mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
References: https://github.com/pytorch/pytorch/issues/13918 Add more test cases for list of numpy array inputs Pull Request resolved: https://github.com/pytorch/pytorch/pull/72249 Approved by: https://github.com/mruberry
454 lines
18 KiB
Python
454 lines
18 KiB
Python
# Owner(s): ["module: numpy"]
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
from itertools import product
|
|
|
|
from torch.testing._internal.common_utils import \
|
|
(TestCase, run_tests)
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, onlyCPU, dtypes, skipMeta)
|
|
from torch.testing._internal.common_dtype import all_types_and_complex_and
|
|
|
|
# For testing handling NumPy objects and sending tensors to / accepting
|
|
# arrays from NumPy.
|
|
class TestNumPyInterop(TestCase):
|
|
# Note: the warning this tests for only appears once per program, so
|
|
# other instances of this warning should be addressed to avoid
|
|
# the tests depending on the order in which they're run.
|
|
@onlyCPU
|
|
def test_numpy_non_writeable(self, device):
|
|
arr = np.zeros(5)
|
|
arr.flags['WRITEABLE'] = False
|
|
self.assertWarns(UserWarning, lambda: torch.from_numpy(arr))
|
|
|
|
@onlyCPU
|
|
def test_numpy_unresizable(self, device) -> None:
|
|
x = np.zeros((2, 2))
|
|
y = torch.from_numpy(x)
|
|
with self.assertRaises(ValueError):
|
|
x.resize((5, 5))
|
|
|
|
z = torch.randn(5, 5)
|
|
w = z.numpy()
|
|
with self.assertRaises(RuntimeError):
|
|
z.resize_(10, 10)
|
|
with self.assertRaises(ValueError):
|
|
w.resize((10, 10))
|
|
|
|
@onlyCPU
|
|
def test_to_numpy(self, device) -> None:
|
|
def get_castable_tensor(shape, dtype):
|
|
if dtype.is_floating_point:
|
|
dtype_info = torch.finfo(dtype)
|
|
# can't directly use min and max, because for double, max - min
|
|
# is greater than double range and sampling always gives inf.
|
|
low = max(dtype_info.min, -1e10)
|
|
high = min(dtype_info.max, 1e10)
|
|
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
|
|
else:
|
|
# can't directly use min and max, because for int64_t, max - min
|
|
# is greater than int64_t range and triggers UB.
|
|
low = max(torch.iinfo(dtype).min, int(-1e10))
|
|
high = min(torch.iinfo(dtype).max, int(1e10))
|
|
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
|
|
return t.to(dtype)
|
|
|
|
dtypes = [
|
|
torch.uint8,
|
|
torch.int8,
|
|
torch.short,
|
|
torch.int,
|
|
torch.half,
|
|
torch.float,
|
|
torch.double,
|
|
torch.long,
|
|
]
|
|
|
|
for dtp in dtypes:
|
|
# 1D
|
|
sz = 10
|
|
x = get_castable_tensor(sz, dtp)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
# 1D > 0 storage offset
|
|
xm = get_castable_tensor(sz * 2, dtp)
|
|
x = xm.narrow(0, sz - 1, sz)
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
def check2d(x, y):
|
|
for i in range(sz1):
|
|
for j in range(sz2):
|
|
self.assertEqual(x[i][j], y[i][j])
|
|
|
|
# empty
|
|
x = torch.tensor([]).to(dtp)
|
|
y = x.numpy()
|
|
self.assertEqual(y.size, 0)
|
|
|
|
# contiguous 2D
|
|
sz1 = 3
|
|
sz2 = 5
|
|
x = get_castable_tensor((sz1, sz2), dtp)
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz1 * 2, sz2), dtp)
|
|
x = xm.narrow(0, sz1 - 1, sz1)
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# non-contiguous 2D
|
|
x = get_castable_tensor((sz2, sz1), dtp).t()
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertFalse(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz2 * 2, sz1), dtp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
# non-contiguous 2D with holes
|
|
xm = get_castable_tensor((sz2 * 2, sz1 * 2), dtp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
if dtp != torch.half:
|
|
# check writeable
|
|
x = get_castable_tensor((3, 4), dtp)
|
|
y = x.numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
y = x.t().numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
|
|
def test_to_numpy_bool(self, device) -> None:
|
|
x = torch.tensor([True, False], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool_)
|
|
for i in range(len(x)):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
x = torch.tensor([True], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool_)
|
|
self.assertEqual(x[0], y[0])
|
|
|
|
def test_from_numpy(self, device) -> None:
|
|
dtypes = [
|
|
np.double,
|
|
np.float64,
|
|
np.float16,
|
|
np.complex64,
|
|
np.complex128,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.int8,
|
|
np.uint8,
|
|
np.longlong,
|
|
np.bool_,
|
|
]
|
|
complex_dtypes = [
|
|
np.complex64,
|
|
np.complex128,
|
|
]
|
|
|
|
for dtype in dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
tensor_from_array = torch.from_numpy(array)
|
|
# TODO: change to tensor equality check once HalfTensor
|
|
# implements `==`
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor_from_array[i], array[i])
|
|
# ufunc 'remainder' not supported for complex dtypes
|
|
if dtype not in complex_dtypes:
|
|
# This is a special test case for Windows
|
|
# https://github.com/pytorch/pytorch/issues/22615
|
|
array2 = array % 2
|
|
tensor_from_array2 = torch.from_numpy(array2)
|
|
for i in range(len(array2)):
|
|
self.assertEqual(tensor_from_array2[i], array2[i])
|
|
|
|
# Test unsupported type
|
|
array = np.array([1, 2, 3, 4], dtype=np.uint16)
|
|
with self.assertRaises(TypeError):
|
|
tensor_from_array = torch.from_numpy(array)
|
|
|
|
# check storage offset
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[1]
|
|
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check noncontiguous
|
|
x = np.linspace(1, 25, 25)
|
|
x.shape = (5, 5)
|
|
expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t()
|
|
self.assertEqual(torch.from_numpy(x.T), expected)
|
|
|
|
# check noncontiguous with holes
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[:, 1]
|
|
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check zero dimensional
|
|
x = np.zeros((0, 2))
|
|
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
|
|
x = np.zeros((2, 0))
|
|
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
|
|
|
|
# check ill-sized strides raise exception
|
|
x = np.array([3., 5., 8.])
