mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78436 Approved by: https://github.com/albanD, https://github.com/soulitzer
693 lines
28 KiB
C++
693 lines
28 KiB
C++
#include <torch/csrc/autograd/variable.h>
|
|
|
|
#include <torch/csrc/autograd/autograd.h>
|
|
#include <torch/csrc/autograd/edge.h>
|
|
#include <torch/csrc/autograd/engine.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/InferenceMode.h>
|
|
#include <torch/csrc/autograd/functions/accumulate_grad.h>
|
|
#include <torch/csrc/autograd/functions/tensor.h>
|
|
#include <torch/csrc/autograd/generated/Functions.h>
|
|
#include <torch/csrc/autograd/utils/error_messages.h>
|
|
|
|
#include <ATen/core/VariableHooksInterface.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/MemoryOverlap.h>
|
|
#include <ATen/FuncTorchTLS.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
#include <list>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <typeinfo>
|
|
#include <iostream>
|
|
|
|
namespace torch {
|
|
namespace autograd {
|
|
|
|
|
|
DifferentiableViewMeta::DifferentiableViewMeta(at::TensorImpl* self_impl,
|
|
c10::optional<ViewInfo> backward_info,
|
|
c10::optional<ViewInfo> forward_info,
|
|
bool shared_view_info,
|
|
CreationMeta creation_meta)
|
|
: AutogradMeta(self_impl),
|
|
backward_info_(std::move(backward_info)),
|
|
forward_info_(std::move(forward_info)),
|
|
shared_view_info_(shared_view_info),
|
|
creation_meta_(creation_meta) {
|
|
is_view_ = true;
|
|
if (backward_info_.has_value()) {
|
|
self_impl->set_version_counter(impl::version_counter(backward_info_.value().base_));
|
|
attr_version_ = self_impl->version_counter().current_version();
|
|
}
|
|
if (shared_view_info_) {
|
|
TORCH_INTERNAL_ASSERT(backward_info_.has_value(), "Shared view info require a backward view info.");
|
|
TORCH_INTERNAL_ASSERT(!forward_info_.has_value(), "Shared view info require forward view info to be empty")
|
|
}
|
|
}
|
|
|
|
// Chain this view info with the new view op between base and tensor
|
|
ViewInfo ViewInfo::chain(const Variable & base, const Variable & tensor,
|
|
std::function<Variable(const Variable&)> view_func) const {
|
|
// Set `view_func` using the root base as input.
|
|
// `view_func` is used to recover views in backward when either as_strided is not supported
|
|
// or the view function changes the metadata which is not recorded by as_strided
|
|
// See Note [View + Inplace update on base tensor] and [View + Inplace update on view tensor]
|
|
// for more details how we use this function in backward.
|
|
if (view_func) {
|
|
// both current_view and it's parent have a view_func
|
|
if (view_fn_) {
|
|
// Copy parent view function to gain ownership
|
|
auto prev_fn = view_fn_;
|
|
view_func = [=](const at::Tensor& root_base) {
|
|
auto temp = prev_fn(root_base);
|
|
return view_func(temp);
|
|
};
|
|
} else {
|
|
// current_view has a view_func and but it's parent doesn't have one
|
|
if (base.unsafeGetTensorImpl()->support_as_strided()) {
|
|
auto size = base.sizes().vec();
|
|
auto stride = base.strides().vec();
|
|
auto storage_offset = base.storage_offset();
|
|
view_func = [=](const at::Tensor& root_base) {
|
|
auto temp = root_base.as_strided(size, stride, storage_offset);
|
|
return view_func(temp);
|
|
};
|
|
} else {
|
|
// When base is a view but doesn't carry a view_fn in DifferentiableViewMeta, it's
|
|
// a view that doesn't support inplace update, e.g. unbind.
|
|
// In this case we should throw an error when inplace update happens in **forward**.
|
|
// One would naturally think the following function will be first called in backward pass.
|
|
// But the first call site is indeed in **forward** pass when we refresh `grad_fn`
|
|
// triggered by inplace update.
|
|
// Search Note [View + Inplace update for view tensor] to for the call site.
