
update_stat(stats.oversize_segments, -1);
|
|
pool->blocks.erase(block);
|
|
delete block;
|
|
}
|
|
|
|
void unmap_block(
|
|
Block* block,
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
auto unmapped = block->expandable_segment_->unmap(
|
|
SegmentRange{block->ptr, block->size});
|
|
if (unmapped.size == 0) {
|
|
return;
|
|
}
|
|
block->pool->blocks.erase(block);
|
|
|
|
ptrdiff_t before_size =
|
|
static_cast<char*>(unmapped.ptr) - static_cast<char*>(block->ptr);
|
|
if (before_size > 0) {
|
|
// prev? -> before_free -> block
|
|
Block* before_free = new Block(
|
|
block->device, block->stream, before_size, block->pool, block->ptr);
|
|
before_free->expandable_segment_ = block->expandable_segment_;
|
|
before_free->splice(block->prev, block);
|
|
block->pool->insert_into_blocks(before_free);
|
|
}
|
|
|
|
auto after_size = block->size - (before_size + unmapped.size);
|
|
if (after_size > 0) {
|
|
// block -> after_free -> next?
|
|
Block* after_free = new Block(
|
|
block->device,
|
|
block->stream,
|
|
after_size,
|
|
block->pool,
|
|
static_cast<char*>(unmapped.ptr) + unmapped.size);
|
|
after_free->expandable_segment_ = block->expandable_segment_;
|
|
after_free->splice(block, block->next);
|
|
block->pool->insert_into_blocks(after_free);
|
|
}
|
|
|
|
block->ptr = unmapped.ptr;
|
|
block->size = unmapped.size;
|
|
block->mapped = false;
|
|
|
|
try_merge_blocks(block, block->prev, *block->pool);
|
|
try_merge_blocks(block, block->next, *block->pool);
|
|
block->pool->unmapped.insert(block);
|
|
|
|
// update statistics
|
|
total_allocated_memory -= unmapped.size;
|
|
StatTypes stat_types = get_stat_types_for_pool(*block->pool);
|
|
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
|
update_stat(stats.reserved_bytes[stat_type], -unmapped.size);
|
|
});
|
|
|
|
stats.num_device_free++;
|
|
record_trace(
|
|
TraceEntry::SEGMENT_UNMAP,
|
|
int64_t(unmapped.ptr),
|
|
unmapped.size,
|
|
block->stream,
|
|
block->device,
|
|
context ? context : block->context_when_segment_allocated);
|
|
}
|
|
void release_blocks(
|
|
BlockPool& pool,
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
std::vector<Block*> to_unmap;
|
|
// Frees all non-split blocks
|
|
auto it = pool.blocks.begin();
|
|
while (it != pool.blocks.end()) {
|
|
Block* block = *it;
|
|
++it;
|
|
if (block->expandable_segment_) {
|
|
// unmapping will mutate the free pool
|
|
// so just gather what needs to be freed
|
|
// to avoid invalidating the iterator
|
|
to_unmap.push_back(block);
|
|
} else if (!block->prev && !block->next) {
|
|
release_block(block, context);
|
|
}
|
|
}
|
|
for (Block* block : to_unmap) {
|
|
unmap_block(block, context);
|
|
if (!block->prev && !block->next) {
|
|
release_expandable_segment(block);
|
|
}
|
|
}
|
|
}
|
|
|
|
EventPool::Event create_event_internal(c10::DeviceIndex idx) {
|
|
// Leak the event pool to avoid shutdown issues.
|
|
static auto* event_pool = new EventPool();
|
|
return event_pool->get(idx);
|
|
}
|
|
|
|
void synchronize_and_free_events(
|
|
const std::shared_ptr<GatheredContext>& context) {
|
|
// Synchronize on outstanding events and then free associated blocks.
|
|
stats.num_sync_all_streams++;
|
|
|
|
// This function syncs, so capture should not be underway. Might as well
|
|
// make sure capture-deferred end of life events get processed too.