|
|
x.strides = (3,)
|
|
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
|
|
|
|
@skipMeta
|
|
def test_from_list_of_ndarray_warning(self, device):
|
|
warning_msg = r"Creating a tensor from a list of numpy.ndarrays is extremely slow"
|
|
with self.assertWarnsOnceRegex(UserWarning, warning_msg):
|
|
torch.tensor([np.array([0]), np.array([1])], device=device)
|
|
|
|
def test_ctor_with_invalid_numpy_array_sequence(self, device):
|
|
# Invalid list of numpy array
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor([np.random.random(size=(3, 3)), np.random.random(size=(3, 0))], device=device)
|
|
|
|
# Invalid list of list of numpy array
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor([[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]], device=device)
|
|
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor([[np.random.random(size=(3, 3)), np.random.random(size=(3, 3))],
|
|
[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]], device=device)
|
|
|
|
# expected shape is `[1, 2, 3]`, hence we try to iterate over 0-D array
|
|
# leading to type error : not a sequence.
|
|
with self.assertRaisesRegex(TypeError, "not a sequence"):
|
|
torch.tensor([[np.random.random(size=(3)), np.random.random()]], device=device)
|
|
|
|
# list of list or numpy array.
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor([[1, 2, 3], np.random.random(size=(2,)), ], device=device)
|
|
|
|
@onlyCPU
|
|
def test_ctor_with_numpy_scalar_ctor(self, device) -> None:
|
|
dtypes = [
|
|
np.double,
|
|
np.float64,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
np.bool_,
|
|
]
|
|
for dtype in dtypes:
|
|
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
|
|
|
|
@onlyCPU
|
|
def test_numpy_index(self, device):
|
|
i = np.array([0, 1, 2], dtype=np.int32)
|
|
x = torch.randn(5, 5)
|
|
for idx in i:
|
|
self.assertFalse(isinstance(idx, int))
|
|
self.assertEqual(x[idx], x[int(idx)])
|
|
|
|
@onlyCPU
|
|
def test_numpy_array_interface(self, device):
|
|
types = [
|
|
torch.DoubleTensor,
|
|
torch.FloatTensor,
|
|
torch.HalfTensor,
|
|
torch.LongTensor,
|
|
torch.IntTensor,
|
|
torch.ShortTensor,
|
|
torch.ByteTensor,
|
|
]
|
|
dtypes = [
|
|
np.float64,
|
|
np.float32,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
]
|
|
for tp, dtype in zip(types, dtypes):
|
|
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
|
|
if np.dtype(dtype).kind == 'u': # type: ignore[misc]
|
|
# .type expects a XxxTensor, which have no type hints on
|
|
# purpose, so ignore during mypy type checking
|
|
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
else:
|
|
x = torch.tensor([1, -2, 3, -4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, -2, 3, -4], dtype=dtype)
|
|
|
|
# Test __array__ w/o dtype argument
|
|
asarray = np.asarray(x)
|
|
self.assertIsInstance(asarray, np.ndarray)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test __array_wrap__, same dtype
|
|
abs_x = np.abs(x)
|
|
abs_array = np.abs(array)
|
|
self.assertIsInstance(abs_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(abs_x[i], abs_array[i])
|
|
|
|
# Test __array__ with dtype argument
|
|
for dtype in dtypes:
|
|
x = torch.IntTensor([1, -2, 3, -4])
|
|
asarray = np.asarray(x, dtype=dtype)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
|
|
if np.dtype(dtype).kind == 'u': # type: ignore[misc]
|
|
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], wrapped_x[i])
|
|
else:
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test some math functions with float types
|
|
float_types = [torch.DoubleTensor, torch.FloatTensor]
|
|
float_dtypes = [np.float64, np.float32]
|
|
for tp, dtype in zip(float_types, float_dtypes):
|
|
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
for func in ['sin', 'sqrt', 'ceil']:
|
|
ufunc = getattr(np, func)
|
|
res_x = ufunc(x)
|
|
res_array = ufunc(array)
|
|
self.assertIsInstance(res_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(res_x[i], res_array[i])
|
|
|
|
# Test functions with boolean return value
|
|
for tp, dtype in zip(types, dtypes):
|
|