|
|
view_func = [=](const at::Tensor& root_base) {
|
|
TORCH_CHECK(false, "This view is the output of a function that returns multiple views."
|
|
"Such functions do not allow the output views to be modified inplace."
|
|
"You should replace the inplace operation by an out-of-place one");
|
|
return root_base;
|
|
};
|
|
}
|
|
}
|
|
} else if(view_fn_) {
|
|
// if current_view doesn't have a view_func but it's parent has one
|
|
// Copy parent view function to gain ownership
|
|
auto prev_view_fn = view_fn_;
|
|
auto size = tensor.sizes().vec();
|
|
auto stride = tensor.strides().vec();
|
|
auto storage_offset = tensor.storage_offset();
|
|
view_func = [=](const at::Tensor& root_base) {
|
|
auto temp = prev_view_fn(root_base);
|
|
return temp.as_strided(size, stride, storage_offset);
|
|
};
|
|
}
|
|
|
|
return ViewInfo(base_, view_func);
|
|
}
|
|
|
|
namespace {
|
|
|
|
at::Tensor singleton_undefined_tensor;
|
|
|
|
struct ConcreteAutogradMetaFactory : public c10::impl::AutogradMetaFactory {
|
|
std::unique_ptr<c10::AutogradMetaInterface> make() const override {
|
|
return std::make_unique<AutogradMeta>();
|
|
}
|
|
const at::Tensor& undefined_tensor() const override {
|
|
return singleton_undefined_tensor;
|
|
}
|
|
};
|
|
|
|
ConcreteAutogradMetaFactory meta_factory;
|
|
|
|
static c10::impl::AutogradMetaFactoryRegisterer meta_factory_registerer(&meta_factory);
|
|
|
|
}
|
|
|
|
namespace impl {
|
|
|
|
AutogradMeta* materialize_autograd_meta(const at::TensorBase& self) {
|
|
TORCH_CHECK(self.defined(), "cannot call materialize_autograd_meta() on undefined tensor");
|
|
auto p = self.unsafeGetTensorImpl();
|
|
if (!p->autograd_meta()) {
|
|
p->set_autograd_meta(std::make_unique<AutogradMeta>());
|
|
}
|
|
return get_autograd_meta(self);
|
|
}
|
|
|
|
void rebase_history(const Variable& self, Edge gradient_edge) {
|
|
TORCH_INTERNAL_ASSERT(gradient_edge.function != nullptr);
|
|
auto diff_view_meta = get_view_autograd_meta(self);
|
|
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
|
// See NOTE [ View + Inplace detection ]
|
|
auto creation_meta = diff_view_meta->get_creation_meta();
|
|
// Do not use handle_view_on_rebase here as check_inplace should have been called before this
|
|
// and either throw an error
|
|
TORCH_INTERNAL_ASSERT(creation_meta == CreationMeta::DEFAULT);
|
|
TORCH_INTERNAL_ASSERT(gradient_edge.input_nr == 0);
|
|
TORCH_INTERNAL_ASSERT(gradient_edge.function);
|
|
TORCH_CHECK(
|
|
gradient_edge.function->num_inputs() == 1,
|
|
"Functions which modify views in-place must return a single Variable");
|
|
auto view_info = diff_view_meta->get_backward_view();
|
|
diff_view_meta->output_nr_ = gradient_edge.input_nr;
|
|
auto copy_slices = std::make_shared<CopySlices>(
|
|
view_info.base_, at::TensorGeometry(self), view_info.view_fn_, std::move(gradient_edge.function));
|
|
set_gradient_edge(view_info.base_, {std::move(copy_slices), 0});
|
|
self.grad_fn(); // trigger an update to the view's grad_fn
|
|
return;
|
|
}
|
