Files
pytorch/caffe2/operators/shape_op.h
Richard Barnes 1622546050 use irange for loops (#70248)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70248

Modified loops in files under fbsource/fbcode/caffe2/ from the format
```
for(TYPE var=x0;var<x_max;x++)
```
to the format
```
for(const auto var: irange(xmax))
```

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D32813863

fbshipit-source-id: 527244b4a2b220fdfe7f17dee3599603f492a2ca
2022-01-06 23:14:29 -08:00

56 lines
1.6 KiB
C++

#pragma once
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "c10/util/irange.h"
namespace caffe2 {
// RecordShapeOp records the shape of the input tensor to a vector of int. You
// mostly don't need this operator explicitly, and it is mostly used in the
// autodiff process.
template <class Context>
class ShapeOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit ShapeOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
axes_(OperatorBase ::GetRepeatedArgument<int>("axes")) {}
bool RunOnDevice() override {
auto& data = Input(DATA);
int numDims = data.dim();
int numAxes = axes_.size();
if (numAxes == 0) {
auto* output = Output(0, {numDims}, at::dtype<int64_t>());
int64_t* output_data = output->template mutable_data<int64_t>();
context_.CopyBytesSameDevice(
numDims * sizeof(int64_t), data.sizes().data(), output_data);
return true;
}
auto* output = Output(0, {numAxes}, at::dtype<int64_t>());
auto src = reinterpret_cast<const char*>(data.sizes().data());
auto out = reinterpret_cast<char*>(output->template mutable_data<int64_t>());
for (const auto i : c10::irange(numAxes)) {
auto axis = axes_[i];
CAFFE_ENFORCE_LT(axis, numDims, "Axis out of range");
CAFFE_ENFORCE_GE(axis, 0, "Each axis should be non-negative");
context_.CopyBytesSameDevice(
sizeof(int64_t), src + axis * sizeof(int64_t), out);
out += sizeof(int64_t);
}
return true;
}
INPUT_TAGS(DATA);
private:
vector<int> axes_;
};
} // namespace caffe2