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
geq2_x = np.greater_equal(x, 2)
|
|
geq2_array = np.greater_equal(array, 2).astype('uint8')
|
|
self.assertIsInstance(geq2_x, torch.ByteTensor)
|
|
for i in range(len(x)):
|
|
self.assertEqual(geq2_x[i], geq2_array[i])
|
|
|
|
@onlyCPU
|
|
def test_multiplication_numpy_scalar(self, device) -> None:
|
|
for np_dtype in [np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8]:
|
|
for t_dtype in [torch.float, torch.double]:
|
|
# mypy raises an error when np.floatXY(2.0) is called
|
|
# even though this is valid code
|
|
np_sc = np_dtype(2.0) # type: ignore[abstract, arg-type]
|
|
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
|
|
r1 = t * np_sc
|
|
self.assertIsInstance(r1, torch.Tensor)
|
|
self.assertTrue(r1.dtype == t_dtype)
|
|
self.assertTrue(r1.requires_grad)
|
|
r2 = np_sc * t
|
|
self.assertIsInstance(r2, torch.Tensor)
|
|
self.assertTrue(r2.dtype == t_dtype)
|
|
self.assertTrue(r2.requires_grad)
|
|
|
|
@onlyCPU
|
|
def test_parse_numpy_int(self, device):
|
|
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
|
|
self.assertRaisesRegex(RuntimeError, "Overflow",
|
|
lambda: torch.mean(torch.randn(1, 1), np.uint64(-1))) # type: ignore[call-overload]
|
|
# https://github.com/pytorch/pytorch/issues/29252
|
|
for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]:
|
|
scalar = 3
|
|
np_arr = np.array([scalar], dtype=nptype)
|
|
np_val = np_arr[0]
|
|
|
|
# np integral type can be treated as a python int in native functions with
|
|
# int parameters:
|
|
self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val))
|
|
self.assertEqual(torch.ones([2, 2, 2, 2]).mean(scalar), torch.ones([2, 2, 2, 2]).mean(np_val))
|
|
|
|
# numpy integral type parses like a python int in custom python bindings:
|
|
self.assertEqual(torch.Storage(np_val).size(), scalar) # type: ignore[attr-defined]
|
|
|
|
tensor = torch.tensor([2], dtype=torch.int)
|
|
tensor[0] = np_val
|
|
self.assertEqual(tensor[0], np_val)
|
|
|
|
# Original reported issue, np integral type parses to the correct
|
|
# PyTorch integral type when passed for a `Scalar` parameter in
|
|
# arithmetic operations:
|
|
t = torch.from_numpy(np_arr)
|
|
self.assertEqual((t + np_val).dtype, t.dtype)
|
|
self.assertEqual((np_val + t).dtype, t.dtype)
|
|
|
|
def test_has_storage_numpy(self, device):
|
|
for dtype in [np.float32, np.float64, np.int64,
|
|
np.int32, np.int16, np.uint8]:
|
|
arr = np.array([1], dtype=dtype)
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.float32).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.double).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.int).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.long).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.uint8).storage())
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
|
|
def test_numpy_scalar_cmp(self, device, dtype):
|
|
if dtype.is_complex:
|
|
tensors = (torch.tensor(complex(1, 3), dtype=dtype, device=device),
|
|
torch.tensor([complex(1, 3), 0, 2j], dtype=dtype, device=device),
|
|
torch.tensor([[complex(3, 1), 0], [-1j, 5]], dtype=dtype, device=device))
|
|
else:
|
|
tensors = (torch.tensor(3, dtype=dtype, device=device),
|
|
torch.tensor([1, 0, -3], dtype=dtype, device=device),
|
|
torch.tensor([[3, 0, -1], [3, 5, 4]], dtype=dtype, device=device))
|
|
|
|
for tensor in tensors:
|
|
if dtype == torch.bfloat16:
|
|
with self.assertRaises(TypeError):
|
|
np_array = tensor.cpu().numpy()
|
|
continue
|
|
|
|
np_array = tensor.cpu().numpy()
|
|
for t, a in product((tensor.flatten()[0], tensor.flatten()[0].item()),
|
|
(np_array.flatten()[0], np_array.flatten()[0].item())):
|
|
self.assertEqual(t, a)
|
|
if dtype == torch.complex64 and torch.is_tensor(t) and type(a) == np.complex64:
|
|
# TODO: Imaginary part is dropped in this case. Need fix.
|
|
# https://github.com/pytorch/pytorch/issues/43579
|
|
self.assertFalse(t == a)
|
|
else:
|
|
self.assertTrue(t == a)
|
|
|
|
instantiate_device_type_tests(TestNumPyInterop, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|