|
|
|
set_gradient_edge(self, std::move(gradient_edge));
|
|
}
|
|
|
|
void create_cpp_hook(const at::TensorBase& self) {
|
|
auto &list = materialize_autograd_meta(self)->cpp_hooks_list_;
|
|
// NOLINTNEXTLINE(modernize-make-shared)
|
|
list.reset(new hooks_list());
|
|
std::unique_ptr<FunctionPreHook> hook_ptr(new CppFunctionPreHook(list, self.output_nr()));
|
|
clear_hooks(self);
|
|
add_hook(self, std::make_shared<CppFunctionPreHook>(list, 0));
|
|
const auto& fn = self.grad_fn();
|
|
if (fn) {
|
|
fn->add_pre_hook(std::move(hook_ptr));
|
|
}
|
|
}
|
|
|
|
void set_grad_accumulator(const Variable& self,
|
|
std::weak_ptr<Node> grad_accumulator) {
|
|
materialize_autograd_meta(self)->grad_accumulator_ = std::move(grad_accumulator);
|
|
}
|
|
|
|
std::shared_ptr<Node> try_get_grad_accumulator(const Variable& self) {
|
|
if (get_autograd_meta(self)) {
|
|
return get_autograd_meta(self)->grad_accumulator_.lock();
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Node> grad_accumulator(const Variable& self) {
|
|
auto autograd_meta = get_autograd_meta(self);
|
|
if (!autograd_meta) {
|
|
return nullptr;
|
|
}
|
|
if (autograd_meta->grad_fn_) {
|
|
throw std::logic_error(
|
|
"grad_accumulator() should be only called on leaf Variables");
|
|
}
|
|
if (!autograd_meta->requires_grad_) {
|
|
return nullptr;
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lock(autograd_meta->mutex_);
|
|
|
|
auto result = autograd_meta->grad_accumulator_.lock();
|
|
if (result)
|
|
return result;
|
|
|
|
c10::raw::intrusive_ptr::incref(self.unsafeGetTensorImpl());
|
|
auto intrusive_from_this = c10::intrusive_ptr<at::TensorImpl>::reclaim(self.unsafeGetTensorImpl());
|
|
result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this)));
|
|
autograd_meta->grad_accumulator_ = result;
|
|
return result;
|
|
}
|
|
|
|
Edge gradient_edge(const Variable& self) {
|
|
// If grad_fn is null (as is the case for a leaf node), we instead
|
|
// interpret the gradient function to be a gradient accumulator, which will
|
|
// accumulate its inputs into the grad property of the variable. These
|
|
// nodes get suppressed in some situations, see "suppress gradient
|
|
// accumulation" below. Note that only variables which have `requires_grad =
|
|
// True` can have gradient accumulators.
|
|
if (const auto& gradient = self.grad_fn()) {
|
|
return Edge(gradient, self.output_nr());
|
|
} else {
|
|
return Edge(grad_accumulator(self), 0);
|
|
}
|
|
}
|
|
|
|
void set_gradient_edge(const Variable& self, Edge edge) {
|
|
auto* meta = materialize_autograd_meta(self);
|
|
meta->grad_fn_ = std::move(edge.function);
|
|
meta->output_nr_ = edge.input_nr;
|
|
// For views, make sure this new grad_fn_ is not overwritten unless it is necessary
|
|
// in the VariableHooks::grad_fn below.
|
|
// This logic is only relevant for custom autograd Functions for which multiple
|
|
// operations can happen on a given Tensor before its gradient edge is set when
|
|
// exiting the custom Function.