|
|
TORCH_INTERNAL_ASSERT(captures_underway.size() == 0);
|
|
insert_events_deferred_until_no_capture();
|
|
|
|
for (auto& st : cuda_events) {
|
|
for (auto& e : st.second) {
|
|
EventPool::Event event = std::move(e.first);
|
|
Block* block = e.second;
|
|
|
|
C10_CUDA_CHECK(cudaEventSynchronize(*event));
|
|
|
|
block->event_count--;
|
|
if (block->event_count == 0) {
|
|
free_block(block, context);
|
|
}
|
|
}
|
|
}
|
|
|
|
cuda_events.clear();
|
|
}
|
|
|
|
void insert_events(Block* block) {
|
|
c10::DeviceIndex prev_device = 0;
|
|
C10_CUDA_CHECK(c10::cuda::GetDevice(&prev_device));
|
|
|
|
stream_set streams(std::move(block->stream_uses));
|
|
AT_ASSERT(block->stream_uses.empty());
|
|
for (auto& stream : streams) {
|
|
C10_CUDA_CHECK(c10::cuda::SetDevice(stream.device_index()));
|
|
|
|
EventPool::Event event = create_event_internal(stream.device_index());
|
|
C10_CUDA_CHECK(cudaEventRecord(*event, stream.stream()));
|
|
|
|
block->event_count++;
|
|
cuda_events[stream].emplace_back(std::move(event), block);
|
|
}
|
|
|
|
C10_CUDA_CHECK(c10::cuda::MaybeSetDevice(prev_device));
|
|
}
|
|
|
|
void insert_events_deferred_until_no_capture() {
|
|
if (C10_UNLIKELY(!needs_events_deferred_until_no_capture.empty())) {
|
|
for (auto* block : needs_events_deferred_until_no_capture) {
|
|
TORCH_INTERNAL_ASSERT(!block->stream_uses.empty());
|
|
insert_events(block);
|
|
}
|
|
needs_events_deferred_until_no_capture.clear();
|
|
}
|
|
}
|
|
|
|
void process_events(const std::shared_ptr<GatheredContext>& context) {
|
|
insert_events_deferred_until_no_capture();
|
|
|
|
// Process outstanding cudaEvents. Events that are completed are
|
|
// removed from the queue, and the 'event_count' for the
|
|
// corresponding allocation is decremented. We maintain a separate
|
|
// list of events per stream to avoid head-of-line delays if one
|
|
// or more streams has long-running operations.
|
|
|
|
// Iterate over different streams.
|
|
for (auto it = cuda_events.begin(); it != cuda_events.end();) {
|
|
// Iterate over this stream's (event, block) pairs.
|
|
while (!it->second.empty()) {
|
|
auto& e = it->second.front();
|
|
EventPool::Event event = std::move(e.first);
|
|
Block* block = e.second;
|
|
|
|
cudaError_t err = C10_CUDA_ERROR_HANDLED(cudaEventQuery(*event));
|
|
if (err == cudaErrorNotReady) {
|
|
// ignore and clear the error if not ready
|
|
(void)cudaGetLastError();
|
|
// Return the ownership of the Event (unique ptr)
|
|
e.first = std::move(event);
|
|
break;
|
|
} else if (err != cudaSuccess) {
|
|
C10_CUDA_CHECK(err);
|
|
}
|
|
|
|
block->event_count--;
|
|
if (block->event_count == 0) {
|
|
free_block(block, context);
|
|
}
|
|
it->second.pop_front();
|
|
}
|
|
|
|
if (it->second.empty()) {
|
|
it = cuda_events.erase(it);
|
|
} else {
|
|
it++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iterates over sizes of all memory blocks for given device in given pool
|
|
void cache_info_aux(const BlockPool& pool, size_t* largest) {
|
|
for (const auto& block : pool.blocks) {
|
|
const auto blocksize = block->size;
|
|
if (blocksize > *largest) {
|
|
*largest = blocksize;
|
|
}
|
|
}
|
|
}
|
|
|
|
void record_trace(
|
|
TraceEntry::Action action,
|
|
int64_t addr,
|
|
size_t size,
|
|
cudaStream_t stream,
|
|
c10::DeviceIndex device,
|
|
std::shared_ptr<GatheredContext> context) {
|
|
if (!record_history && !trace_trackers_.size())
|
|
return;
|
|
|
|
auto te = TraceEntry(
|
|
action,
|
|
device,
|
|
addr,
|
|
size,
|
|
stream,
|
|
getApproximateTime(),
|
|
record_context_ >= RecordContext::ALLOC ? std::move(context) : nullptr);
|
|
|
|
// Callbacks should not include any Pytorch call
|
|
for (const auto& cb : trace_trackers_) {
|
|
cb(te);
|
|
}
|
|
|
|
if (record_history) {
|
|
if (alloc_trace->size() < alloc_trace_max_entries_) {
|
|
alloc_trace->emplace_back(te);
|
|
} else {
|
|
(*alloc_trace)[alloc_trace_next++] = te;
|
|
if (alloc_trace_next == alloc_trace_max_entries_) {
|
|
alloc_trace_next = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// Returns whether to force all allocations to bypass the caching allocator and
|
|
// go straight to cudaMalloc. This setting is useful when debugging GPU memory
|
|
// errors, since the caching allocator foils cuda-memcheck.
