Files
pytorch/test/test_profiler.py
Edward Z. Yang 7313a7a987 Make Meta into a backend component
Seems like it should be one.  This will make it possible to register
meta implementations even when there is a CompositeImplicitAutograd
registration already.  It also paves the way for sparse meta, etc.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78469

Approved by: https://github.com/ngimel
2022-05-31 18:59:16 +00:00

1186 lines
52 KiB
Python

# Owner(s): ["oncall: profiler"]
import collections
import gc
import io
import json
import os
import tempfile
import textwrap
import typing
import unittest
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.utils.data.datapipes as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import (
TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_ROCM, IS_WINDOWS,
TemporaryFileName, TemporaryDirectoryName)
from torch.autograd import (_record_function_with_args_enter, _record_function_with_args_exit)
from torch.autograd.profiler import profile as _profile
from torch.autograd.profiler_legacy import profile as _profile_legacy
from torch.profiler import (
kineto_available, profile, record_function, supported_activities,
DeviceType, ProfilerAction, ProfilerActivity, ExecutionGraphObserver
)
from torch.testing._internal.common_device_type import skipCUDAVersionIn
try:
import psutil
HAS_PSUTIL = True
except ImportError:
HAS_PSUTIL = False
import pickle
@unittest.skipIf(not HAS_PSUTIL, "Requires psutil to run")
@unittest.skipIf(TEST_WITH_ASAN, "Cannot test with ASAN")
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
class TestProfilerCUDA(TestCase):
@skipCUDAVersionIn([(11, 5)]) # https://github.com/pytorch/pytorch/issues/69023
def test_mem_leak(self):
"""Checks that there's no memory leak when using profiler with CUDA
"""
t = torch.rand(1, 1).cuda()
p = psutil.Process()
last_rss = collections.deque(maxlen=5)
for outer_idx in range(10):
with _profile(use_cuda=True):
for _ in range(1024):
t = torch.mm(t, t)
gc.collect()
torch.cuda.empty_cache()
last_rss.append(p.memory_info().rss)
# with CUDA events leaking the increase in memory was ~7 MB between
# profiler invocations above
is_increasing = all(
[last_rss[idx] > last_rss[idx - 1] for idx in range(1, len(last_rss))])
max_diff = -1
for idx in range(1, len(last_rss)):
max_diff = max(max_diff, last_rss[idx] - last_rss[idx - 1])
self.assertTrue(not (is_increasing and max_diff > 100 * 1024),
msg='memory usage is increasing, {}'.format(str(last_rss)))
def test_custom_module_input_op_ids(self):
class MyFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gO):
x, = ctx.saved_tensors
return x
def custom_layer(input_ten):
return MyFunc.apply(input_ten)
# Only testing that emit_nvtx runs when
# record_shapes option is enabled.
with torch.autograd.profiler.emit_nvtx(record_shapes=True) as prof:
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
z = x + y
s = custom_layer(z)
q = s.sum()
q.backward()
class IcicleNode:
OP_TEMPLATE = "[ {}]"
PAD_LENGTH = len(OP_TEMPLATE.format(""))
@classmethod
def format(cls, profiler, indent: int = 0):
tree = profiler.kineto_results.experimental_event_tree()
lines = cls.cat([cls(i).materialize() for i in tree])
out = "\n".join([textwrap.indent(l.rstrip(), " " * indent) for l in lines])
return f"{out}\n{' ' * indent}"
@staticmethod
def cat(inputs: typing.List[typing.List[str]], join_str="") -> typing.List[str]:
assert inputs and all(i for i in inputs), "inputs cannot be empty"
depth = max(len(i) for i in inputs)
widths = [max(len(j) for j in i) for i in inputs]
inputs = [i + [""] * (depth - len(i)) for i in inputs]
inputs = [[j.ljust(w) for j in i] for i, w in zip(inputs, widths)]
return [join_str.join(i) for i in zip(*inputs)]
def __init__(self, event) -> None:
self.width = 0
self.children : typing.List[IcicleNode] = []
for child in event.children:
self.children.append(IcicleNode(child))
self.width += self.children[-1].width
self.name = f"{event.name()} "