|
|
auto diff_view_meta = get_view_autograd_meta(self);
|
|
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
|
diff_view_meta->set_attr_version(self._version());
|
|
}
|
|
}
|
|
|
|
Node* grad_fn_unsafe(const Variable& self) {
|
|
if (get_autograd_meta(self)) {
|
|
return get_autograd_meta(self)->grad_fn_.get();
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Versions
|
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
void set_version_counter(
|
|
const Variable& self,
|
|
const c10::VariableVersion& version_counter) {
|
|
TORCH_CHECK(self.defined(), "cannot call set_version_counter() on undefined tensor");
|
|
self.unsafeGetTensorImpl()->set_version_counter(version_counter);
|
|
}
|
|
|
|
void bump_version(const Variable& self) {
|
|
TORCH_CHECK(self.defined(), "cannot call bump_version() on undefined tensor");
|
|
self.unsafeGetTensorImpl()->bump_version();
|
|
}
|
|
|
|
const c10::VariableVersion& version_counter(const Variable& self) {
|
|
TORCH_CHECK(self.defined(), "cannot call version_counter() on undefined tensor");
|
|
return self.unsafeGetTensorImpl()->version_counter();
|
|
}
|
|
|
|
// Hooks
|
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
void add_hook(const at::TensorBase& self, std::shared_ptr<FunctionPreHook> hook) {
|
|
materialize_autograd_meta(self)->hooks_.push_back(std::move(hook));
|
|
}
|
|
|
|
namespace {
|
|
std::vector<std::shared_ptr<FunctionPreHook>> empty_singleton;
|
|
}
|
|
|
|
// TODO: Return an ArrayRef instead (and delete the singleton while you're at
|
|
// it
|
|
const std::vector<std::shared_ptr<FunctionPreHook>>& hooks(const Variable& self)
|
|
{
|
|
if (get_autograd_meta(self)) {
|
|
return get_autograd_meta(self)->hooks_;
|
|
} else {
|
|
return empty_singleton;
|
|
}
|
|
}
|
|
|
|
void clear_hooks(const at::TensorBase& self) {
|
|
// This is a little goofy, but usually this should be a no oop
|
|
materialize_autograd_meta(self)->hooks_.clear();
|
|
}
|
|
|
|
void set_name(const Variable& self, const std::string& name) {
|
|
materialize_autograd_meta(self)->name_ = name;
|
|
}
|
|
|
|
// Miscellaneous
|
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
AutogradMeta* get_autograd_meta(const at::TensorBase& self) {
|
|
// NB: could return nullptr
|
|
TORCH_CHECK(self.defined(), "cannot call get_autograd_meta() on undefined tensor");
|
|
return static_cast<AutogradMeta*>(self.unsafeGetTensorImpl()->autograd_meta());
|
|
}
|
|
|
|
DifferentiableViewMeta* get_view_autograd_meta(const at::TensorBase& self) {
|
|
// NB: return nullptr if self is not a view
|
|
AutogradMeta* meta = get_autograd_meta(self);
|
|
if (meta && meta->is_view_) {
|
|
return static_cast<DifferentiableViewMeta*>(meta);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
} // namespace impl
|
|
|
|
using at::Tensor;
|
|
|
|
struct VariableHooks final : at::impl::VariableHooksInterface {
|
|
at::TensorBase tensor_data(const at::TensorBase&) const override;
|
|
at::TensorBase variable_data(const at::TensorBase&) const override;
|
|
const std::shared_ptr<torch::autograd::Node>& grad_fn(const at::TensorBase&) const override;
|
|
unsigned _register_hook(
|
|
const at::TensorBase&, std::function<at::TensorBase(const at::TensorBase&)> hook) const override;
|
|
void remove_hook(const at::TensorBase&, unsigned pos) const override;
|
|
bool is_view(const at::TensorBase&) const override;
|
|
const at::TensorBase& base(const at::TensorBase&) const override;
|
|
const std::string& name(const at::TensorBase&) const override;
|
|
bool is_leaf(const at::TensorBase&) const override;
|
|
int64_t output_nr(const at::TensorBase&) const override;
|
|
void set_data(const at::TensorBase & self, const at::TensorBase & new_data) const override;
|
|
at::TensorBase data(const at::TensorBase & self) const override;
|
|
int64_t _version(const at::TensorBase & self) const override;
|
|