|
|
bool forceUncachedAllocator() {
|
|
static bool force_uncached =
|
|
getenv("PYTORCH_NO_CUDA_MEMORY_CACHING") != nullptr;
|
|
return force_uncached;
|
|
}
|
|
|
|
static void uncached_delete(void* ptr) {
|
|
if (TORCH_SDT_IS_ENABLED(free)) {
|
|
TORCH_SDT_WITH_SEMAPHORE(free, ptr);
|
|
}
|
|
|
|
const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
|
|
if (C10_UNLIKELY(interp)) {
|
|
(*interp)->trace_gpu_memory_deallocation(reinterpret_cast<uintptr_t>(ptr));
|
|
}
|
|
C10_CUDA_CHECK(cudaFree(ptr));
|
|
}
|
|
|
|
void local_raw_delete(void* ptr);
|
|
|
|
class NativeCachingAllocator : public CUDAAllocator {
|
|
private:
|
|
// Shard allocation region to have independent mutexes to reduce contention.
|
|
static constexpr size_t kNumMutexShard = 67;
|
|
|
|
// TODO: use std::hardware_destructive_interference_size once available
|
|
struct alignas(64) AlignedMutex {
|
|
std::mutex m;
|
|
};
|
|
|
|
std::array<AlignedMutex, kNumMutexShard> mutex;
|
|
|
|
// allocated blocks by device pointer
|
|
std::array<ska::flat_hash_map<void*, Block*>, kNumMutexShard>
|
|
allocated_blocks;
|
|
|
|
static size_t get_mutex_shard_id(void* ptr) {
|
|
return twang_mix64((size_t)ptr) % kNumMutexShard;
|
|
}
|
|
|
|
void add_allocated_block(Block* block) {
|
|
const auto mutex_shard_id = get_mutex_shard_id(block->ptr);
|
|
std::lock_guard<std::mutex> lock(mutex[mutex_shard_id].m);
|
|
allocated_blocks[mutex_shard_id][block->ptr] = block;
|
|
}
|
|
|
|
c10::ApproximateClockToUnixTimeConverter clock_converter;
|
|
|
|
public:
|
|
std::vector<std::unique_ptr<DeviceCachingAllocator>> device_allocator;
|
|
|
|
Block* get_allocated_block(void* ptr, bool remove = false) {
|
|
const auto mutex_shard_id = get_mutex_shard_id(ptr);
|
|
std::lock_guard<std::mutex> lock(mutex[mutex_shard_id].m);
|
|
auto it = allocated_blocks[mutex_shard_id].find(ptr);
|
|
if (it == allocated_blocks[mutex_shard_id].end()) {
|
|
return nullptr;
|
|
}
|
|
Block* block = it->second;
|
|
if (remove) {
|
|
allocated_blocks[mutex_shard_id].erase(it);
|
|
}
|
|
return block;
|
|
}
|
|
|
|
void init(int device_count) override {
|
|
const auto size = static_cast<int64_t>(device_allocator.size());
|
|
if (size < device_count) {
|
|
device_allocator.resize(device_count);
|
|
for (const auto i : c10::irange(size, device_count)) {
|
|
device_allocator[i] = std::make_unique<DeviceCachingAllocator>();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool initialized() override {
|
|
return !device_allocator.empty();
|
|
}
|
|
|
|
/** allocates a block which is safe to use from the provided stream */
|
|
void malloc(
|
|
void** devPtr,
|
|
c10::DeviceIndex device,
|
|
size_t size,
|
|
cudaStream_t stream) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
0 <= device && static_cast<size_t>(device) < device_allocator.size(),
|
|
"Allocator not initialized for device ",
|
|
device,
|
|
": did you call init?");
|
|
Block* block = device_allocator[device]->malloc(device, size, stream);
|
|
add_allocated_block(block);
