mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
107 lines
3.5 KiB
C++
107 lines
3.5 KiB
C++
#include "caffe2/operators/sparse_lp_regularizer_op.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/tensor.h"
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
bool SparseLpRegularizerOp<float, CPUContext>::RunOnDevice() {
|
|
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
|
|
this, Input(INDICES));
|
|
}
|
|
|
|
template <>
|
|
template <typename SIndex>
|
|
bool SparseLpRegularizerOp<float, CPUContext>::DoRunWithType() {
|
|
const auto* indices = Input(INDICES).template data<SIndex>();
|
|
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
|
|
|
|
// n: number of sparse embeddings to be normalized
|
|
auto n = Input(INDICES).numel();
|
|
if (n == 0) {
|
|
return true;
|
|
}
|
|
|
|
// embedding length, e.g. 32, 64, 128
|
|
auto block_size = Input(PARAM).size_from_dim(1);
|
|
|
|
if (p_ == 2.0) { // L2 regularization
|
|
#ifdef LOG_FIRST_N
|
|
LOG_FIRST_N(INFO, 3)
|
|
<< "Applying sparse L2 regularization with reg_lambda = "
|
|
<< reg_lambda_;
|
|
LOG_FIRST_N(INFO, 3) << "L2 regularization input "
|
|
<< paramOut[indices[0] * block_size];
|
|
#endif // LOG_FIRST_N
|
|
for (int i = 0; i < n; ++i) {
|
|
auto idx = indices[i];
|
|
auto offsetIdx = idx * block_size;
|
|
// Should probably be rewritten using Eigen.
|
|
for (int j = 0; j < block_size; j++) {
|
|
paramOut[offsetIdx + j] = paramOut[offsetIdx + j] * (1 - reg_lambda_);
|
|
}
|
|
}
|
|
#ifdef LOG_FIRST_N
|
|
LOG_FIRST_N(INFO, 3) << "L2 regularization output "
|
|
<< paramOut[indices[0] * block_size];
|
|
#endif // LOG_FIRST_N
|
|
} else if (p_ == 1.0) { // L1 regularization
|
|
#ifdef LOG_FIRST_N
|
|
LOG_FIRST_N(INFO, 3)
|
|
<< "Applying sparse L1 regularization with reg_lambda = "
|
|
<< reg_lambda_;
|
|
LOG_FIRST_N(INFO, 3) << "L1 regularization input "
|
|
<< paramOut[indices[0] * block_size];
|
|
#endif // LOG_FIRST_N
|
|
for (int i = 0; i < n; ++i) {
|
|
auto idx = indices[i];
|
|
auto offsetIdx = idx * block_size;
|
|
|
|
for (int j = 0; j < block_size; j++) {
|
|
// I assume this can be sped up significantly.
|
|
if (paramOut[offsetIdx + j] < -reg_lambda_) {
|
|
paramOut[offsetIdx + j] += reg_lambda_;
|
|
} else if (paramOut[offsetIdx + j] > reg_lambda_) {
|
|
paramOut[offsetIdx + j] -= reg_lambda_;
|
|
} else {
|
|
paramOut[offsetIdx + j] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
#ifdef LOG_FIRST_N
|
|
LOG_FIRST_N(INFO, 3) << "L1 regularization output "
|
|
<< paramOut[indices[0] * block_size];
|
|
#endif // LOG_FIRST_N
|
|
} else { // Currently only handling L1 and L2 regularization.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(
|
|
SparseLpRegularizer,
|
|
SparseLpRegularizerOp<float, CPUContext>);
|
|
OPERATOR_SCHEMA(SparseLpRegularizer)
|
|
.NumInputs(2, 3)
|
|
.NumOutputs(1)
|
|
.Input(0, "param", "Parameters to be regularized")
|
|
.Input(1, "indices", "Sparse indices")
|
|
.Input(
|
|
2,
|
|
"grad",
|
|
"Gradient computed (optional - not used, this argument is for backwards compatibility)")
|
|
.Output(0, "output_param", "Regularized parameters")
|
|
.EnforceOneToOneInplace()
|
|
.Arg("p", "Value of p in the Lp regularization to use. The default is 2.0.")
|
|
.Arg(
|
|
"reg_lambda",
|
|
"Value of lambda (multiplier for the regularization term). The default is 1e-5.")
|
|
.SetDoc(R"DOC(
|
|
Given a sparse matrix, apply Lp regularization. Currently only L1 and L2 are implemented.
|
|
)DOC");
|
|
|
|
SHOULD_NOT_DO_GRADIENT(SparseLpNorm);
|
|
|
|
} // namespace caffe2
|