void retain_grad(const at::TensorBase& self) const override;
|
|
bool retains_grad(const at::TensorBase& self) const override;
|
|
void _backward(const Tensor& self, at::TensorList inputs,
|
|
const c10::optional<Tensor>& gradient, c10::optional<bool> keep_graph,
|
|
bool create_graph) const override;
|
|
void requires_grad_(const at::TensorBase& self, bool _requires_grad) const override;
|
|
};
|
|
|
|
VariableHooks variableHooks;
|
|
at::impl::VariableHooksRegisterer registerVariableHooks(&variableHooks);
|
|
|
|
at::TensorBase VariableHooks::variable_data(const at::TensorBase& self) const {
|
|
TORCH_CHECK(self.defined(), "cannot call variable_data() on undefined tensor");
|
|
auto self_impl_copy = self.unsafeGetTensorImpl()->shallow_copy_and_detach(
|
|
/*version_counter=*/0,
|
|
/*allow_tensor_metadata_change=*/false);
|
|
self_impl_copy->set_autograd_meta(nullptr);
|
|
return at::Tensor(self_impl_copy);
|
|
}
|
|
|
|
at::TensorBase VariableHooks::tensor_data(const at::TensorBase& self) const {
|
|
TORCH_CHECK(self.defined(), "cannot call tensor_data() on undefined tensor");
|
|
auto self_impl_copy = self.unsafeGetTensorImpl()->shallow_copy_and_detach(
|
|
/*version_counter=*/self.unsafeGetTensorImpl()->version_counter(),
|
|
/*allow_tensor_metadata_change=*/self.unsafeGetTensorImpl()->allow_tensor_metadata_change());
|
|
return at::Tensor(self_impl_copy);
|
|
}
|
|
|
|
bool VariableHooks::is_leaf(const at::TensorBase & self) const {
|
|
if (impl::get_autograd_meta(self)) {
|
|
return impl::get_autograd_meta(self)->grad_fn_ == nullptr;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
int64_t VariableHooks::output_nr(const at::TensorBase & self) const {
|
|
if (impl::get_autograd_meta(self)) {
|
|
return impl::get_autograd_meta(self)->output_nr_;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void VariableHooks::set_data(const at::TensorBase & self_base, const at::TensorBase & new_data_base) const {
|
|
at::OptionalTensorRef self_ref(self_base);
|
|
const Tensor &self = *self_ref;
|
|
at::OptionalTensorRef new_data_ref(new_data_base);
|
|
const Tensor &new_data = *new_data_ref;
|
|
|
|
// `var.set_data(new_data)` shallow-copies all non-autograd TensorImpl fields
|
|
// from `new_data` to `var`. It requires that `new_data` and `var` have compatible
|
|
// tensor type.
|
|
TORCH_CHECK(
|
|
_has_compatible_shallow_copy_type(self, new_data),
|
|
"Attempted to call `variable.set_data(tensor)`, but `variable` and `tensor` have incompatible tensor type.");
|
|
|
|
TORCH_CHECK(
|
|
!self.requires_grad() || isDifferentiableType(at::typeMetaToScalarType(new_data.dtype())),
|
|
"data set to a tensor that requires gradients must be floating point or complex dtype");
|
|
|
|
// Resets gradient accumulator if metadata is out of date
|
|
AutogradMeta* autograd_meta = impl::get_autograd_meta(self);
|
|
if (autograd_meta) {
|
|
std::lock_guard<std::mutex> lock(autograd_meta->mutex_);
|
|
auto prior_accumulator = autograd_meta->grad_accumulator_.lock();
|
|
if (prior_accumulator) {
|
|
const auto prior_device = prior_accumulator->input_metadata(0).device();
|
|
const auto new_device = new_data.device();
|
|
|
|
if (!new_data.options().type_equal(self.options()) || prior_device != new_device) {
|
|
autograd_meta->grad_accumulator_.reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Version counter is not shared when we replace a `Variable`'s tensor data
|
|
// by calling `set_data(...)`. The original version of the `Variable` is always preserved.
|
|
// See NOTE [ Version Counter Sharing ] for details.
|
|
//
|
|
// `var.set_data(new_data)` always ignores `var`'s `allow_tensor_metadata_change_`, because
|
|
// users need this API as an escape hatch for changing a tensor's metadata regardless of its
|
|
// `allow_tensor_metadata_change_` value, and the users are responsible for ensuring this is
|
|
// the behavior they want.