|
|
*devPtr = (void*)block->ptr;
|
|
const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
|
|
if (C10_UNLIKELY(interp)) {
|
|
(*interp)->trace_gpu_memory_allocation(
|
|
reinterpret_cast<uintptr_t>(*devPtr));
|
|
}
|
|
}
|
|
|
|
void free(void* ptr) {
|
|
if (!ptr) {
|
|
return;
|
|
}
|
|
Block* block = get_allocated_block(ptr, true /* remove */);
|
|
if (!block) {
|
|
TORCH_CHECK(false, "invalid device pointer: ", ptr);
|
|
}
|
|
const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
|
|
if (C10_UNLIKELY(interp)) {
|
|
(*interp)->trace_gpu_memory_deallocation(
|
|
reinterpret_cast<uintptr_t>(block->ptr));
|
|
}
|
|
device_allocator[block->device]->free(block);
|
|
}
|
|
|
|
void setMemoryFraction(double fraction, c10::DeviceIndex device) override {
|
|
TORCH_INTERNAL_ASSERT(
|
|
0 <= device && static_cast<size_t>(device) < device_allocator.size(),
|
|
"Allocator not initialized for device ",
|
|
device,
|
|
": did you call init?");
|
|
TORCH_INTERNAL_ASSERT(
|
|
0 <= fraction && fraction <= 1,
|
|
"invalid fraction:",
|
|
fraction,
|
|
". Please set within (0, 1).");
|
|
C10_CUDA_CHECK(c10::cuda::SetDevice(device));
|
|
device_allocator[device]->setMemoryFraction(fraction);
|
|
}
|
|
|
|
void recordHistory(
|
|
bool enabled,
|
|
CreateContextFn context_recorder,
|
|
size_t alloc_trace_max_entries,
|
|
RecordContext when) override {
|
|
for (auto& allocator : device_allocator) {
|
|
allocator->recordHistory(
|
|
enabled, context_recorder, alloc_trace_max_entries, when);
|
|
}
|
|
}
|
|
|
|
bool isHistoryEnabled() override {
|
|
c10::DeviceIndex device = 0;
|
|
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
|
return device_allocator[device]->isHistoryEnabled();
|
|
}
|
|
|
|
bool checkPoolLiveAllocations(
|
|
c10::DeviceIndex device,
|
|
MempoolId_t mempool_id,
|
|
const std::unordered_set<void*>& expected_live_allocations) override {
|
|
return device_allocator[device]->checkPoolLiveAllocations(
|
|
mempool_id, expected_live_allocations);
|
|
}
|
|
|
|
void attachOutOfMemoryObserver(OutOfMemoryObserver observer) override {
|
|
for (auto& allocator : device_allocator) {
|
|
allocator->attachOutOfMemoryObserver(std::move(observer));
|
|
}
|
|
}
|
|
|
|
void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) override {
|
|
for (auto& allocator : device_allocator) {
|
|
allocator->attachAllocatorTraceTracker(tracker);
|
|
}
|
|
}
|
|
|
|
void emptyCache() override {
|
|
for (auto& da : device_allocator)
|
|
da->emptyCache();
|
|
}
|
|
|
|
void* getBaseAllocation(void* ptr, size_t* outSize) override {
|
|
Block* block = get_allocated_block(ptr);
|
|
if (!block) {
|
|
TORCH_CHECK(false, "invalid device pointer: ", ptr);
|
|
}
|
|
return device_allocator[block->device]->getBaseAllocation(block, outSize);
|
|
}
|
|
|
|
void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) override {
|
|
// Empty tensor's storage().data() might be a null ptr. As there is no
|
|
// blocks associated with those tensors, it is fine to do nothing here.