# torch::autograd::Node relies on c10::demangle to generate names, and
# Windows demangles to include `struct` in the name.
if IS_WINDOWS:
self.name = self.name.replace('struct torch::autograd::AccumulateGrad', 'torch::autograd::AccumulateGrad')
self.width = max(self.width, len(self.name) + self.PAD_LENGTH)
def materialize(self) -> typing.List[str]:
name = self.OP_TEMPLATE.format(self.name.ljust(self.width - self.PAD_LENGTH, "-"))
out = [name]
if self.children:
out.extend(self.cat([child.materialize() for child in self.children]))
return out
class TestRecordFunction(TestCase):
def _record_function_with_param(self):
u = torch.randn(3, 4, 5, requires_grad=True)
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
with record_function("## TEST 1 ##", "1, 2, 3"):
rf_handle = _record_function_with_args_enter("## TEST 2 ##", 1, False, 2.5, [u, u], "hello", u)
_record_function_with_args_exit(rf_handle)
with record_function("## TEST 3 ##"):
rf_handle = _record_function_with_args_enter("## TEST 4 ##")
_record_function_with_args_exit(rf_handle)
return prof
def test_record_function(self):
prof_result = self._record_function_with_param()
found_test_1 = False
found_test_2 = False
found_test_3 = False
found_test_4 = False
for e in prof_result.function_events:
if "## TEST 1 ##" == e.name:
found_test_1 = True
self.assertTrue(e.input_shapes == [[]])
elif "## TEST 2 ##" == e.name:
found_test_2 = True
self.assertTrue(e.input_shapes == [[], [], [], [], [], [3, 4, 5]])
elif "## TEST 3 ##" == e.name:
found_test_3 = True
self.assertTrue(e.input_shapes == [])
elif "## TEST 4 ##" == e.name:
found_test_4 = True
self.assertTrue(e.input_shapes == [])
self.assertTrue(found_test_1)
self.assertTrue(found_test_2)
self.assertTrue(found_test_3)
self.assertTrue(found_test_4)
def test_datapipe_with_record_function(self):
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
input_dp1 = dp.iter.IterableWrapper(range(4))
input_dp2 = dp.iter.IterableWrapper(range(4, 8))
input_dp3 = dp.iter.IterableWrapper(range(8, 12))
output_dp = input_dp1.mux(input_dp2, input_dp3)
output = list(output_dp)
has_iter = False
has_mux = False
for e in prof.function_events:
if has_iter and has_mux:
break
if not has_iter and e.name == "enumerate(DataPipe)#IterableWrapperIterDataPipe":
has_iter = True
if not has_mux and e.name == "enumerate(DataPipe)#MultiplexerIterDataPipe":
has_mux = True
self.assertTrue(has_iter)
self.assertTrue(has_mux)
def test_datapipe_delegation_with_profiler(self):
class IDPIterator(torch.utils.data.IterDataPipe):
def __init__(self):
self.data = list(range(10))
self._idx = 0
def __iter__(self):
return self
def __next__(self):
if self._idx >= 10:
self._idx = 0
raise StopIteration
self._idx += 1
return self.data[self._idx - 1]
def get_value(self, idx):
return self.data[idx]
dp1 = IDPIterator() # The object itself is an iterator
self.assertEqual(5, dp1.get_value(5))
it_dp1 = iter(dp1) # This creates the 1st iterator
self.assertEqual(5, it_dp1.get_value(5)) # type: ignore[attr-defined]
self.assertEqual(list(range(10)), list(it_dp1))
class IDPDelegator(torch.utils.data.IterDataPipe):
def __init__(self, datapipe):
self.datapipe = datapipe
def __iter__(self):
return iter(self.datapipe)
dp2 = IDPDelegator(dp1)
it_dp2 = iter(dp2)
self.assertEqual(5, it_dp2.get_value(5))
self.assertEqual(list(range(10)), list(it_dp2))
def test_datapipe_with_record_function_fork(self):
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
input_dp = dp.iter.IterableWrapper(range(10))
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
output1 = list(dp1)
has_iter = False
has_child = False
for e in prof.function_events:
if has_iter and has_child:
break
if not has_iter and e.name == "enumerate(DataPipe)#IterableWrapperIterDataPipe":
has_iter = True
if not has_child and e.name == "enumerate(DataPipe)#_ChildDataPipe":
has_child = True
self.assertTrue(has_iter)
self.assertTrue(has_child)
class TestExecutionGraph(TestCase):
def payload(self, use_cuda=False):
u = torch.randn(3, 4, 5, requires_grad=True)
with record_function("## TEST 1 ##", "1, 2, 3"):
rf_handle = _record_function_with_args_enter("## TEST 2 ##", 1, False, 2.5, [u, u], (u, u), "hello", u)
x = torch.randn(10, 10)
if use_cuda:
x = x.cuda()
y = torch.randn(10, 10)
if use_cuda:
y = y.cuda()
z = x + y + x * y + x * y
if use_cuda:
z = z.cpu()
_record_function_with_args_exit(rf_handle)