|
|
self.unsafeGetTensorImpl()->shallow_copy_from(new_data.getIntrusivePtr());
|
|
}
|
|
|
|
at::TensorBase VariableHooks::data(const at::TensorBase & self) const {
|
|
return self.variable_data();
|
|
}
|
|
|
|
int64_t VariableHooks::_version(const at::TensorBase & self) const {
|
|
return self.unsafeGetTensorImpl()->version_counter().current_version();
|
|
}
|
|
|
|
void VariableHooks::retain_grad(const at::TensorBase& self) const {
|
|
TORCH_CHECK(self.requires_grad(), "can't retain_grad on Tensor that has requires_grad=False");
|
|
|
|
// temporary hack to improve functorch UX.
|
|
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
|
|
if (functorch_tls) {
|
|
functorch_tls->checkSupportsRetainGrad();
|
|
}
|
|
|
|
if (self.is_leaf()) { // no-op for leaves
|
|
return;
|
|
}
|
|
if (impl::get_autograd_meta(self)->retains_grad_) {
|
|
return;
|
|
}
|
|
c10::weak_intrusive_ptr<c10::TensorImpl> weak_self(self.getIntrusivePtr());
|
|
|
|
auto retain_grad_hook = [weak_self](const at::Tensor& grad) {
|
|
if (weak_self.expired()) {
|
|
return;
|
|
} else {
|
|
auto var = weak_self.lock();
|
|
if (!var->grad().defined()) {
|
|
if (grad.is_sparse()) {
|
|
var->mutable_grad() = grad.clone();
|
|
} else {
|
|
var->mutable_grad() = grad.clone(at::MemoryFormat::Contiguous);
|
|
}
|
|
} else {
|
|
var->mutable_grad() = var->grad() + grad;
|
|
}
|
|
}
|
|
};
|
|
|
|
at::OptionalTensorRef(self)->register_hook(retain_grad_hook);
|
|
impl::get_autograd_meta(self)->retains_grad_ = true;
|
|
}
|
|
|
|
bool VariableHooks::retains_grad(const at::TensorBase& self) const {
|
|
if (impl::get_autograd_meta(self)) {
|
|
return impl::get_autograd_meta(self)->retains_grad_;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void VariableHooks::_backward(
|
|
const Tensor& self,
|
|
at::TensorList inputs,
|
|
const c10::optional<Tensor>& gradient,
|
|
c10::optional<bool> keep_graph,
|
|
bool create_graph) const {
|
|
// TODO torch::autograd::backward should take the c10::optional<Tensor> gradient directly
|
|
// instead of us having to unwrap it to Tensor _gradient here.
|
|
Tensor _gradient = gradient.has_value() ? *gradient : Tensor();
|
|
std::vector<torch::autograd::Variable> input_vars(inputs.begin(), inputs.end());
|
|
torch::autograd::backward({self}, {_gradient}, keep_graph, create_graph, input_vars);
|
|
}
|
|
|
|
void VariableHooks::requires_grad_(const at::TensorBase& self, bool _requires_grad) const {
|
|
if (!self.is_leaf() && !_requires_grad) {
|
|
throw std::runtime_error(
|
|
autograd::utils::requires_grad_leaf_error(_requires_grad)
|
|
);
|
|
}
|
|
self.set_requires_grad(_requires_grad);
|
|
}
|
|
|
|
// Backward View Variables
|
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
bool VariableHooks::is_view(const at::TensorBase& self) const {
|
|
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
|
|
if (diff_view_meta) {
|
|
return diff_view_meta->has_bw_view();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const at::TensorBase& VariableHooks::base(const at::TensorBase& self) const {
|
|
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
|
|
if (diff_view_meta) {
|
|
TORCH_CHECK(diff_view_meta->has_bw_view(), "Can't get base of non-backward view Tensor");
|
|
return diff_view_meta->get_backward_view().base_;
|
|
} else {
|
|
throw std::runtime_error("Can't get base of non-view Tensor");
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
std::string singleton_string;
|
|
}
|
|
|
|
const std::string& VariableHooks::name(const at::TensorBase& self) const {
|
|
TORCH_CHECK(self.defined(), "cannot call variable_data() on undefined tensor");
|
|
if (torch::autograd::impl::get_autograd_meta(self)) {
|
|
return torch::autograd::impl::get_autograd_meta(self)->name_;
|
|
} else {
|
|
return singleton_string;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
std::shared_ptr<torch::autograd::Node> singleton_shared_ptr;
|
|
}
|
|
|
|
const std::shared_ptr<torch::autograd::Node>& VariableHooks::grad_fn(const at::TensorBase& self) const {
|
|
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
|
|
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
|
// See NOTE [ View + Inplace detection ]
|
|
std::lock_guard<std::mutex> lock(diff_view_meta->mutex_);
|
|
auto view_info = diff_view_meta->get_backward_view();
|
|
if (!diff_view_meta->grad_fn_ && !view_info.base_.requires_grad()) {
|
|
return diff_view_meta->grad_fn_;
|
|
}
|
|
auto current_version = self._version();
|
|
if (diff_view_meta->get_attr_version() != current_version) {
|
|
// This is an indirect rebase_history due to another view or the base being modified inplace
|
|
handle_view_on_rebase(diff_view_meta, /* indirect */ true);
|
|
TORCH_INTERNAL_ASSERT(diff_view_meta->output_nr_ == 0);
|
|
// Note [View + Inplace update for view tensor]
|
|
// An inplace update happened on Tensor `self` (which is a view).
