mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-27 17:54:55 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45156 Test Plan: Imported from OSS Reviewed By: gmagogsfm Differential Revision: D24078695 Pulled By: ansley fbshipit-source-id: dab993277d43b31105c38d12098c37653747b42a
143 lines
4.1 KiB
C++
143 lines
4.1 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include "test/cpp/jit/test_utils.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
class TypeCheckTest : public ::testing::Test {
|
|
protected:
|
|
TypeCheckTest() : interp(makeInterp()) {}
|
|
|
|
InterpreterState interp;
|
|
|
|
private:
|
|
static InterpreterState makeInterp() {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%a.1 : Tensor,
|
|
%b.1 : Tensor):
|
|
%t0 : Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), %t1 : Float(3, 3, strides=[3, 1]), %type_matched : bool = prim::TypeCheck(%a.1, %b.1)
|
|
return (%t0, %t1, %type_matched)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
Code function(graph, "");
|
|
return InterpreterState(function);
|
|
}
|
|
};
|
|
|
|
TEST_F(TypeCheckTest, MatchingType) {
|
|
// TypeCheck yields to true! Shape, grad and device matches.
|
|
auto a = at::zeros({2, 2}, at::kFloat);
|
|
auto b = at::ones({3, 3}, at::kFloat);
|
|
a.set_requires_grad(true);
|
|
a = a.to(at::kCPU);
|
|
std::vector<IValue> stack({a, b});
|
|
interp.run(stack);
|
|
ASSERT_TRUE(exactlyEqual(stack[0].toTensor(), a));
|
|
ASSERT_TRUE(exactlyEqual(stack[1].toTensor(), b));
|
|
ASSERT_TRUE(stack[2].toBool());
|
|
}
|
|
|
|
TEST_F(TypeCheckTest, SizeMismatch) {
|
|
auto a = at::zeros({2, 2}, at::kFloat);
|
|
auto b = at::ones({2, 2}, at::kFloat); // Size mismatch
|
|
a.set_requires_grad(true);
|
|
a = a.to(at::kCPU);
|
|
std::vector<IValue> stack({a, b});
|
|
interp.run(stack);
|
|
ASSERT_FALSE(stack[2].toBool());
|
|
}
|
|
|
|
TEST_F(TypeCheckTest, GradientMismatch) {
|
|
auto a = at::zeros({2, 2}, at::kFloat);
|
|
auto b = at::ones({3, 3}, at::kFloat);
|
|
a = a.to(at::kCPU);
|
|
a.set_requires_grad(false); // Gradient mismatch
|
|
std::vector<IValue> stack({a, b});
|
|
interp.run(stack);
|
|
ASSERT_FALSE(stack[2].toBool());
|
|
}
|
|
|
|
TEST_F(TypeCheckTest, ScalarTypeMismatch) {
|
|
auto a = at::zeros({2, 2}, at::kFloat);
|
|
auto b = at::ones({3, 3}, at::kFloat);
|
|
a = a.to(at::kCPU);
|
|
a.set_requires_grad(true);
|
|
a = a.to(at::kInt); // Scalar type mismatch
|
|
std::vector<IValue> stack({a, b});
|
|
interp.run(stack);
|
|
ASSERT_FALSE(stack[2].toBool());
|
|
}
|
|
|
|
TEST_F(TypeCheckTest, DeviceMismatch_CUDA) {
|
|
auto a = at::zeros({2, 2}, at::kFloat);
|
|
auto b = at::ones({3, 3}, at::kFloat);
|
|
a.set_requires_grad(true);
|
|
a = a.to(at::kCUDA); // Device mismatch
|
|
std::vector<IValue> stack({a, b});
|
|
interp.run(stack);
|
|
ASSERT_FALSE(stack[2].toBool());
|
|
}
|
|
|
|
// TODO: These tests weren't doing anything.
|
|
// TEST(TypeCheckErrorTest, EmptyCheckRaises) {
|
|
// // Test empty Typecheck raises an internal assertion
|
|
// auto graph = std::make_shared<Graph>();
|
|
// std::unordered_map<std::string, Value*> vmap;
|
|
// EXPECT_ANY_THROW(parseIR(
|
|
// R"IR(
|
|
// graph(%a.1 : Tensor,
|
|
// %b.1 : Tensor):
|
|
// %type_matched : bool = prim::TypeCheck()
|
|
// return (%type_matched)
|
|
// )IR",
|
|
// &*graph,
|
|
// vmap));
|
|
// }
|
|
|
|
// TODO: These tests weren't doing anything.
|
|
// TEST(TypeCheckErrorTest, WrongInputOutputCountRaises) {
|
|
// // Test for assertion if num_inputs + 1 != num_outputs
|
|
// auto graph = std::make_shared<Graph>();
|
|
// std::unordered_map<std::string, Value*> vmap;
|
|
// EXPECT_ANY_THROW(parseIR(
|
|
// R"IR(
|
|
// graph(%a.1 : Tensor,
|
|
// %b.1 : Tensor):
|
|
// %type_matched : bool = prim::TypeCheck(%a.1)
|
|
// return (%type_matched)
|
|
// )IR",
|
|
// &*graph,
|
|
// vmap));
|
|
// }
|
|
|
|
TEST(InterpreterTest, Basic_CUDA) {
|
|
constexpr int batch_size = 4;
|
|
constexpr int input_size = 256;
|
|
constexpr int seq_len = 32;
|
|
|
|
int hidden_size = 2 * input_size;
|
|
|
|
auto input = at::randn({seq_len, batch_size, input_size}, at::kCUDA);
|
|
auto hx = at::randn({batch_size, hidden_size}, at::kCUDA);
|
|
auto cx = at::randn({batch_size, hidden_size}, at::kCUDA);
|
|
auto w_ih = t_def(at::randn({4 * hidden_size, input_size}, at::kCUDA));
|
|
auto w_hh = t_def(at::randn({4 * hidden_size, hidden_size}, at::kCUDA));
|
|
|
|
auto lstm_g = build_lstm();
|
|
Code lstm_function(lstm_g, "");
|
|
InterpreterState lstm_interp(lstm_function);
|
|
auto outputs = run(lstm_interp, {input[0], hx, cx, w_ih, w_hh});
|
|
std::tie(hx, cx) = lstm(input[0], hx, cx, w_ih, w_hh);
|
|
|
|
ASSERT_TRUE(exactlyEqual(outputs[0], hx));
|
|
ASSERT_TRUE(exactlyEqual(outputs[1], cx));
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|