|
|
if (!ptr.get()) {
|
|
return;
|
|
}
|
|
|
|
// If a tensor is not allocated by this instance, simply skip
|
|
// This usually happens when CUDA tensors are shared across processes,
|
|
// we have implemented reference counting based sharing mechanism to
|
|
// guarantee tensors won't be accidentally freed by one process while
|
|
// they are still being used in another
|
|
if (ptr.get_deleter() != &local_raw_delete)
|
|
return;
|
|
|
|
Block* block = get_allocated_block(ptr.get());
|
|
// block must not be null reaching here
|
|
TORCH_INTERNAL_ASSERT(block != nullptr, "No allocated block can be found");
|
|
device_allocator[block->device]->recordStream(block, stream);
|
|
}
|
|
|
|
SnapshotInfo snapshot() override {
|
|
// Set-up converter to convert timestamps from tsc to microseconds.
|
|
auto tsc_to_ns = clock_converter.makeConverter();
|
|
auto tsc_to_us = [=](approx_time_t t_approx) {
|
|
return tsc_to_ns(t_approx) / 1000;
|
|
};
|
|
|
|
SnapshotInfo result;
|
|
for (auto& da : device_allocator) {
|
|
result.device_traces.emplace_back(da->trace(tsc_to_us));
|
|
auto snap = da->snapshot();
|
|
result.segments.insert(result.segments.end(), snap.begin(), snap.end());
|
|
}
|
|
|
|
auto& md = result.config_metadata;
|
|
md.garbage_collection_threshold =
|
|
CUDAAllocatorConfig::garbage_collection_threshold();
|
|
md.max_split_size = CUDAAllocatorConfig::max_split_size();
|
|
md.pinned_num_register_threads =
|
|
CUDAAllocatorConfig::pinned_num_register_threads();
|
|
md.expandable_segments = CUDAAllocatorConfig::expandable_segments();
|
|
md.release_lock_on_malloc =
|
|
CUDAAllocatorConfig::release_lock_on_cudamalloc();
|
|
md.pinned_use_host_register =
|
|
CUDAAllocatorConfig::pinned_use_cuda_host_register();
|
|
md.last_allocator_settings = CUDAAllocatorConfig::last_allocator_settings();
|
|
md.roundup_power2_divisions =
|
|
CUDAAllocatorConfig::roundup_power2_divisions();
|
|
|
|
return result;
|
|
}
|
|
|
|
std::shared_ptr<AllocatorState> getCheckpointState(
|
|
c10::DeviceIndex device,
|
|
MempoolId_t id) override {
|
|
return device_allocator[device]->getCheckpointState(id);
|
|
}
|
|
|
|
/**
|
|
* @brief Checkpoint the private pool state identified in `as` to its prior
|
|
* state
|
|
*
|
|
* @param device - device of the pool to manipulate
|
|
* @param as - allocator state
|
|
* @param stale_live_storages - storages of tensors which are currently
|
|
* allocated but which will be not be allocated after the checkpoint is set.
|
|
* For these storages we will remove their deleter function.
|
|
* @return CheckpointDelta - Freed Pointers and DataPtrs that contain deleter
|
|
* functions for all allocated blocks in the new checkpoint state.
|
|
*/
|
|
CheckpointDelta setCheckpointPoolState(
|
|
c10::DeviceIndex device,
|
|
std::shared_ptr<AllocatorState> as) override {
|
|
std::shared_ptr<PrivatePoolState> pps =
|
|
std::dynamic_pointer_cast<PrivatePoolState>(as);
|
|
|
|
TORCH_CHECK(pps, "Expected PrivatePoolState");
|
|
|
|
auto rr = device_allocator[device]->setCheckpointPoolState(*pps);
|
|
|
|
CheckpointDelta cpd;
|
|
for (void* ptr : rr.allocations_freed) {
|
|
get_allocated_block(ptr, /*remove*/ true);
|
|
cpd.ptrs_freed.push_back(ptr);
|
|
}
|
|
for (Block* block : rr.allocations_created) {
|
|
add_allocated_block(block);
|
|
cpd.dataptrs_allocd.emplace_back(
|
|
block->ptr,
|
|
block->ptr,
|
|
&local_raw_delete,
|
|
Device(DeviceType::CUDA, device));
|
|
}
|
|
|
|
return cpd;
|
|
}
|
|
|
|
DataPtr allocate(size_t size) override {
|
|
constexpr size_t one_exa_bytes = 1152921504606846976ULL;
|
|
TORCH_CHECK_WITH(
|
|
OutOfMemoryError,
|
|
size < one_exa_bytes,
|
|
"CUDA out of memory. Tried to allocate more than 1EB memory.");
|
|
c10::DeviceIndex device = 0;
|
|
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
|
void* devPtr = nullptr;
|
|
void (*deleteFunc)(void*) = &local_raw_delete;
|
|
CUDAStream stream = cuda::getCurrentCUDAStream(device);
|
|
|
|
if (forceUncachedAllocator()) {
|
|
deleteFunc = &uncached_delete;
|
|
|
|
// Deliberately don't use cudaMallocMaybeCapturing here, to force an error
|
|
// if someone tries to use forceUncachedAllocator while capturing.