def get_execution_graph_root(self, output_file_name):
nodes = []
with open(output_file_name, 'r') as f:
eg_graph = json.load(f)
assert "nodes" in eg_graph
nodes = eg_graph["nodes"]
return nodes
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_execution_graph_with_kineto(self):
trace_called_num = 0
def trace_handler(p):
nonlocal trace_called_num
trace_called_num += 1
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
expected_loop_events = 0
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
skip_first=3,
wait=1,
warmup=1,
active=2),
on_trace_ready=trace_handler,
) as p:
eg.start()
for idx in range(10):
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
p.step()
eg.stop()
eg.unregister_callback()
assert trace_called_num == 2
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
loop_count = 0
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_graph_alone(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
expected_loop_events = 0
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
eg.start()
for idx in range(5):
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
eg.stop()
eg.unregister_callback()
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
loop_count = 0
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_graph_start_stop(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
expected_loop_events = 0
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
for idx in range(10):
if idx == 3:
eg.start()
elif idx == 5:
eg.stop()
elif idx == 8:
eg.start()
elif idx == 9:
eg.stop()
eg.unregister_callback()
if eg._execution_graph_running:
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
loop_count = 0
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_graph_no_capture(self):
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
eg.unregister_callback()
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
assert found_root_node
class TestProfiler(TestCase):
def test_source(self):
"""Checks that source code attribution works for eager, TS and autograd mode
"""
# avoid automatic inlining
prev_opt = torch._C._get_graph_executor_optimize()
torch._C._set_graph_executor_optimize(False)
@torch.jit.script
def ts_method_2(x, y):
return torch.matmul(x, y)
@torch.jit.script
def ts_method_1(x, y, z):
a = x + z
w = ts_method_2(x, y) + a
return w.sum()
class DummyModule(nn.Module):
def __init__(self):
super(DummyModule, self).__init__()
self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=False)
def forward(self, x):
return self.conv(x)
mod = DummyModule()
with _profile(with_stack=True, use_kineto=kineto_available()) as p:
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
z = x + y
w = ts_method_1(x, y, z)
v = 2 * w
v.backward()
a = torch.randn(2, 3, 2, 2, requires_grad=True)
b = mod(a)
c = b.sum()
c.backward()
for e in p.function_events:
if "aten::add" in e.name or "AddBackward" in e.name:
self.assertTrue(any(["test_profiler" in entry for entry in e.stack]))
self.assertTrue(any([(
"test_source" in entry or
"ts_method_1" in entry or
"ts_method_2" in entry) for entry in e.stack]))
torch._C._set_graph_executor_optimize(prev_opt)
def payload(self, use_cuda=False):
x = torch.randn(10, 10)
if use_cuda:
x = x.cuda()
y = torch.randn(10, 10)
if use_cuda:
y = y.cuda()
z = torch.mm(x, y)
z = z + y
if use_cuda:
z = z.cpu()
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_kineto(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with _profile(use_cuda=use_cuda, use_kineto=True):
self.payload(use_cuda=use_cuda)
# rerun to avoid initial start overhead
with _profile(use_cuda=use_cuda, use_kineto=True) as p:
self.payload(use_cuda=use_cuda)
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
found_gemm = False
found_memcpy = False
found_mm = False
for e in p.function_events:
if "aten::mm" in e.name:
found_mm = True
if "gemm" in e.name:
found_gemm = True
if "Memcpy" in e.name or "memcpy" in e.name:
found_memcpy = True
if use_cuda:
self.assertTrue(found_gemm)
self.assertTrue(found_memcpy)
else:
self.assertTrue(found_mm)
# p.export_chrome_trace("/tmp/test_trace.json")
@unittest.skipIf(not kineto_available(), "Kineto is required")
@unittest.skipIf(not TEST_MULTIGPU, "Multiple GPUs needed")
@unittest.skipIf(TEST_WITH_ROCM, "Not supported on ROCm")
def test_kineto_multigpu(self):
with profile(
activities=[
ProfilerActivity.CPU,
ProfilerActivity.CUDA]) as prof:
for gpu_id in [0, 1]:
