mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
290 lines
8.1 KiB
C++
290 lines
8.1 KiB
C++
#include "caffe2/core/operator_gradient.h"
|
|
#include "caffe2/operators/reduce_front_back_sum_mean_ops.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
/***
|
|
Sum Ops
|
|
***/
|
|
|
|
// ReduceFrontSum: columnwise sum
|
|
template <>
|
|
template <typename T>
|
|
void SumReduceDimsOp<CPUContext, true, false>::Compute(
|
|
int rows,
|
|
int cols,
|
|
const T* in_data,
|
|
const int32_t* lengths_data,
|
|
T* out_data) {
|
|
for (int j = 0; j < cols; j++) {
|
|
T sum = in_data[j];
|
|
int length = lengths_data == nullptr ? rows : lengths_data[j];
|
|
for (int i = 1; i < length; i++) {
|
|
sum += in_data[i * cols + j];
|
|
}
|
|
out_data[j] = sum;
|
|
}
|
|
}
|
|
|
|
// ReduceBackSum: rowwise sum
|
|
template <>
|
|
template <typename T>
|
|
void SumReduceDimsOp<CPUContext, false, false>::Compute(
|
|
int rows,
|
|
int cols,
|
|
const T* in_data,
|
|
const int32_t* lengths_data,
|
|
T* out_data) {
|
|
for (int i = 0; i < rows; i++) {
|
|
int offset = i * cols;
|
|
T sum = in_data[offset];
|
|
int length = lengths_data == nullptr ? cols : lengths_data[i];
|
|
for (int j = 1; j < length; j++) {
|
|
sum += in_data[offset + j];
|
|
}
|
|
out_data[i] = sum;
|
|
}
|
|
}
|
|
|
|
// ReduceFrontSumGradient
|
|
template <>
|
|
template <typename T>
|
|
void SumReduceDimsGradientOp<CPUContext, true, false>::Compute(
|
|
int rows,
|
|
int cols,
|
|
const T* dYdata,
|
|
const int* lengths_data,
|
|
T* dXdata) {
|
|
for (int i = 0; i < rows * cols; i++) {
|
|
int row = i / cols;
|
|
int col = i % cols;
|
|
if (lengths_data == nullptr || row < lengths_data[col]) {
|
|
dXdata[i] = dYdata[col];
|
|
} else {
|
|
dXdata[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ReduceBackSumGradient
|
|
template <>
|
|
template <typename T>
|
|
void SumReduceDimsGradientOp<CPUContext, false, false>::Compute(
|
|
int rows,
|
|
int cols,
|
|
const T* dYdata,
|
|
const int* lengths_data,
|
|
T* dXdata) {
|
|
for (int i = 0; i < rows * cols; i++) {
|
|
int row = i / cols;
|
|
int col = i % cols;
|
|
if (lengths_data == nullptr || col < lengths_data[row]) {
|
|
dXdata[i] = dYdata[row];
|
|
} else {
|
|
dXdata[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(ReduceFrontSum, SumReduceDimsOp<CPUContext, true, false>);
|
|
REGISTER_CPU_OPERATOR(
|
|
ReduceFrontSumGradient,
|
|
SumReduceDimsGradientOp<CPUContext, true, false>);
|
|
|
|
class GetReduceFrontSumGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
vector<string> grad_in = {GO(0), I(0)};
|
|
if (def_.input_size() == 2) {
|
|
grad_in.push_back(I(1));
|
|
}
|
|
return SingleGradientDef(
|
|
"ReduceFrontSumGradient", "", grad_in, vector<string>{GI(0)});
|
|
}
|
|
};
|
|
|
|
REGISTER_GRADIENT(ReduceFrontSum, GetReduceFrontSumGradient);
|
|
|
|
REGISTER_CPU_OPERATOR(ReduceBackSum, SumReduceDimsOp<CPUContext, false, false>);
|
|
REGISTER_CPU_OPERATOR(
|
|
ReduceBackSumGradient,
|
|
SumReduceDimsGradientOp<CPUContext, false, false>);
|
|
|
|
class GetReduceBackSumGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
vector<string> grad_in = {GO(0), I(0)};
|
|
if (def_.input_size() == 2) {
|
|
grad_in.push_back(I(1));
|
|
}
|
|
return SingleGradientDef(
|
|
"ReduceBackSumGradient", "", grad_in, vector<string>{GI(0)});
|
|
}
|
|
};
|
|
|
|
REGISTER_GRADIENT(ReduceBackSum, GetReduceBackSumGradient);
|
|
|
|
#define REDUCTION_OP_SHAPE_INFERENCE(is_front_reducer) \
|
|
CAFFE_ENFORCE_LE(1, in.size()); \
|
|
CAFFE_ENFORCE_GE(2, in.size()); \
|
|
ArgumentHelper helper(def); \
|
|
int num_reduce_dims = helper.GetSingleArgument<int>("num_reduce_dim", 1); \
|
|
int start_index = is_front_reducer ? num_reduce_dims : 0; \
|
|
int end_index = is_front_reducer ? in[0].dims_size() \
|
|
: in[0].dims_size() - num_reduce_dims; \
|
|
vector<int> output_shape; \
|
|
for (int i = start_index; i < end_index; ++i) { \
|
|
output_shape.push_back(in[0].dims(i)); \
|
|
} \
|
|
return vector<TensorShape>{ \
|
|
CreateTensorShape(output_shape, in[0].data_type())};
|
|
|
|
OPERATOR_SCHEMA(ReduceFrontSum)
|
|
.NumInputs(1, 2)
|
|
.NumOutputs(1)
|
|
.Arg(
|
|
"num_reduce_dims",
|
|
"(*int*): number of dimensions to reduce (default=1)")
|
|
.SetDoc(R"DOC(
|
|
Reduces the input tensor along the last dimension of the by applying **sum**.