|
|
// For example:
|
|
// view_1 = view_op_1(diff_view_meta->base_)
|
|
// view_2 = view_op_2(view_1)
|
|
// ...
|
|
// self = view_op_n(view_n-1)
|
|
// self = inplace_op(self)
|
|
//
|
|
// For CPU/CUDA backends, we employ one AsStridedBackward0 Node to represent the chain of
|
|
// view backward ops for effienciency.
|
|
//
|
|
// However in XLA backend we don't have full support of AsStridedBackward0, we instead run a full
|
|
// forward pass with a tensor that requires gradient to get proper grad_fn setup,
|
|
// then save it to DifferentiableViewMeta for future use.
|
|
// This is fairly cheap for XLA lazy tensor approach (but would be really expensive for CPU/CUDA).
|
|
// XLA Tensor only run thorugh VariableType dispatch and lower the forward pass to a XLA HLO graph,
|
|
// then we take grad_fn and never materialize the tensor content.
|
|
// So we only construct the graph but not execute it, which is a fairly cheap operation to do.
|
|
//
|
|
// See Note [View + Inplace update for base tensor] for what we do to base tensor when
|
|
// an in-place operation happens.
|
|
//
|
|
// TODO: Potentially the following logic can be replaced by special logic in VariableType_x.cpp
|
|
// that would provide a way to recreate the grad_fn chain.
|
|
if (view_info.has_view_fn()) {
|
|
auto view_fn = view_info.view_fn();
|
|
auto diff_view = view_fn(view_info.base_);
|
|
diff_view_meta->grad_fn_ = diff_view.grad_fn();
|
|
} else {
|
|
auto fn = std::make_shared<torch::autograd::generated::AsStridedBackward0>();
|
|
fn->self_geometry = at::TensorGeometry(view_info.base_);
|
|
fn->size = self.sizes().vec();
|
|
fn->stride = self.strides().vec();
|
|
fn->storage_offset = self.storage_offset();
|
|
fn->set_next_edges(torch::autograd::collect_next_edges(view_info.base_));
|
|
fn->add_input_metadata(
|
|
view_info.base_.options(),
|
|
self.sizes(), // Note: sizes(), not base_.sizes(), is intentional
|
|
self.unsafeGetTensorImpl()->is_python_dispatch());
|
|
diff_view_meta->grad_fn_ = std::move(fn);
|
|
}
|
|
diff_view_meta->set_attr_version(current_version);
|
|
}
|
|
return diff_view_meta->grad_fn_;
|
|
}
|
|
|
|
if (torch::autograd::impl::get_autograd_meta(self)) {
|
|
return torch::autograd::impl::get_autograd_meta(self)->grad_fn_;
|
|
} else {
|
|
return singleton_shared_ptr;
|
|
}
|
|
}
|
|
|
|
void VariableHooks::remove_hook(const at::TensorBase& self, unsigned pos) const {
|
|
auto &list = torch::autograd::impl::materialize_autograd_meta(self)->cpp_hooks_list_;
|
|
TORCH_CHECK(list && pos < list->size() , "Invalid index, no hook at position ", pos);
|
|
// Hook will be ignored
|
|
(*list)[pos] = nullptr;
|
|
}
|
|
|
|
unsigned VariableHooks::_register_hook(
|
|
const at::TensorBase& self, std::function<at::TensorBase(const at::TensorBase&)> hook) const {
|
|
TORCH_CHECK(self.requires_grad(), "cannot register a hook on a variable that "
|
|
"doesn't require gradient");
|
|
// NB: materialize_autograd_meta unnecessary due to requires grad check
|
|
auto &list = torch::autograd::impl::get_autograd_meta(self)->cpp_hooks_list_;