x = torch.randn(10, 10).cuda(gpu_id)
y = torch.randn(10, 10).cuda(gpu_id)
z = x.matmul(y)
found_gemm_0 = False
found_gemm_1 = False
found_cuda = False
for evt in prof.events():
if "gemm" in evt.name.lower() and evt.device_type == DeviceType.CUDA:
if evt.device_index == 0:
found_gemm_0 = True
elif evt.device_index == 1:
found_gemm_1 = True
if "cuda" in evt.name.lower() and evt.device_type == DeviceType.CPU:
found_cuda = True
self.assertTrue(found_gemm_0)
self.assertTrue(found_gemm_1)
self.assertTrue(found_cuda)
def test_memory_profiler(self):
def run_profiler(tensor_creation_fn):
# collecting allocs / deallocs
with _profile(profile_memory=True, record_shapes=True, use_kineto=kineto_available()) as prof:
x = None
with record_function("test_user_scope_alloc"):
x = tensor_creation_fn()
with record_function("test_user_scope_dealloc"):
del x
return prof.key_averages(group_by_input_shape=True)
def check_metrics(stats, metric, allocs=None, deallocs=None):
stat_metrics = {}
for stat in stats:
stat_metrics[stat.key] = getattr(stat, metric)
if allocs is not None:
for alloc_fn in allocs:
self.assertTrue(alloc_fn in stat_metrics)
self.assertTrue(stat_metrics[alloc_fn] > 0)
if deallocs is not None:
for dealloc_fn in deallocs:
self.assertTrue(dealloc_fn in stat_metrics)
self.assertTrue(stat_metrics[dealloc_fn] < 0)
def create_cpu_tensor():
return torch.rand(10, 10)
def create_cuda_tensor():
return torch.rand(10, 10).cuda()
def create_mkldnn_tensor():
return torch.rand(10, 10, dtype=torch.float32).to_mkldnn()
stats = run_profiler(create_cpu_tensor)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::empty",
"aten::rand",
"test_user_scope_alloc",
],
deallocs=[
"test_user_scope_dealloc",
]
)
if kineto_available():
with TemporaryFileName(mode="w+") as fname:
with profile(profile_memory=True) as prof:
x = None
with record_function("test_user_scope_alloc"):
x = create_cpu_tensor()
with record_function("test_user_scope_dealloc"):
del x
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "traceEvents" in trace
events = trace["traceEvents"]
found_memory_events = False
for evt in events:
assert "name" in evt
if evt["name"] == "[memory]":
found_memory_events = True
assert "args" in evt
assert "Addr" in evt["args"]
assert "Device Type" in evt["args"]
assert "Device Id" in evt["args"]
assert "Bytes" in evt["args"]
# Memory should be an instantaneous event.
assert "dur" not in evt["args"]
assert "cat" not in evt["args"]
assert found_memory_events
if torch.cuda.is_available():
create_cuda_tensor()
stats = run_profiler(create_cuda_tensor)
check_metrics(
stats,
"cuda_memory_usage",
allocs=[
"test_user_scope_alloc",
"aten::to",
"aten::empty_strided",
],
deallocs=[
"test_user_scope_dealloc",
]
)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::rand",
"aten::empty",
]
)
if torch._C.has_mkldnn:
create_mkldnn_tensor()
stats = run_profiler(create_mkldnn_tensor)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"test_user_scope_alloc",
"aten::rand",
"aten::empty",
"aten::to_mkldnn",
],
deallocs=[
"test_user_scope_dealloc",
]
)
# check top-level memory events
with _profile(profile_memory=True, use_kineto=kineto_available()) as prof:
x = torch.rand(10, 10)
del x
if torch.cuda.is_available():
y = torch.rand(10, 10).cuda()
del y
gc.collect()
stats = prof.key_averages(group_by_input_shape=True)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::rand",
"aten::empty"
],
deallocs=[
"[memory]"
]
)
if torch.cuda.is_available():
check_metrics(
stats,
"cuda_memory_usage",
deallocs=[
"[memory]"
]
)
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_module_hierarchy(self):
class A(nn.Module):
def __init__(self):
super(A, self).__init__()
def my_new_method(self, x):
return x * 3
def forward_impl_(self, x, y):
return self.my_new_method(x) + y
def forward(self, x, y):
y = y - 2
return self.forward_impl_(x, y)
class B(nn.Module):
def __init__(self):
super(B, self).__init__()
def forward(self, x):
return x + 2
class C(nn.Module):
def __init__(self):
super(C, self).__init__()
self.A0 = A()
self.B0 = B()
def call_b(self, x):
return self.B0.forward(x)
def forward(self, x, y):
return self.A0.forward(x, y) + self.call_b(x)
model = C()
model = torch.jit.script(model)
input_a = torch.rand(128, 128)
input_b = torch.rand(128, 128)
op_to_module_hierarchy = {}
op_to_module_hierarchy["aten::sub"] = ["TOP(C)::forward.A0(A)::forward."]
