Files
pytorch/caffe2/operators/transpose_op.h
Richard Barnes 1622546050 use irange for loops (#70248)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70248

Modified loops in files under fbsource/fbcode/caffe2/ from the format
```
for(TYPE var=x0;var<x_max;x++)
```
to the format
```
for(const auto var: irange(xmax))
```

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D32813863

fbshipit-source-id: 527244b4a2b220fdfe7f17dee3599603f492a2ca
2022-01-06 23:14:29 -08:00

78 lines
2.0 KiB
C++

#ifndef CAFFE2_OPERATORS_TRANSPOSE_H_
#define CAFFE2_OPERATORS_TRANSPOSE_H_
#include <algorithm>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <class Context>
class TransposeOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_DISPATCH_HELPER;
template <class... Args>
explicit TransposeOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
axes_(this->template GetRepeatedArgument<int>("axes")) {
// We will check the legality of axes_: it should be from 0 to axes_.size().
std::vector<int> axes_sorted = axes_;
std::sort(axes_sorted.begin(), axes_sorted.end());
for (const auto i : c10::irange(axes_sorted.size())) {
if (axes_sorted[i] != static_cast<int64_t>(i)) {
CAFFE_THROW("Axes should be a permutation of 0 to ndim.");
}
}
}
bool RunOnDevice() override {
// Do the actual transpose, which is implemented in DoRunWithType().
return DispatchHelper<TensorTypes<float, double, int, int64_t>>::call(
this, Input(0));
}
protected:
template <typename T>
void TransposeImpl(const Tensor& X, Tensor* Y) {
const int ndim = X.dim();
if (axes_.empty()) {
axes_.resize(ndim);
std::iota(axes_.rbegin(), axes_.rend(), 0);
} else {
CAFFE_ENFORCE_EQ(ndim, axes_.size());
}
const at::IntArrayRef X_dims = X.sizes();
std::vector<std::int64_t> Y_dims(ndim);
for (const auto i : c10::irange(ndim)) {
Y_dims[i] = X_dims[axes_[i]];
}
Y->Resize(Y_dims);
math::Transpose<std::int64_t, T, Context>(
X_dims.size(),
X_dims.data(),
axes_.data(),
X.template data<T>(),
Y->template mutable_data<T>(),
&context_);
}
private:
template <typename T>
bool DoRunWithType() {
TransposeImpl<T>(Input(0), Output(0));
return true;
}
std::vector<int> axes_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_TRANSPOSE_H_