|
|
C10_CUDA_CHECK(cudaMalloc(&devPtr, size));
|
|
const c10::impl::PyInterpreter* interp = c10::impl::GPUTrace::get_trace();
|
|
if (C10_UNLIKELY(interp)) {
|
|
(*interp)->trace_gpu_memory_allocation(
|
|
reinterpret_cast<uintptr_t>(devPtr));
|
|
}
|
|
} else {
|
|
if (size != 0) {
|
|
this->malloc(&devPtr, device, size, stream);
|
|
}
|
|
}
|
|
|
|
if (size && TORCH_SDT_IS_ENABLED(malloc)) {
|
|
TORCH_SDT_WITH_SEMAPHORE(malloc, devPtr, device, size, stream.id());
|
|
}
|
|
|
|
return {devPtr, devPtr, deleteFunc, Device(DeviceType::CUDA, device)};
|
|
}
|
|
DeleterFnPtr raw_deleter() const override {
|
|
if (forceUncachedAllocator()) {
|
|
return &uncached_delete;
|
|
} else {
|
|
return &local_raw_delete;
|
|
}
|
|
}
|
|
void cacheInfo(c10::DeviceIndex device, size_t* largestBlock) override {
|
|
device_allocator[device]->cacheInfo(largestBlock);
|
|
}
|
|
void assertValidDevice(c10::DeviceIndex device) {
|
|
const auto device_num = device_allocator.size();
|
|
TORCH_CHECK(
|
|
0 <= device && device < static_cast<int64_t>(device_num),
|
|
"Invalid device argument ",
|
|
device,
|
|
": did you call init?");
|
|
}
|
|
|
|
DeviceStats getDeviceStats(c10::DeviceIndex device) override {
|
|
assertValidDevice(device);
|
|
return device_allocator[device]->getStats();
|
|
}
|
|
|
|
void resetAccumulatedStats(c10::DeviceIndex device) override {
|
|
assertValidDevice(device);
|
|
device_allocator[device]->resetAccumulatedStats();
|
|
}
|
|
|
|
void resetPeakStats(c10::DeviceIndex device) override {
|
|
assertValidDevice(device);
|
|
device_allocator[device]->resetPeakStats();
|
|
}
|
|
// CUDAGraph interactions
|
|
void beginAllocateToPool(
|
|
c10::DeviceIndex device,
|
|
MempoolId_t mempool_id,
|
|
std::function<bool(cudaStream_t)> filter) override {
|
|
assertValidDevice(device);
|
|
device_allocator[device]->beginAllocateToPool(
|
|
std::move(mempool_id), std::move(filter));
|
|
}
|
|
|
|
void endAllocateToPool(c10::DeviceIndex device, MempoolId_t mempool_id)
|
|
override {
|
|
assertValidDevice(device);
|
|
device_allocator[device]->endAllocateToPool(mempool_id);
|
|
}
|
|
|
|
void releasePool(c10::DeviceIndex device, MempoolId_t mempool_id) override {
|
|
assertValidDevice(device);
|
|
device_allocator[device]->releasePool(std::move(mempool_id));
|
|
}
|
|
|
|
void* raw_alloc(size_t nbytes) override {
|
|
if (nbytes == 0) {
|
|
return nullptr;
|
|
}
|
|
c10::DeviceIndex device = 0;
|
|
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
|
void* r = nullptr;
|
|
malloc(&r, device, nbytes, cuda::getCurrentCUDAStream(device));
|
|
return r;
|
|
}
|
|
|
|
void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) override {
|
|
if (nbytes == 0) {
|
|
return nullptr;
|
|
}
|
|
c10::DeviceIndex device = 0;
|
|
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
|
void* r = nullptr;
|
|
malloc(&r, device, nbytes, stream);
|
|
return r;
|
|
}
|
|
|
|
void enablePeerAccess(c10::DeviceIndex dev, c10::DeviceIndex dev_to_access)
|
|
override {
|
|