op_to_module_hierarchy["aten::mul"] = [
"TOP(C)::forward.A0(A)::forward.SELF(A)::forward_impl_.SELF(A)::my_new_method."]
op_to_module_hierarchy["aten::add"] = [
"TOP(C)::forward.A0(A)::forward.SELF(A)::forward_impl_.",
"TOP(C)::forward.SELF(C)::call_b.B0(B)::forward.", "TOP(C)::forward."]
with TemporaryFileName(mode="w+") as fname:
with profile(activities=[torch.profiler.ProfilerActivity.CPU], with_modules=True,) as prof:
model(input_a, input_b)
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "traceEvents" in trace
events = trace["traceEvents"]
found_memory_events = False
for evt in events:
assert "name" in evt
if "args" in evt:
op_name = evt["name"]
if "Module Hierarchy" in evt["args"]:
hierarchy = evt["args"]["Module Hierarchy"]
if op_name in op_to_module_hierarchy:
assert hierarchy in op_to_module_hierarchy[op_name]
def test_high_level_trace(self):
"""Checks that python side high level events are recorded.
"""
class RepeatedDataset(torch.utils.data.Dataset):
def __init__(self, N, D_in, D_out):
self.N = N
self.x = torch.randn(N, D_in)
self.y = torch.randn(N, D_out)
def __len__(self):
return self.N
def __getitem__(self, idx):
return self.x, self.y
class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(H, D_out)
def forward(self, x):
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred
class CustomSGD(torch.optim.SGD):
def __init__(self, *args, **kwargs):
super(CustomSGD, self).__init__(*args, **kwargs)
def train():
for _, data in enumerate(dataloader):
x, y = data[0], data[1]
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
N, D_in, H, D_out = 8, 10, 5, 2
model = TwoLayerNet(D_in, H, D_out)
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
ds = RepeatedDataset(N, D_in, D_out)
dataloader = torch.utils.data.DataLoader(ds, batch_size=1)
try:
train()
except Exception:
self.assertTrue(False, "Expected no exception without profiling.")
# Create multiple instances, expect each func is hooked only one time.
# Nested wrappers(repeated patching) will make following test fail.
optimizer_duplicate = torch.optim.SGD(model.parameters(), lr=1e-4)
dataloader_duplicate = torch.utils.data.DataLoader(ds, batch_size=1)
def judge(expected_event_count, prof):
actual_event_count = {}
for e in prof.function_events:
if "#" in e.name:
key = e.name
if key in expected_event_count.keys():
actual_event_count[key] = actual_event_count.setdefault(key, 0) + 1
for key, count in expected_event_count.items():
self.assertTrue((key in actual_event_count.keys()) and (count == actual_event_count[key]))
with _profile(use_kineto=kineto_available()) as prof:
train()
expected_event_count = {
# "+1" because the final iteration will enter __next__ but skip the loop body.
"enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1),
"Optimizer.step#SGD.step": N,
"Optimizer.zero_grad#SGD.zero_grad": N
}
judge(expected_event_count, prof)
# Test on pickle/unpickle. Expect to work in multi-processing.
optimizer = pickle.loads(pickle.dumps(optimizer))
with _profile(use_kineto=kineto_available()) as prof:
train()
judge(expected_event_count, prof)