|
|
|
|
Can reduce more than one of the "first" dimensions by setting `num_reduce_dim`.
|
|
|
|
A second (optional) input, `lengths`, can be passed, which enforces that only a subset of the elements are considered in the sum operation.
|
|
- If input tensor `X` has shape $(d_0, d_1, d_2, ..., d_n)$, `lengths` must have shape $(d_1 * d_2 * ... * d_{n})$.
|
|
- The values of the `lengths` tensor determine how many of the values to consider for each vector in the $d_{0}$ dimension.
|
|
|
|
For example, if $X = [[1,5,2,9],[4,1,8,2],[2,7,0,3]]$ and $lengths = [2,3,1,2]$, then $Y = [sum(1,4), sum(5,1,7), sum(2), sum(9,2)] = [2.5, 4.333, 2, 5.5]$
|
|
|
|
Github Links:
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/reduce_front_back_sum_ops.cc
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"ReduceFrontSum",
|
|
["X"],
|
|
["Y"],
|
|
num_reduce_dim=2
|
|
)
|
|
|
|
workspace.FeedBlob("X", np.random.randint(10, size=(2,3,3)).astype(np.float32))
|
|
print("X:", workspace.FetchBlob("X"))
|
|
workspace.RunOperatorOnce(op)
|
|
print("Y:", workspace.FetchBlob("Y"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
X:
|
|
[[[4. 1. 1.]
|
|
[0. 6. 7.]
|
|
[7. 8. 6.]]
|
|
|
|
[[5. 7. 7.]
|
|
[0. 1. 6.]
|
|
[2. 9. 0.]]]
|
|
Y: [18. 32. 27.]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
)DOC")
|
|
.Input(0, "X", "(*Tensor`<float>`*): input tensor")
|
|
.Input(1, "lengths", "(*Tensor`<int>`*): number of elements in each sample")
|
|
.Output(0, "Y", "(*Tensor`<float>`*): reduced tensor")
|
|
.TensorInferenceFunction([](const OperatorDef& def,
|
|
const vector<TensorShape>& in) {
|
|
REDUCTION_OP_SHAPE_INFERENCE(true)
|
|
});
|
|
OPERATOR_SCHEMA(ReduceFrontSumGradient).NumInputs(2, 3).NumOutputs(1);
|
|
|
|
OPERATOR_SCHEMA(ReduceBackSum)
|
|
.NumInputs(1, 2)
|
|
.NumOutputs(1)
|
|
.Arg(
|
|
"num_reduce_dims",
|
|
"(*int*): number of dimensions to reduce (default=1)")
|
|
.SetDoc(R"DOC(
|
|
Reduces the input tensor along the last dimension of the by applying **sum**.
|
|
|
|
Can reduce more than one of the "last" dimensions by setting `num_reduce_dim`.
|
|
|
|
A second (optional) input, `lengths`, can be passed, which enforces that only a subset of the elements are considered in the sum operation.
|
|
- If input tensor `X` has shape $(d_0, d_1, d_2, ..., d_n)$, `lengths` must have shape $(d_0 * d_1 * d_2 * ... * d_{n-1})$.
|
|
- The values of the `lengths` tensor determine how many of the values to consider for each vector in the $d_{n-1}$ dimension.
|
|
|
|
For example if $X = [[1,5,2,9],[4,1,8,2],[2,7,0,3]]$ and $lengths = [2,3,1]$, then $Y = [sum(1,5), sum(4,1,8), sum(2)] = [6, 13, 2]$
|
|
|
|
|
|
Github Links:
|
|
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/reduce_front_back_sum_ops.cc
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"ReduceBackSum",
|
|
["X"],
|
|
["Y"],
|
|
num_reduce_dim=2
|
|
)
|
|
|
|
workspace.FeedBlob("X", np.random.randint(10, size=(1,2,3,3)).astype(np.float32))
|
|
print("X:", workspace.FetchBlob("X"))
|
|
workspace.RunOperatorOnce(op)
|
|
print("Y:", workspace.FetchBlob("Y"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
X:
|
|
[[[[2. 7. 7.]
|
|
[1. 1. 0.]
|
|
[9. 7. 2.]]
|
|
|
|
[[6. 6. 4.]
|
|
[1. 2. 6.]
|
|
[6. 6. 3.]]]]
|
|
Y: [[36. 40.]]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
)DOC")
|
|
.Input(0, "X", "(*Tensor`<float>`*): input tensor")
|
|
.Input(1, "lengths", "(*Tensor`<int>`*): number of elements in each sample")
|
|
.Output(0, "Y", "(*Tensor`<float>`*): reduced tensor")
|
|
.TensorInferenceFunction([](const OperatorDef& def,
|
|
const vector<TensorShape>& in) {
|
|
REDUCTION_OP_SHAPE_INFERENCE(false)
|
|
});
|
|
OPERATOR_SCHEMA(ReduceBackSumGradient).NumInputs(2, 3).NumOutputs(1);
|
|
|
|
#undef REDUCTION_OP_SHAPE_INFERENCE
|
|
|
|
} // namespace caffe2
|