c10::cuda::CUDAGuard device_guard(dev);
|
|
cudaError_t err = cudaDeviceEnablePeerAccess(dev_to_access, 0);
|
|
if (err == cudaErrorPeerAccessAlreadyEnabled) {
|
|
// ignore and clear the error if access was already enabled
|
|
(void)cudaGetLastError();
|
|
} else {
|
|
C10_CUDA_CHECK(err);
|
|
}
|
|
device_allocator[dev_to_access]->addPeerAccess(dev);
|
|
}
|
|
|
|
cudaError_t memcpyAsync(
|
|
void* dst,
|
|
int dstDevice,
|
|
const void* src,
|
|
int srcDevice,
|
|
size_t count,
|
|
cudaStream_t stream,
|
|
bool p2p_enabled) override {
|
|
if (p2p_enabled || // memcpy ok because memory is mapped in both devices
|
|
srcDevice == dstDevice || // memcpy ok on a single device
|
|
// memcpy ok because both dst and src must have come from cudaMalloc
|
|
(!device_allocator[dstDevice]->hasAllocatedExpandableSegments() &&
|
|
!device_allocator[srcDevice]->hasAllocatedExpandableSegments())) {
|
|
return cudaMemcpyAsync(dst, src, count, cudaMemcpyDeviceToDevice, stream);
|
|
}
|
|
// when p2p is not enabled, only cudaMemcpyPeerAsync correctly handles
|
|
// memory not allocated via cudaMalloc
|
|
return cudaMemcpyPeerAsync(dst, dstDevice, src, srcDevice, count, stream);
|
|
}
|
|
|
|
void raw_delete(void* ptr) override {
|
|
this->free(ptr);
|
|
}
|
|
|
|
// In CUDA IPC, sender sends a tensor to receiver, getIpcDevPtr
|
|
// is called by the receiving process to map the CUDA memory from the sending
|
|
// process into its own address space.
|
|
//
|
|
// CUDA IPC only allows sharing a big memory block associated with a
|
|
// cudaIpcMemHandle_t and it can be opened only **once** per context per
|
|
// process. There can be multiple types of storage in the same IPC mem block,
|
|
// so we must cache the device ptr to construct typed storage as it comes.
|
|
//
|
|
// ipcMemHandle_to_devptr maps a cudaIpcMemHandle_t to a device pointer in the
|
|
// process that can be used to access the memory block in the sender process.
|
|
// It only saves a weak_ptr of the device pointer in the map, the shared_ptr
|
|
// will be used to reconstruct all storages in this CudaMalloc allocation. And
|
|
// it will deleted in cudaIpcCloseMemHandle when its reference count is 0.
|
|
//
|
|
std::mutex IpcMutex;
|
|
ska::flat_hash_map<std::string, std::weak_ptr<void>> ipcMemHandle_to_devptr;
|
|
std::shared_ptr<void> getIpcDevPtr(std::string handle) override {
|
|
std::lock_guard<std::mutex> lock(IpcMutex);
|
|
|
|
auto iter = ipcMemHandle_to_devptr.find(handle);
|
|
if (iter != ipcMemHandle_to_devptr.end()) {
|
|
auto devptr = iter->second.lock();
|
|
if (devptr)
|
|
return devptr;
|
|
}
|
|
// This ipcMemHandle hasn't been opened, or already expired, open it to
|
|
// enable IPC access to that mem block.
|
|
void* dev = nullptr;
|
|
auto ipc_handle =
|
|
reinterpret_cast<const cudaIpcMemHandle_t*>(handle.c_str());
|
|
C10_CUDA_CHECK(cudaIpcOpenMemHandle(
|
|
&dev, *ipc_handle, cudaIpcMemLazyEnablePeerAccess));
|
|
// devPtr has to be deleted in same device when created.