# Test on customized optimizer.
optimizer = CustomSGD(model.parameters(), lr=1e-4)
with _profile(use_kineto=kineto_available()) as prof:
train()
expected_event_count = {
"enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1),
"Optimizer.step#CustomSGD.step": N,
"Optimizer.zero_grad#CustomSGD.zero_grad": N
}
judge(expected_event_count, prof)
def test_flops(self):
model = torch.nn.Sequential(
nn.Conv2d(16, 33, 18),
nn.ReLU(),
nn.Linear(243, 243),
nn.ReLU(),
)
inputs = torch.randn(40, 16, 18, 260)
with _profile(record_shapes=True, with_flops=True, use_kineto=kineto_available()) as prof:
model(inputs)
profiler_output = prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10)
self.assertIn("Total KFLOPs", profiler_output)
if not (kineto_available() and torch.cuda.is_available()):
return
with profile(activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],
record_shapes=True,
with_flops=True,
) as kineto_profiler:
model(inputs)
profiler_output = kineto_profiler.key_averages().table(
sort_by="self_cuda_time_total", row_limit=-1)
self.assertIn("Total KFLOPs", profiler_output)
def test_kineto_profiler_api(self):
called_num = [0]
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with profile(activities=supported_activities()):
self.payload(use_cuda=use_cuda)
def trace_handler(p):
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
# p.export_chrome_trace("/tmp/test_trace_" + str(called_num[0]) + ".json")
called_num[0] += 1
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2),
on_trace_ready=trace_handler
) as p:
for idx in range(8):
self.payload(use_cuda=use_cuda)
p.step()
self.assertEqual(called_num[0], 2)
# case without schedule
with profile(
activities=supported_activities()
) as p:
self.payload(use_cuda=use_cuda)
self.payload(use_cuda=use_cuda)
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
test_schedule = torch.profiler.schedule(
skip_first=2,
wait=1,
warmup=1,
active=2,
repeat=2)
test_schedule_expected_outputs = [
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.WARMUP,
ProfilerAction.RECORD,
ProfilerAction.RECORD_AND_SAVE,
ProfilerAction.NONE,
ProfilerAction.WARMUP,
ProfilerAction.RECORD,
ProfilerAction.RECORD_AND_SAVE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
]
for step in range(len(test_schedule_expected_outputs)):
self.assertEqual(test_schedule(step), test_schedule_expected_outputs[step])
def test_export_stacks(self):
with _profile(with_stack=True, use_kineto=kineto_available()) as p:
x = torch.randn(10, 10)
y = torch.randn(10, 10)
z = torch.mm(x, y)
z = z + y
with TemporaryFileName(mode="w+") as fname:
p.export_stacks(fname)
with io.open(fname, 'r') as f:
lines = f.readlines()
assert len(lines) > 0, "Empty stacks file"
for line in lines:
is_int = False
try:
assert int(line.split(" ")[-1]) > 0, "Invalid stacks record"
is_int = True
except ValueError:
pass
assert is_int, "Invalid stacks record"
@unittest.skipIf(not kineto_available(), "Kineto is required")
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
def test_tensorboard_trace_handler(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with _profile(use_cuda=use_cuda, use_kineto=True):
self.payload(use_cuda=use_cuda)
with TemporaryDirectoryName() as dname:
with profile(
activities=[
torch.profiler.ProfilerActivity.CPU
] + ([
torch.profiler.ProfilerActivity.CUDA
] if use_cuda else []),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2,
repeat=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(dname)
) as p:
for _ in range(18):
self.payload(use_cuda=use_cuda)
p.step()
self.assertTrue(os.path.exists(dname))
file_num = 0
for file_name in os.listdir(dname):
parts = file_name.split('.')
self.assertTrue(len(parts) > 4)
self.assertTrue(parts[-4].isdigit() and int(parts[-4]) > 0, "Wrong tracing file name pattern")
self.assertEqual(parts[-3:], ['pt', 'trace', 'json'])
file_num += 1
self.assertEqual(file_num, 3)
# test case for gzip file format
with TemporaryDirectoryName() as dname:
p = profile(
activities=[
torch.profiler.ProfilerActivity.CPU
] + ([
torch.profiler.ProfilerActivity.CUDA
] if use_cuda else []),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2,
repeat=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(dname, use_gzip=True)
)
p.start()
for _ in range(18):
self.payload(use_cuda=use_cuda)
p.step()
p.stop()
self.assertTrue(os.path.exists(dname))
file_num = 0
for file_name in os.listdir(dname):
parts = file_name.split('.')