|
|
if(!list) {
|
|
torch::autograd::impl::create_cpp_hook(self);
|
|
}
|
|
unsigned idx = list->size();
|
|
list->push_back(hook);
|
|
return idx;
|
|
}
|
|
|
|
void handle_view_on_rebase(DifferentiableViewMeta* diff_view_meta, bool indirect) {
|
|
/// See NOTE [ View + Inplace detection ] for justification of the logic below
|
|
auto creation_meta = diff_view_meta->get_creation_meta();
|
|
if (creation_meta != CreationMeta::DEFAULT) {
|
|
auto grad_fn = diff_view_meta->grad_fn_.get();
|
|
std::string msg;
|
|
std::string modified_obj;
|
|
// Create the header for the error message.
|
|
if (indirect) {
|
|
modified_obj = "its base or another view of its base has been";
|
|
} else {
|
|
modified_obj = "is being";
|
|
}
|
|
if (grad_fn) {
|
|
msg = c10::str("Output ", diff_view_meta->output_nr_, " of ", grad_fn->name(), " is a view and ",
|
|
modified_obj, " modified inplace.");
|
|
} else if (creation_meta == CreationMeta::INFERENCE_MODE) {
|
|
msg = c10::str("A view was created in inference mode and ", modified_obj, " modified inplace in normal mode.");
|
|
} else {
|
|
msg = c10::str("A view was created in no_grad mode and ", modified_obj, " modified inplace with grad mode enabled.");
|
|
}
|
|
|
|
if (creation_meta == CreationMeta::MULTI_OUTPUT_NODE) {
|
|
msg = c10::str(msg, " This view is the output of a function that returns multiple views. Such functions do not"
|
|
" allow the output views to be modified inplace. You should replace the inplace operation by an"
|
|
" out-of-place one.");
|
|
} else if (creation_meta == CreationMeta::NO_GRAD_MODE) {
|
|
TORCH_INTERNAL_ASSERT(!grad_fn);
|
|
msg = c10::str(msg, " Given that this use case is ambiguous and error-prone, it is forbidden."
|
|
" You can clarify your code by moving both the view and the inplace either both"
|
|
" inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want"
|
|
" the inplace to be tracked).");
|
|
} else if (creation_meta == CreationMeta::INFERENCE_MODE) {
|
|
TORCH_INTERNAL_ASSERT(!grad_fn);
|
|
msg = c10::str(msg, " Given that this use case is ambiguous and error-prone, it is forbidden."
|
|
" You can clarify your code by moving both the view and the inplace either both"
|
|
" inside the inference_mode block (if you don't want the inplace to be tracked) or both outside (if you want"
|
|
" the inplace to be tracked).");
|
|
TORCH_CHECK(false, msg);
|
|
} else if (creation_meta == CreationMeta::IN_CUSTOM_FUNCTION) {
|
|
msg = c10::str(msg, " This view was created inside a custom Function (or because an input was returned as-is) and the"
|
|
" autograd logic to handle view+inplace would override the custom backward associated with the custom"
|
|
" Function, leading to incorrect gradients. This behavior is forbidden. You can fix this by"
|
|
" cloning the output of the custom Function.");
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "Invalid CreationMeta state");
|
|
}
|
|
|
|
TORCH_CHECK(false, msg);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
}} // namespace torch::autograd
|