|
|
c10::DeviceIndex curr_device = 0;
|
|
C10_CUDA_CHECK(c10::cuda::GetDevice(&curr_device));
|
|
auto sp =
|
|
std::shared_ptr<void>(dev, [handle, curr_device, this](void* ptr) {
|
|
cuda::CUDAGuard device_guard(curr_device);
|
|
std::lock_guard<std::mutex> deleter_lock(IpcMutex);
|
|
C10_CUDA_CHECK(cudaIpcCloseMemHandle(ptr));
|
|
ipcMemHandle_to_devptr.erase(handle);
|
|
});
|
|
std::weak_ptr<void> wp = sp;
|
|
// To eliminate an additional search, we can use insert().
|
|
// It doesn't overwrite when key already exists(ptr expired).
|
|
// But in the deleter for sp we erased the entry,
|
|
// this should be safe to do now.
|
|
ipcMemHandle_to_devptr.insert(iter, {handle, wp});
|
|
|
|
return sp;
|
|
}
|
|
std::string name() override {
|
|
return "native";
|
|
}
|
|
void copy_data(void* dest, const void* src, std::size_t count) const final {
|
|
C10_CUDA_CHECK(
|
|
cudaMemcpy(dest, src, count, cudaMemcpyKind::cudaMemcpyDeviceToDevice));
|
|
}
|
|
};
|
|
|
|
NativeCachingAllocator allocator;
|
|
|
|
void local_raw_delete(void* ptr) {
|
|
if (TORCH_SDT_IS_ENABLED(free)) {
|
|
TORCH_SDT_WITH_SEMAPHORE(free, ptr);
|
|
}
|
|
|
|
allocator.free(ptr);
|
|
}
|
|
|
|
} // namespace Native
|
|
// Size pretty-printer
|
|
std::string format_size(uint64_t size) {
|
|
std::ostringstream os;
|
|
os.precision(2);
|
|
os << std::fixed;
|
|
if (size <= 1024) {
|
|
os << size << " bytes";
|
|
} else if (size <= 1048576) {
|
|
os << (size / 1024.0);
|
|
os << " KiB";
|
|
} else if (size <= 1073741824ULL) {
|
|
os << size / 1048576.0;
|
|
os << " MiB";
|
|
} else {
|
|
os << size / 1073741824.0;
|
|
os << " GiB";
|
|
}
|
|
return os.str();
|
|
}
|
|
|
|
namespace CudaMallocAsync {
|
|
// If this is put in its own header file, it gets incorrectly renamed in HIPify.
|
|
CUDAAllocator* allocator();
|
|
|
|
} // namespace CudaMallocAsync
|
|
|
|
struct BackendStaticInitializer {
|
|
// Parses env for backend at load time, duplicating some logic from
|
|
// CUDAAllocatorConfig. CUDAAllocatorConfig double-checks it later (at
|
|
// runtime). Defers verbose exceptions and error checks, including Cuda
|
|
// version checks, to CUDAAllocatorConfig's runtime doublecheck. If this
|
|
// works, maybe we should move all of CUDAAllocatorConfig here?
|
|
CUDAAllocator* parseEnvForBackend() {
|
|
const char* val = getenv("PYTORCH_CUDA_ALLOC_CONF");
|
|
if (val != nullptr) {
|
|
const std::string config(val);
|
|
|
|
std::regex exp("[\\s,]+");
|
|
std::sregex_token_iterator it(config.begin(), config.end(), exp, -1);
|
|
std::sregex_token_iterator end;
|
|
std::vector<std::string> options(it, end);
|
|
|
|
for (auto option : options) {
|
|
std::regex exp2("[:]+");
|
|
std::sregex_token_iterator it2(option.begin(), option.end(), exp2, -1);
|
|
std::sregex_token_iterator end2;
|
|
std::vector<std::string> kv(it2, end2);
|
|
if (kv.size() >= 2) {
|
|
if (kv[0] == "backend") {
|
|
if (kv[1] == "cudaMallocAsync")
|
|
return CudaMallocAsync::allocator();
|
|
if (kv[1] == "native")
|
|
return &Native::allocator;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return &Native::allocator;
|
|
}
|
|
|
|
BackendStaticInitializer() {
|
|
auto r = parseEnvForBackend();
|
|
allocator.store(r);
|
|
}
|
|
};
|
|
|
|
std::atomic<CUDAAllocator*> allocator;
|
|
BackendStaticInitializer backend_static_initializer;
|
|
|
|
} // namespace cuda::CUDACachingAllocator
|
|
|
|
} // namespace c10
|