self.assertTrue(len(parts) > 4)
self.assertTrue(parts[-5].isdigit() and int(parts[-5]) > 0, "Wrong tracing file name pattern")
self.assertEqual(parts[-4:], ['pt', 'trace', 'json', 'gz'])
file_num += 1
self.assertEqual(file_num, 3)
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_profiler_metadata(self):
t1, t2 = torch.ones(1), torch.ones(1)
with profile() as prof:
torch.add(t1, t2)
prof.add_metadata("test_key1", "test_value1")
prof.add_metadata_json("test_key2", "[1,2,3]")
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "test_key1" in trace
assert trace["test_key1"] == "test_value1"
assert "test_key2" in trace
assert trace["test_key2"] == [1, 2, 3]
def _test_profiler_tracing(self, use_kineto):
with _profile(use_kineto=use_kineto) as prof:
t1, t2 = torch.ones(1), torch.ones(1)
torch.add(t1, t2)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# read the trace and expect valid json
# if the JSON generated by export_chrome_trace is not valid, this will throw and fail the test.
with io.open(fname, 'r') as f:
json.load(f)
# test empty trace
with _profile(use_kineto=use_kineto) as prof:
pass
# saving an empty trace
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# Same test but for cuda.
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
if not use_cuda:
return
device = torch.device("cuda:0")
with _profile(use_cuda=True, use_kineto=use_kineto) as prof:
t1, t2 = torch.ones(1, device=device), torch.ones(1, device=device)
torch.add(t1, t2)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# Now validate the json
with io.open(fname, 'r') as f:
json.load(f)
def test_profiler_tracing(self):
self._test_profiler_tracing(False)
if kineto_available():
self._test_profiler_tracing(True)
@unittest.skip("Disable forward->backward link to workaround profiler crash")
def test_profiler_fwd_bwd_link(self):
with _profile(use_kineto=True) as prof:
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
z = torch.add(t1, t2)
y = torch.ones(1)
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
loss.backward()
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
j = json.load(f)
events = j["traceEvents"]
ts_to_name = {}
flow_s_to_ts = {}
flow_f_to_ts = {}
for e in events:
if e["ph"] == "X":
ts_to_name[e["ts"]] = e["name"]
if "cat" in e and "name" in e and e["cat"] == "forward_backward" and e["name"] == "fwd_bwd":
if e["ph"] == "s":
flow_s_to_ts[e["id"]] = e["ts"]
elif e["ph"] == "f":
flow_f_to_ts[e["id"]] = e["ts"]
self.assertTrue(len(flow_s_to_ts) == 2)
self.assertTrue(len(flow_f_to_ts) == 2)
self.assertTrue(1 in flow_s_to_ts.keys())
self.assertTrue(1 in flow_f_to_ts.keys())
self.assertTrue(2 in flow_s_to_ts.keys())
self.assertTrue(2 in flow_f_to_ts.keys())
s_ts_1 = flow_s_to_ts[1]
f_ts_1 = flow_f_to_ts[1]
s_ts_2 = flow_s_to_ts[2]
f_ts_2 = flow_f_to_ts[2]
self.assertTrue(all([ts in ts_to_name.keys() for ts in [s_ts_1, f_ts_1, s_ts_2, f_ts_2]]))
self.assertTrue(ts_to_name[s_ts_1] == "aten::binary_cross_entropy_with_logits")
self.assertTrue(ts_to_name[s_ts_2] == "aten::add")
def test_profiler_type(self):
profiler_type = torch._C._autograd._profiler_type
ActiveProfilerType = torch._C._autograd.ActiveProfilerType
self.assertEqual(profiler_type(), ActiveProfilerType.NONE)
# Autograd profiler
with _profile_legacy():
self.assertEqual(profiler_type(), ActiveProfilerType.LEGACY)
# Kineto profiler
with profile():
self.assertEqual(profiler_type(), ActiveProfilerType.KINETO)
def test_profiler_experimental_tree(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with profile() as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = (y - z) ** 2
loss.backward()
self.assertExpectedInline(
IcicleNode.format(p.profiler, 12),
"""\
[ aten::add ][ aten::ones ----------------][ aten::sub ][ aten::pow --------------------][ aten::ones_like -------------------][ autograd::engine::evaluate_function: PowBackward0 ----------------------------------------------][ autograd::engine::evaluate_function: SubBackward0 ][ autograd::engine::evaluate_function: AddBackward0 ][ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad ][ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad ]
[ aten::empty ][ aten::fill_ ] [ aten::result_type ][ aten::to ][ aten::empty_like ---][ aten::fill_ ][ PowBackward0 -----------------------------------------------------------------------------------][ SubBackward0 ] [ AddBackward0 ] [ torch::autograd::AccumulateGrad -------] [ torch::autograd::AccumulateGrad ]
[ aten::empty_strided ] [ aten::pow -----------------------------------][ aten::mul -------------------------][ aten::mul ][ aten::neg ] [ aten::new_empty_strided ][ aten::copy_ ] [ aten::detach ]
[ aten::result_type ][ aten::to ][ aten::copy_ ][ aten::mul -------------------------] [ aten::empty_strided ] [ detach ]
[ aten::to --------------------------]
[ aten::_to_copy --------------------]
[ aten::empty_strided ][ aten::copy_ ]
""" # noqa: B950
)
def test_profiler_experimental_tree_with_record_function(self):
with profile() as p:
with torch.autograd.profiler.record_function("Top level Annotation"):
with torch.autograd.profiler.record_function("First Annotation"):
x = torch.ones((1,), requires_grad=True)
