Files
pytorch/caffe2/operators/sparse_lp_regularizer_op.cc
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

107 lines
3.5 KiB
C++

#include "caffe2/operators/sparse_lp_regularizer_op.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <>
bool SparseLpRegularizerOp<float, CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <>
template <typename SIndex>
bool SparseLpRegularizerOp<float, CPUContext>::DoRunWithType() {
const auto* indices = Input(INDICES).template data<SIndex>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
// n: number of sparse embeddings to be normalized
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
// embedding length, e.g. 32, 64, 128
auto block_size = Input(PARAM).size_from_dim(1);
if (p_ == 2.0) { // L2 regularization
#ifdef LOG_FIRST_N
LOG_FIRST_N(INFO, 3)
<< "Applying sparse L2 regularization with reg_lambda = "
<< reg_lambda_;
LOG_FIRST_N(INFO, 3) << "L2 regularization input "
<< paramOut[indices[0] * block_size];
#endif // LOG_FIRST_N
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
// Should probably be rewritten using Eigen.
for (int j = 0; j < block_size; j++) {
paramOut[offsetIdx + j] = paramOut[offsetIdx + j] * (1 - reg_lambda_);
}
}
#ifdef LOG_FIRST_N
LOG_FIRST_N(INFO, 3) << "L2 regularization output "
<< paramOut[indices[0] * block_size];
#endif // LOG_FIRST_N
} else if (p_ == 1.0) { // L1 regularization
#ifdef LOG_FIRST_N
LOG_FIRST_N(INFO, 3)
<< "Applying sparse L1 regularization with reg_lambda = "
<< reg_lambda_;
LOG_FIRST_N(INFO, 3) << "L1 regularization input "
<< paramOut[indices[0] * block_size];
#endif // LOG_FIRST_N
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
for (int j = 0; j < block_size; j++) {
// I assume this can be sped up significantly.
if (paramOut[offsetIdx + j] < -reg_lambda_) {
paramOut[offsetIdx + j] += reg_lambda_;
} else if (paramOut[offsetIdx + j] > reg_lambda_) {
paramOut[offsetIdx + j] -= reg_lambda_;
} else {
paramOut[offsetIdx + j] = 0.0;
}
}
}
#ifdef LOG_FIRST_N
LOG_FIRST_N(INFO, 3) << "L1 regularization output "
<< paramOut[indices[0] * block_size];
#endif // LOG_FIRST_N
} else { // Currently only handling L1 and L2 regularization.
return false;
}
return true;
}
REGISTER_CPU_OPERATOR(
SparseLpRegularizer,
SparseLpRegularizerOp<float, CPUContext>);
OPERATOR_SCHEMA(SparseLpRegularizer)
.NumInputs(2, 3)
.NumOutputs(1)
.Input(0, "param", "Parameters to be regularized")
.Input(1, "indices", "Sparse indices")
.Input(
2,
"grad",
"Gradient computed (optional - not used, this argument is for backwards compatibility)")
.Output(0, "output_param", "Regularized parameters")
.EnforceOneToOneInplace()
.Arg("p", "Value of p in the Lp regularization to use. The default is 2.0.")
.Arg(
"reg_lambda",
"Value of lambda (multiplier for the regularization term). The default is 1e-5.")
.SetDoc(R"DOC(
Given a sparse matrix, apply Lp regularization. Currently only L1 and L2 are implemented.
)DOC");
SHOULD_NOT_DO_GRADIENT(SparseLpNorm);
} // namespace caffe2