# Check that we correctly handle the case when a user
# annotation does not call `__exit__`.
_ = torch.autograd.profiler.record_function("Second Annotation").__enter__()
y = x + 1
with torch.autograd.profiler.record_function("Third Annotation"):
y.backward()
# NB: The `aten::zeros` before the record function annotations are due to
# `at::cpp_custom_type_hack`. When we switch to `torch::CustomClassHolder`
# they will disappear.
self.assertExpectedInline(
IcicleNode.format(p.profiler, 12),
"""\
[ aten::zeros ---------------][ Top level Annotation ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]
[ aten::empty ][ aten::zero_ ][ aten::empty ][ aten::zeros ---------------][ First Annotation -------------------------][ aten::zeros ---------------][ Second Annotation ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]
[ aten::empty ][ aten::zero_ ][ aten::empty ][ aten::ones ----------------][ aten::empty ][ aten::zero_ ][ aten::empty ][ aten::add -------------------------][ aten::zeros ---------------][ Third Annotation --------------------------------------------------------------------------------------------------------------------------------------------------------------]
[ aten::empty ][ aten::fill_ ] [ aten::to --------------------------][ aten::empty ][ aten::zero_ ][ aten::empty ][ aten::ones_like -------------------][ autograd::engine::evaluate_function: AddBackward0 ][ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad ]
[ aten::_to_copy --------------------] [ aten::empty_like ---][ aten::fill_ ][ AddBackward0 ] [ torch::autograd::AccumulateGrad -------]
[ aten::empty_strided ][ aten::copy_ ] [ aten::empty_strided ] [ aten::new_empty_strided ][ aten::copy_ ]
[ aten::empty_strided ]
""" # noqa: B950
)
def test_profiler_experimental_tree_with_memory(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with profile(profile_memory=True) as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = (y - z) ** 2
loss.backward()
self.assertExpectedInline(
IcicleNode.format(p.profiler, 12),
"""\
[ aten::add ][ aten::ones ----------------][ aten::sub ][ aten::pow --------------------------------][ aten::ones_like -------------------][ autograd::engine::evaluate_function: PowBackward0 ----------------------------------------------------------------------------------------------------------------------------------------------][ autograd::engine::evaluate_function: SubBackward0 ][ autograd::engine::evaluate_function: AddBackward0 ][ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad ][ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad ][ [memory] ]
[ [memory] ] [ aten::empty ][ aten::fill_ ][ [memory] ] [ aten::result_type ][ aten::to ][ [memory] ][ aten::empty_like ---][ aten::fill_ ][ PowBackward0 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------][ [memory] ][ SubBackward0 ][ [memory] ] [ AddBackward0 ] [ torch::autograd::AccumulateGrad -------] [ torch::autograd::AccumulateGrad ]
[ [memory] ] [ aten::empty_strided ] [ aten::pow -----------------------------------------------][ aten::mul -------------------------------------------------------------------------][ aten::mul ][ [memory] ][ [memory] ] [ aten::neg ] [ aten::new_empty_strided ][ aten::copy_ ] [ aten::detach ]
[ [memory] ] [ aten::result_type ][ aten::to ][ [memory] ][ aten::copy_ ][ [memory] ][ aten::mul -------------------------------------------------][ [memory] ][ [memory] ] [ [memory] ] [ aten::empty_strided ] [ detach ]
[ aten::to --------------------------][ [memory] ][ [memory] ] [ [memory] ]
[ aten::_to_copy --------------------]
[ aten::empty_strided ][ aten::copy_ ]
[ [memory] ]
""" # noqa: B950
)
if __name__ == '__main__':
run_tests()